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ABSTRACT In this article, the finite-timeH∞ control problem for singular positiveMarkovian jump systems
with time-varying delay and saturation constraint was studied. Firstly, considering the discontinuities caused
by the mode-dependent singular matrix and Markov jump switching behavior, a state feedback controller
is designed to guarantee the positivity and mean-square locally finite-time H∞ stability of the considered
system. Secondly, the maximum finite-time domain of attraction of the considered system subject to input
saturation is estimated. Finally, to show the effectiveness of our control strategy, the simulation results are
given.

INDEX TERMS Finite-timeH∞ controller design, saturation constraint, singular positive systems, optimize
control.

I. INTRODUCTION
In practice, many dynamic systems can be described by
Markov jump systems, which often encounter random faults,
component repairs and other factors, resulting from modifi-
cations of subsystem interconnection, abrupt environmental
disturbance, and so on. In view of this, some important
articles entirely devoted to many topics of this kind of system
have been presented, including filter [1], [2], network [3],
[4], actuator saturation [5], [6], [7], semi-Markovian jump
systems [8], [9]. In the research results on T-S fuzzy mode
[10], [11], [12], [13], fuzzy fault-tolerant tracking control of
Markov jump systems with unknown mismatched faults was
discussed in [12], and the mismatched quantized H∞ output-
feedback control of fuzzy Markov jump systems was studied
in [13]. Considering the combination with event-based
security control, event-based security control problem for an
interconnected system with Markovian switching topologies
was developed in [14], and event-triggered sliding mode
secure control for nonlinear semi-Markov jump systems was
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established in [15]. In the last decades, a lot of scholars
have been attracted to singular Markovian systems due to
their extensive applications in the modeling of robotics,
economics, and other areas [16], [17], [18], [19], [20]. It is
worth noting that, the system state after and before the
switching time may be discontinuous when considering the
switching behavior and the singular matrix of the given
system. However, few works are considered about such
uncontinuity in [21], [22], and [23].

On the other hand, in some practical engineering appli-
cations, especially for some plants with short working
time and fast response, the traditional lyapunov stability
cannot achieve the desired control goal. In this background,
finite-time control is becoming increasingly important.
Furthermore, the finite-time control scheme for Markovian
system has gradually become a hot research topic, and many
meaningful results have been derived in [24], [25], [26],
and [27]. Here are some references, sufficient conditions
were obtained to guarantee that the singular T-S fuzzy
Markovian jump system was finite time bounded in [26].
The finite-time stability problem of linear switched singular
systems was addressed in [27], and new sufficient conditions
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were presented to guarantee the considered systems with
finite-time unstable subsystems being finite-time bounded.

It should be noted that the physical system in the real world
involves non negative variables, such as population level,
absolute pressure, etc. These systems are represented as posi-
tive systems, whichmeans that when the initial conditions and
inputs are nonnegative, their state and output are nonnegative.
Because of its practical application significance, the research
of positive systems has received extensive attention [28],
[29], [30]. For example, by applying an appropriate linear
co-positive type Lyapunov-Krasovskii function, the state
feedback controller was designed for singular positive
Markovian jump systems in [30]. Furthermore, the problem
of L1 control for positiveMarkovian jump systemswith partly
known transition rates was discussed in [31]. The authors
proposed an event-triggered control for positive Markov
jump systems without/with input saturation in [32]. However,
it is worth pointing out that how to stable singular positive
Markovian jump systems with input saturation constraint
is still a problem. Based on the above discussion, when
considering the discontinuities caused by the singular matrix,
the design of H∞ finite-time controller for the singular
positiveMarkovian jump systemwith time-varying delay and
saturation constraint has not been fully investigated till now.

The main object of this article is to further investigate the
finite-timeH∞ controller design method for singular positive
Markovian jump delay systems with saturation constraint,
and the key contributions of this paper are briefly summarized
as follows:

i)When practical factors such as the discontinuities, partly
unknown transition rates, time delay, disturbance signal and
input saturation are combined in a Markovian jump system,
while also considering the special characteristics of singular
positive systems themselves, the controller designed method
is given to guarantee that the considered system is positive
and mean-square locally finite-time H∞ stable.
ii)For input saturation, the maximum finite-time domain

of attraction is estimated, and an optimization algorithm for
solving the problem is proposed.

Notations:

A ≥ 0 The real symmetric and
semi-positive definite matrix

Rn(Rn+) n-dimensional real(positive real)
vector space

(�,F ,P) probability space
NT the transpose of the matrix N

λmax/min(A) the maximum/minimum element of
matrix A

II. PROBLEM STATEMENTS AND PRELIMINARIES
In a probability space (�, F , P), consider singular Marko-
vian jump systems (6):

E(r(t))ẋ (t) = A(r(t))x(t) + Ad (r(t))x(t − ζ (t)) (1)

+ B(r(t))sat(u(t)) + Bd (r(t))v(t),

y(t) = Cy(r(t))x(t) + Cyd (r(t))x(t − ζ (t))

+ D(r(t))v(t), (2)

x(t) = φ(t), t ∈ [−ζ̄ , 0], (3)

in which x (t) ∈ Rn and y (t) ∈ Rq represent the state vector
and output vector, u (t) ∈ Rm represent the controlled input
vector. v(t) is the external input vector, φ(t) ∈ Ln2 [−ζ̄ 0] is the
vector-valued initial continuous function. ζ (t) is the unknown
time-varying delay as follows:

0 < ζ (t) < ζ̄ < ∞, ζ̇ (t) ≤ ζ̂ < 1, (4)

{r (t)} is a right continuous Markovian process and taking
values in a finite set S = {1, 2, . . . ,N }. Transition
probabilities is shown by:

P {r (t + 1) = j |r (t) = i } =

{
λij1 + o (1) i ̸= j,
1 + λii1 + o (1) i = j,

where 1 > 0, lim1→0 (o (1) /1) = 0 and λij ≥ 0, for j ̸= i,
is the transition rate from mode i at time t to mode j at time
t + 1 and

λii = −

∑
j∈S,j ̸=i

λij. (5)

In this article, the transition rates may be partly unknown and
we use ‘‘?’’ to denote the unknown part. For instance, the
transition rates matrix can be described as follows:

P =


λ11 ? λ13 · · · λ1n
λ21 ? λ23 · · · ?
...

... ?
. . .

...

λn1 λn3 . . . ?

 .

The set S i(∀i ∈ S) is defined as:

S i = S ik
⋃

S iuk

with S ik=̇{j : πij is known for j ∈ S}, and S iuk=̇{j :

πij is unknown for j ∈ S}.

The saturation constraints are described as follows:

−u0(i) ≤ u(i) ≤ u0(i), u0(i) > 0, i = 1, · · · , m. (6)

To facilitate the presentation, we let Ai = A(r(t)), for each
r (t) = i ∈ S, and other system constant matrices can be
represented as Adi, Bi, Bdi, Ci, Cdi, Ei. It should be pointed
out that Ei is known singular matrix. Then we design the
controller as follows:

u(t) = Kr(t)x(t), (7)

Taking Eq.(7) to Eq.(1), we have

Eiẋ (t) = (Ai + BiKi)x(t) + Adix(t − ζ (t))

+ Biϑ(u(t)) + Bdiv(t), (8)

where ϑ(u(t)) = sat(u(t)) − u(t).
To complete the control objective, the following assump-

tions, definitions, and lemmas are needed.
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Assumption 1: The external input vector v(t) is bounded
by v̂ and satisfies:∫ T

0
∥ v(t) ∥1 dt ≤ v̂, v̂ ≥ 0. (9)

Definition 1 ([30]): For the initial condition x0 ≥ 0,
x0(0 − ζ (t)) ≥ 0, if the corresponding trajectory x(t) ≥

0 holds for all t > 0, then systems (1)-(3) are said to be
positive.
Lemma 1 ([21]): For every i ∈ N , the pair (Ei, Ai) is

regularity and the absence of impulses if and only if there
exist invertible matrices M̃i and Ñi such that

M̃iEiÑi =

[
I 0
0 0

]
, M̃iAiÑi =

[
Âi 0
0 0

]
. (10)

Moreover, it can be found that matricesMi and Ni satisfy the
following equations,

Ē = MiEiNi =

[
I 0
0 0

]
,

Āi = MiAiNi =

[
Ā1i Ā2i
Ā3i Ā4i

]
, (11)

then the pair (Ei, Ai) is impulse-free and regular if and only
if Ā4i is nonsingular and the above decomposition is satisfied.

Make x̄(t) = N−1
i x(t), we can rewrite the system (8) as

follows:

Ē ˙̄x (t) = Ãix̄(t) + Ādix̄(t − ζ (t)) + B̄iϑ(u(t)) + B̄div(t),

y(t) = C̄yix̄(t) + C̄ydix̄(t − ζ (t)) + Div(t), (12)

where C̄yi = CyiNi, C̄ydi = CydiNi, K̄i = KiNi and

Ãi = Āi + B̄iK̄i =

[
Ãi1 Ãi2
Ãi3 Ãi4

]
,

Ādi = MiAdiNi =

[
Ādi1 Ādi2
Ādi3 Ādi4

]
,

B̄i = MiBi =

[
B̄i1
B̄i2

]
, B̄di = MiBdi =

[
B̄di1
B̄di2

]
.

Due to switching behavior, the state of the system may be
discontinuous before and after the switching jump time. Use
x̄(tj)− and x̄(tj)+ to represent the system states before and
after switching moment tj, respectively. If the considered
system is regularity and the absence of impulses [17], it can
be derived that:

x̄(tj)+ = 0ijx̄(tj)−, (13)

with

0ij =

[
I 0

−(Ãj4)−1Ãj3 0

]
N−1
j Ni.

Defining x̄T = [x̄1T , x̄2T ], the system (12) with v(t) = 0 can
be reduced to the following nonsingular system:

˙̄x1(t) = Ãi1x̄1(t) + Ãi2x̄2(t) + Ādi1x̄1(t − ζ (t))

+ Ādi2x̄2(t − ζ (t)) + B̄i1ϑ(u(t))

0 = Ãi3x̄1(t) + Ãi4x̄2(t) + Ādi3x̄1(t − ζ (t))

+ Ādi4x̄2(t − ζ (t)) + B̄i2ϑ(u(t)) (14)

Then, we have

˙̄x1(t) = (Ãi1 − Ãi2Ã
−1
i4 Ãi3)x̄1(t)

+ (Ādi1 − Ãi2Ã
−1
i4 Ādi3)x̄1(t − ζ (t))

+ (Ādi2 − Ãi2Ã
−1
i4 Ādi4)x̄2(t − ζ (t))

+ (B̄i1 − Ãi2Ã
−1
i4 B̄i2)ϑ(u(t))

x̄2(t) = −Ã−1
i4 Ãi3x̄1(t) − Ã−1

i4 Ādi3x̄1(t − ζ (t))

− Ã−1
i4 Ādi4x̄2(t − ζ (t)) − Ã−1

i4 B̄i2ϑ(u(t)) (15)

Obviously, the system (15) is positive if and only if (Ãi1 −

Ãi2Ã
−1
i4 Ãi3) are Metzler matrices and

Ādi1 − Ãi2Ã
−1
i4 Ādi3 ≥ 0, Ādi2 − Ãi2Ã

−1
i4 Ādi4 ≥ 0,

−Ã−1
i4 Ãi3 ≥ 0, −Ã−1

i4 Ādi3 ≥ 0, −Ã−1
i4 Ādi4 ≥ 0,

−Ã−1
i4 B̄i2 ≥ 0, if ϑ(u(t)) ≥ 0,

−Ã−1
i4 B̄i2 ≤ 0, if ϑ(u(t)) ≤ 0,

(B̄i1 − Ãi2Ã
−1
i4 B̄i2) ≥ 0, if ϑ(u(t)) ≥ 0,

(B̄i1 − Ãi2Ã
−1
i4 B̄i2) ≤ 0, if ϑ(u(t)) ≤ 0. (16)

Definition 2 ([30]): Regularity and the absence of impulses.
(i) System (12) with v(t) = 0 is said to be regularity,

if det(sĒ − Āi) ̸= 0 for all t ∈ [0, T ].
(ii) System (12) with v(t) = 0 is said to be the absence of

impulses, if deg(det(sĒ − Āi)) = rank(Ē) for all t ∈ [0, T ].
Lemma 2 ([21]): If the system (12) is regularity and the

absence of impulses, then the following matrices transforma-
tion can be fulfilled for nonsingular matrix M̄i and N̄i,

M̄iĒN̄i = Ē = diag{I , 0}, M̄iÃiN̄i = diag{4Ai, I },

M̄iĀdiN̄i = diag{4Adi, 0},

M̄iB̄i =

[
4Bi
0

]
, M̄iB̄di =

[
4Bdi
0

]
,

and the system (15) can be equivalent to the following system

˙̄x(t) = 4̃Aix̄(t) + 4̃Adix̄(t − ζ (t)) + 4̃Biϑ(u(t))

+ 4̃Bdiv(t),

x̄(tj)+ = 0ijx̄(tj)−, (17)

where

4̃Ai = N̄i

[
4Ai 0
0 0

]
N̄i

−1
, 4̃Bdi = N̄i

[
4Bdi
0

]
,

4̃Bi = N̄i

[
4Bi
0

]
, 4̃Adi = N̄i

[
4Adi 0
0 0

]
N̄i

−1
.

Lemma 3: For the system (12) and the designed controller
parameter K̄i, the given appropriate matrix Li ∈ Rm×n, if x̄(t)
is in the set D(uo) which is defined as follows:

D(uo) = {x̄(t) ∈ Rn
; −u0(k) ≤ (K̄i(k) + Li(k))x̄(t) ≤ u0(k),

u0(k) > 0, k = 1, . . . ,m},

then for any positive matrix Ti ∈ Rn, we derive:

ϑ(u(t))TTi − x̄(t)TLTi Ti
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≥ 0, if ϑ(u(t)) ≤ 0,

− ϑ(u(t))TTi + x̄(t)TLTi Ti ≥ 0, if ϑ(u(t)) ≥ 0.

Proof: As can be seen from the above, u(t) = K̄ix̄(t) =

sat(u(t)) − ϑ(u(t)) holds, then one has

−u0(k) ≤ (sat(u(t)) − ϑ(u(t))) + Li(k)x̄(t) ≤ u0(k)
⇒ −u0(k) − sat(u(t)) ≤ −ϑ(u(t)) + Li(k)x̄(t)

≤ u0(k) − sat(u(t)). (18)

Consider that, when saturation occurs, we have u0(k)− |

sat(u(t)) |= 0, if ϑ(u(t)) ≤ 0(u(t) ≥ 0), one can derive

− ϑ(u(t)) + Li(k)x̄(t) ≤ u0(k) − sat(u(t))

⇒ ϑ(u(t)) − Li(k)x̄(t) ≥ 0

⇒ ϑ(u(t))TTi − x̄(t)TLTi Ti ≥ 0, (19)

if ϑ(u(t)) ≥ 0(u(t) ≤ 0), we have

− ϑ(u(t)) + Li(k)x̄(t) ≥ 0

⇒ −ϑ(u(t))TTi + x̄(t)TLTi Ti ≥ 0. (20)

The proof is completed.
Definition 3: If there exist constant α > 0 and β > 0, such

that ε(∥Ē x̄(t; x̄0, r0)∥1) ≤ αe−βtε(∥Ē x̄0∥1), the system (12)
is exponentially stable in the mean square sense.
Definition 4 ([27]): For system specified parameters c2 >

c1 > 0, T > 0 and mode-dependent matrix R̂i > 0, if a
controller with the same form as formula(7) and the state
trajectory of the system satisfies:

ε{x̄T (t1)ET R̂i} ≤ c1 ⇒ ε{x̄T (t2)ET R̂i} ≤ c2,

t1 ∈ [−ζ, 0], t2 ∈ [0, T ], (21)

the system (12) is stochastically finite-time bounded stable
under v(t) ̸= 0 and (c1, c2, T , R̂i, v̂) conditions.
Definition 5 ([20]): For system (12) and any system mode

i, construct the stochastic Lyapunov-Krasovskii function
V (x̄(t), r(t), t > 0), and along the system (12) its weak
infinitesimal operator is represented as:

LV (x̄(t), i, t)

= lim1t→0
1
1t

[ε{V (x̄(t + 1t), rt+1t , t + 1t)|x̄(t) = x,

rt = i} − V (x̄(t), i, t)]

=
∂

∂t
V (x̄(t), i, t) +

∂

∂x
V (x̄(t), i, t)ẋ(t, i)

+

N∑
j=1

πijV (x̄(t), j, t). (22)

III. MAIN RESULTS
In this part, we devote to the exponential stability and finite-
time H∞ performance analysis for systems (12).
Theorem 1: For a given scalar λ > 0, given matrix Li,

the systems(12) with v(t) = 0 and suitable initial conditions
belonging to ε(ĒTPi, 1) is positive and exponentially stable,
if there exists matrix Pi ∈ Rn+, Ti ∈ Rn+, such that

(i) The pair (Ē, Ãi) is regularity and the absence of
impulses;
(ii) Condition (16) and the following inequality hold

6N
j=1,j ̸=iλijϒ

T
ij Ē

TPj + (λ + λii)ĒTPi + ÃTi Pi + ĒQ

+ LTi Ti < 0, if ϑ(u(t)) ≥ 0, (23)

6N
j=1,j ̸=iλijϒ

T
ij Ē

TPj + (λ + λii)ĒTPi + ÃTi Pi + ĒQ

−LTi Ti < 0, if ϑ(u(t)) ≤ 0, (24)

ĀTdiPi − (1 − ζ̂ )ĒQ < 0, (25)

− Ti + B̄Ti Pi < 0, if ϑ(u(t)) ≥ 0, (26)

− Ti − B̄Ti Pi < 0, if ϑ(u(t)) ≤ 0, (27)

u0(k)ĒTPi − (K̄T
i(k) + LTi(k)) ≥ 0, if ϑ(u(t)) ≤ 0, (28)

u0(k)ĒTPi + (K̄T
i(k) + LTi(k)) ≥ 0, if ϑ(u(t)) ≥ 0. (29)

Proof: For any system mode r (t) = i ∈ S, the following
Lyapuonv function is considered for system(12):

V (x̄(t), r(t)) = x̄(t)T ĒTPr(t) +

∫ t

t−ζ (t)
x̄(s)T ĒQds,

set r(t) = i, and Pi ∈ Rn+, Q ∈ Rn+, one can drive that

ε(V (x̄(t + 1t), r(t + 1t)|x̄(t), r(t)) − V (x̄(t), r(t)))

= 6N
j=1,j ̸=iλij1t x̄(t + 1t)T ĒTPj

+ (1 + λii1t)x̄(t + 1t)T ĒTPi − x̄(t)T ĒTPi
+ (x̄(t)T ĒQ− (1 − ζ̇ (t))x̄(t − ζ (t))T ĒQ)1t (30)

When i = j, applying Ē x̄(t+1t) = Ē x̄(t)+(Ãix̄(t)+Ādix̄(t−
ζ (t)) + B̄iϑ(u(t)))1t , one can get from Eq.(30) that

(1 + λii1t)x̄(t + 1t)T ĒTPi − x̄(t)T ĒTPi
= (1 + λii1t)(x̄T (t)ĒT + (x̄T (t)ÃTi + x̄T (t − ζ (t))ĀTdi

+ ϑ(u(t))T B̄Ti )Pi1t − x̄(t)T ĒTPi
= λii1t x̄(t)T ĒTPi + (x̄T (t)ÃTi + x̄T (t − ζ (t))ĀTdi

+ ϑ(u(t))T B̄Ti )Pi1t + o(1t). (31)

When j ̸= i, we should deal with the discontinuities. From
Eq.(17), we have x̄(t+1t) = 0ij(x̄(t)+ (4̃Aix(t)+4̃Adix(t−
ζ (t)) + 4̃Biϑ(u(t)))1t), then one can deduce

6N
j=1,j ̸=iλij1t x̄(t + 1t)T ĒTPj

= 6N
j=1,j ̸=iλij1t x̄(t)

T (0ij)T ĒTPj + o(1t) (32)

Apply ζ̇ (t) < ζ̂ and Lemma 3, we can further obtain

ε(V (x̄(t + 1t), r(t + 1t, σ (t + 1t)|x̄(t), r(t), σ (t))

− V (x̄(t), r(t), σ (t))),

≤ (31) + (32) + (x̄(t)T ĒQ− (1 − ζ̂ )x̄(t − ζ (t))T ĒQ)1t

+ (ϑ(u(t))TTi − x̄(t)TLTi Ti)1t, , if ϑ(u(t)) ≤ 0,

− (ϑ(u(t))TTi − x̄(t)TLTi Ti)1t, if ϑ(u(t)) ≥ 0. (33)

Denoting

ϒij =

[
I 0
0 0

]
N−1
j Ni,

170092 VOLUME 12, 2024



X. Ren et al.: Finite-Time H∞ Optimize Controller Design

it’s thus clear that ĒT0
q
ij = ĒTϒij. From conditions (23)-(27)

of Theorem 1, we have

LV (x̄(t), r(t)) < x̄(t)T ĒTPi ≤ 0. (34)

Denote Ui = 6N
j=1,j ̸=iλijϒ

T
ij Ē

TPj + (λ + λii)ĒTPi + ÃTi Pi +
ĒQ ± LTi Ti, and δ1 = λmin(−Ui), δ2 is the minimum value
of all non-zero elements of (ĒTPi), δ3 = λmax(ĒTPi), δ4 =

λmax(Q), ∥ x̄(0 − ζ (t)) ∥1≤∥ x̄(0) ∥1. One can deduce that

LV (x̄(t), r(t)) ≤ −δ1∥x̄(t)∥1. (35)

Meanwhile, it’s known that

εV (x̄(t), r(t)) ≥ δ2ε∥Ē x̄(t)∥1. (36)

One can further get from Dynkin Lemma

εV (x̄(t), r(t)) ≤ εV (x̄(0), r(0)) − δ1ε(
∫ t

0
∥x̄(s)∥1ds). (37)

By combining the above inequalities, it can be concluded that

δ2ε∥Ē x̄(t)∥1 ≤ εδ3∥Ē x̄(0)∥1 + εδ4ζ̄∥Ē x̄(0)∥1

− δ1ε(
∫ t

0
∥x̄(s)∥1ds)

ε∥Ē x̄(t)∥1 ≤ δ−1
2 (δ3 + δ4ζ̄ )ε∥Ē x̄(0)∥1

− δ−1
2 δ1ε(

∫ t

0
∥Ē x̄(s)∥1ds)

ε∥Ē x̄(t)∥1 ≤ δ−1
2 e−δ1(δ3+δ4 ζ̄ )−1

ε∥Ē x̄(0)∥1, (38)

then the system (12) is exponentially stable in the mean
square sense based on Definition 3. Define the initial state
x̄(t) ∈ ε(ĒTPi, 1), which means that x̄T (t)ĒTPix̄(t) ≤ 1.
From conditions (28)-(29), with ϑ(u(t)) ≤ 0 it’s easily known
that

u0(k)x̄T (t)ĒTPi − x̄T (t)(K̄T
i(k) + LTi(k)) ≥ 0

⇒ u0(k) ≥ (x̄T (t)ĒTPi)−1x̄T (t)(K̄T
i(k) + LTi(k))

⇒ u0(k) ≥ x̄T (t)(K̄T
i(k) + LTi(k)). (39)

If ϑ(u(t)) ≥ 0, we have

u0(k)x̄T (t)ĒTPi + x̄T (t)(K̄T
i(k) + LTi(k)) ≥ 0

⇒ x̄T (t)(K̄T
i(k) + LTi(k)) ≥ −u0(k)x̄T (t)ĒTPi

⇒ x̄T (t)(K̄T
i(k) + LTi(k)) ≥ −u0(k). (40)

It is known that ε(ĒTPi, 1) ∈ D(u(0)) which defined in
Lemma 3.
Theorem 2: For some known parameters, λ > 0, α > 0,

if there exists matrix Pi ∈ Rn+, Ti ∈ Rn+, and S ∈ Rn+ such that
(i) The pair (Ē, Ãi) is regularity and the absence of

impulses;
(ii) Condition (16), (25)-(29) and the following inequality

hold

6N
j=1,j ̸=iλijϒ

T
ij Ē

TPj + αS + (λ + λii)ĒTPi + ÃTi Pi

+ ĒQ+ LTi Ti < 0, if ϑ(u(t)) ≥ 0, (41)

6N
j=1,j ̸=iλijϒ

T
ij Ē

TPj + αS + (λ + λii)ĒTPi + ÃTi Pi

+ ĒQ−LTi Ti < 0, if ϑ(u(t)) ≤ 0, (42)

B̄TdiPi − αS < 0, (43)

c1σP + c1ζσQ + αv̂σS (1 − e−aT ) < e−aTσpc2, (44)

where σP = maxi∈Sσmax(P̄i), σp = mini∈Sσmin(P̄i), σQ =

σmax(Q̄), σq = σmin(Q̄), σS = σmax(S), Q̄ = R̄iQ, P̄i =

R̄iPi, the systems(12) with v(t) ̸= 0 is locally finite-time
stochastically stable with (c1 c2 T Ri v̂), and incipient states
within the scope of ε(ĒTPi, 1), where

Ri =


Ri1
Ri2
...

Rin

 , R̄i =


1
Ri1

0 0 · · · 0
0 1

Ri2
0 · · · 0

...
...

. . .
... 0

0 0 0 · · ·
1
Rin

 .

Proof: Using Lyapunov functionals similar to those in
Theorem 1, and combining the conditions in theorem 2, one
can obtain

LV (x̄(t), i) < αvT (t)S + α(V (x̄(t), i) −

∫ t

t−ζ

x̄(s)T ĒQds.

(45)

Since that −
∫ t
t−ζ

x̄(s)T ĒQds ≤ 0, the following formula is
shown as

LV (x̄(t), i) < αvT (t)S + αV (x̄(t), i). (46)

Multiplying left by e−αt yields,

L[e−αtV (x̄(t), i)] < αe−αtvT (t)S. (47)

Integral calculation from 0 to t ,

e−αtV (x̄(t), i) − V (x̄(0), r0) < α

∫ t

0
e−αsvT (t)ds. (48)

So it can be concluded that

ε{x̄(t)T ĒTPi} ≤ V (x̄(t), i)

< eαtV (x̄(0), r0) + αv̂σSeαt
∫ t

0
e−αsds

< eαt [αv̂σS (1 − eαt ) + V (x̄(0), r0)] (49)

Meanwhile, it can be inferred

ε{x̄(t)T ĒTPi} = ε{x̄(t)T ĒT R̄−1
i R̄iPi}

= ε{x̄(t)T ĒT R̄−1
i P̄i}

⇒ ε{x̄(t)T ĒTPi} ≥ ε{σpx̄(t)T ĒTRi} (50)

⇒ ε{x̄(t)T ĒTPi} ≤ ε{σPx̄(t)T ĒTRi} (51)

Further calculation reveals that

ε{σqx̄(t)TRi} ≤ ε{x̄(t)T Q̄} ≤ ε{σQx̄(t)TRi} (52)

Because of ε{x̄T (0)ĒTRi} ≤ c1,

ε{x̄(t)T ĒTPi} < eαt [c1σP + c1ζσQ + αv̂σs(1 − eαt )]. (53)

Being able to know that

ε{x̄(t)T ĒTPi} ≥ σpε{x̄(t)T ĒTRi},
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one can achieved that

ε{x̄(t)T ĒTRi} <
eαt [c1σP + c1ζσQ + αv̂σs(1 − eαt )]

σp
.

(54)

Conditions (44) shows that ε{x̄(t)T ĒTRi} < c2.
Similar to Theorem 1, the theorem is proven.
The following conclusion, we further consider the case

where the transition rates are partially unknown.
Theorem 3: For some known parameters, λ1 > 0, λ >

0, α > 0, if there exists matrix Pi ∈ Rn+, ρi ∈ Rn+, qi ∈ Rq+,
Ti ∈ Rn+, and S ∈ Rn+ such that
(i) The pair (Ē, Ãi) is regularity and the absence of

impulses;
(ii) Condition (16), (26)-(27) and the following inequality

hold

Ui1 < 0, if ϑ(u(t)) ≥ 0, (55)

Ui2 < 0, if ϑ(u(t)) ≤ 0, (56)

ĒTPi − ĒTρi ≤ 0, i ̸= j ∈ Suk , (57)

ĒTPi − ĒTρi ≥ 0, i = j ∈ Suk , (58)

ĀTdiPi + C̄T
diqi − (1 − ζ̂ )ĒQ < 0, (59)

(DTi + B̄Tdi)Pi − γ I < 0, (60)
1
λ1
u0(k)ĒTPi − (K̄T

i(k) + LTi(k)) ≥ 0, if ϑ(u(t)) ≤ 0, (61)

1
λ1
u0(k)ĒTPi + (K̄T

i(k) + LTi(k)) ≥ 0, if ϑ(u(t)) ≥ 0, (62)

c1σP + c1ζσQ + αγ v̂(1 − e−aT ) < e−aTσpc2, (63)

where

Ui1 = 6N
j=1,j ̸=iλijϒ

T
ij Ē

T (Pj − ρi) + αS + C̄T
i qi

+ (λ + λii)ĒTPi + ÃTi Pi + ĒQ+ LTi Ti,

Ui2 = 6N
j=1,j ̸=iλijϒ

T
ij Ē

T (Pj − ρi) + αS + C̄T
i qi

+ (λ + λii)ĒTPi + ÃTi Pi + ĒQ−LTi Ti,

the systems(12) with v(t) ̸= 0 and initial conditions of system
satisfied with ε(ĒTPi, λ1) is positive and locally finite-time
stochastically stable with (c1 c2 T Ri v̂), and incipient states
within the scope of ε(ĒTPi, 1).
Proof: Based on the transition rates of the Markov jump

process partially unknown and 6N
j=1λij = 0, choose a

Lyapuonv-Krasovkii function similar to Theorem 1 and split
the transition rates into known and unknown parts, then we
have

LV (x̄(t), i) = LV (x̄(t), i) − 6N
j=1λijĒ

Tρi = LV (x̄(t), i)

− 6N
j=1,j∈SkλijĒ

Tρi − 6N
j=1,j∈SukλijĒ

Tρi

(64)

From theorem 2, it can be derived that,

LV (x̄(t), i) < γ ∥v(t)∥1 − yT (t)qi + αV (x̄((t), i). (65)

On account of −y(t)T qi < 0, we conclude

LV (x̄(t), i) < γ ∥v(t)∥1 + αV (x̄((t), i). (66)

Similar to the proof of Theorem 2, Equation (63) yields.
At the same time, the following equation holds under zero
initial conditions,

e−αtV (x̄(t), i) <

∫ T

0
(γ ∥v(t)∥1 − yT (t)qi)dt. (67)

Further derivation reveals that∫ T

0
y(t)T qidt ≤

∫ T

0
γ ∥v(t)∥1dt, (68)

and ∫ T

0
∥y(t)∥1dt ≤

γ

λmin(qi)

∫ T

0
∥v(t)∥1dt. (69)

Given that the initial state x̄(t) belongs to ε(ĒTPi, λ1) and
x̄T (t)ĒTPi ≤ λ1. it can be concluded that ε(ĒTPi, λ1) ∈

D(u(0)) which is mentioned in Lemma 3. The theorem has
been proven so far.
Remark 1: The gains of the designed controller can be

figured out as K̃i = K̄T
i B̄

T
i Pi by calculating conditions (55)-

(63). The following are the specific calculation steps:
Firstly, select the λ value, and then use the LMI toolbox

to find unknown matrices that satisfy the linear matrix
inequality (55)-(63), such as K̃i, Pi;

Secondly, use the K̃i = K̄T
i B̄

T
i Pi obtained in the previous

step to test whether the (i) and (ii) conditions in Theorem 3
are true. If it holds, then the feedback gain matrices K̄i are the
feasible solution; On the contrary, adjust the value of λ and
return to the first step.
Remark 2: The method of optimizing the finite time

domain of attraction can be expressed as:

min ν

(K̄i, c1, c2, ν)

s.t. inequalities (55) − (63) with ν =
1
λ1

.

IV. NUMERICAL EXAMPLES
Example 1: The given system(6) (1)-(3) parameters as the
follows:

Mode 1

A1 =

[
4 1
2 1

]
, Ad1 =

[
0.8 1.1
0 0

]
, B1 =

[
1
0

]
,

Bd1 =

[
1
0

]
, C1 =

[
−1 −1

]
, Cd1 =

[
1 −1

]
,

D1 = 1, E1 =

[
1 1
0 0

]
.

Mode 2

A2 =

[
4 −3
2 −1

]
, Ad2 =

[
0.8 0.3
0 0

]
, B2 =

[
1
0

]
,

Bd2 =

[
1
0

]
, C2 =

[
1 1

]
, Cd2 =

[
2 1

]
,
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D2 = 1, E2 =

[
1 0
0 q0

]
.

Choose

M2 = M1 =

[
1 0
0 1

]
, N1 =

[
1 −1
0 1

]
,

N2 =

[
1 0

−1 1

]
.

Then one can be obtained

Ē = M1E1N1 = M2E2N2 =

[
1 0
0 0

]
,

Ā1 =

[
4 −3
2 −1

]
, Ā2 =

[
3 1

−3 1

]
,

Ād1 =

[
0.8 0.3
0 0

]
, Ād2 =

[
0.3 0.6
0 0

]
.

In this system simulation, the initial values of the system are
set to external disturbances as v(t) = 0, input restriction as
|ut | ≤ 0.5, and the delay as ζ (t) = 0.5|sin t|. Because the
range of values for sine functions is between 0 and 1, it’s easy
to know ζ̄ = ζ̂ = 0.5.

In addition, the following values are known in advance as
follows:

φ(t) =

[
0.5t + 0.5
2t + 1.5

]
, λij =

[
−0.6 0.6
0.3 −0.3

]
.

By using theorem 1, we have

K1 =
[
−5.3421 −1.8872

]
,

K2 =
[
−4.8763 −0.9785

]
.

In simulation, time delay and input limitation can represent
communication delay and actuator saturation limitation in
actual systems, respectively. After comparing Fig. 1 and
Fig. 2, it can be concluded that the controller designed by
the algorithm in the article can make the closed-loop system
exponentially stable and the system state converges to 0.
Example 2: Using the same system model parameters and

input limitation given in Example 1, the designedmetricswith
finite-time stability are given as c1 = 0.4, c2 = 0.8, T =

10, Ri = I1, γ = 0.8, v(t) ≤ v̂ = 1. Given initial system
values and partially unknown system transition rate matrix as
follows:

φ(t) =

[
−0.5t
−t

]
. λij =

[
? ?
0.4 −0.4

]
.

According to the linear matrix inequality optimization result
of Theorem 3, it can be obtained that

K1 =
[
−7.4736 −1.2561

]
,

K2 =
[
−6.3826 −1.0024

]
.

Similar to Fig. 1 in the previous example, it can be seen from
Fig. 3 that the open-loop system in Example 2 is divergent.
After adding the designed finite-time bounded controller,
it can be seen that the system state changes within the c2
range within time T in Fig. 4. Therefore, the effectiveness

FIGURE 1. The state response of the open-loop system (1)-(3) of
example 1.

FIGURE 2. The state response of the closed-loop system (12) of
example 1.

FIGURE 3. x̄(t)T ĒT Ri of open-loop system (1)-(3) of example 2.

of the algorithm in the theorem was demonstrated through
simulation.
Remark 3: If we do not consider nonlinear characteristics

such as input saturation, from the simulation results the H∞

performance γ = 0.8 is less than the results of literature [33].
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FIGURE 4. x̄(t)T ĒT Ri of closed-loop system (12) of example 2.

V. CONCLUSION
The article designs a finite-time controller that can use
feedback control to achieveH∞ exponential stability for pos-
itive singular Markovian time-delay systems. The theorem
presented in the article can be used to calculate the gain
matrix of feedback controllers using convex optimization
techniques based on linear matrix inequalities, and the
effectiveness of the method was validated from the final
simulation. The next step of work will be to reduce
conservatism and expand the scope of the applicable system
of the theorem by relaxing assumptions and considering
other unmodeled dynamic characteristics. Compared to other
situations such as the uncertainty of state transition rates
studied in reference [34], this is also a direction to expand
the generality of our work. In addition, other forms of
control techniques such as dynamic state feedback and output
feedback will be used to develop our control methods.
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