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ABSTRACT With the rapid advancement of deep learning, its application in synthetic aperture radar
(SAR) ship target detection has become increasingly prevalent. However, the detection of ships in complex
environments and across various scales remains a formidable challenge. This paper introduces DGSP-
YOLO, a novel high-performance detection model designed to overcome these hurdles. Themodel integrates
the SPDConv and C2fMHSA modules into the YOLOv8n baseline, significantly enhancing the feature
extraction capabilities for small-scale targets. Additionally, the original convolutional blocks have been
optimized with GhostConv, ensuring efficient performance and reduced parameter count. To further refine
the detection process, the DySample module has been incorporated to mitigate noise interference, leading
to the generation of more refined feature maps. The model also employs EIoU to bolster its capacity to
process images of varying quality. Extensive experiments on the HRSID, LS-SSDD-v1.0, and SSDD datasets
have been conducted to test the model’s effectiveness rigorously. The results demonstrate that DGSP-YOLO
outperforms other prevalent models, achieving mAP50 and mAP50:95 scores of 94% and 72.2% on the
HRSID dataset, and 69% and 25.3% on the LS-SSDD-v1.0 dataset, respectively. On the SSDD dataset, the
model achieved an impressive mAP50 and mAP50:95 of 99% and 75.1%, respectively. These outcomes
underscore DGSP-YOLO’s superior accuracy and overall performance, marking a significant advancement
in SAR ship target detection.

INDEX TERMS Deep learning, synthetic aperture radar (SAR), ship target detection, YOLOv8.

I. INTRODUCTION
The application of synthetic aperture technology within
the realms of radar (SAR) and sonar (SAS) [1], [2], [3],
[4] has demonstrated broad applicability and advantages in
various remote sensing imaging applications. As a widely
applied remote sensing technology, Synthetic Aperture
Radar (SAR) captures and processes signals reflected from
ground targets to generate high-resolution images, with its
all-weather, round-the-clock operational capability gaining
widespread application and recognition. This technology
holds significant value in numerous fields, including military
reconnaissance [5], maritime surveillance and ship rescue [6],
[7], [8], [9], [10], [11], urban planning [12], and agricultural
yield estimation [13]. In particular, SAR plays a crucial role
in monitoring the safety of vessels navigating vast waters in
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maritime surveillance. However, environmental noise and the
presence of numerous small-sized targets in SAR imagery
present challenges for the accuracy of ship target detection.

In recent years, a range of methods have been developed
for detecting and identifying ship targets in SAR imagery,
encompassing both traditional SAR detection algorithms and
cutting-edge deep learning (DL) methods. Traditional SAR
detection algorithms, such as the Constant False Alarm Rate
(CFAR) [14] and its variants [15], hold a significant place
in this domain. The CFAR algorithm establishes a detection
threshold based on the statistical properties of background
clutter, facilitating the identification of target pixels through
grayscale value comparisons. While this algorithm strives to
maintain a constant false alarm rate, its detection accuracy
is closely related to the statistical characteristics of clutter.
However, the efficiency of traditional detection algorithms is
often hampered by their susceptibility to noise and clutter,
as well as their dependence on parameter selection, which
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increases the complexity of detection and poses higher
demands on feature extraction, detection accuracy, and
robustness.

Over the last decade, SAR-based ship detection and iden-
tification have made remarkable advances due to the rapid
development of deep learning technology [16]. Deep learning
detection and identification methods are broadly divided into
two categories: two-stage and one-stage detection algorithms.

Two-stage methods, such as R-CNN [17], Fast R-CNN
[18], and Faster R-CNN [19], rely on region proposals fol-
lowed by classification and localization.While these methods
excel in accuracy, they require significant computational
resources, leading to slower processing speeds, which is
a notable drawback in real-time applications. In contrast,
one-stage methods, including SSD [20], YOLO [21], and
RetinaNet [22], predict the locations and classes of all objects
in a single forward pass, thus offering a speed advantage,
albeit with some compromise in accuracy compared to two-
stage methods. However, these methods still face challenges
in dealing with small targets and complex backgrounds,
especially in the context of SAR imagery, where these
challenges become even more pronounced.

In SAR applications, the demand for high-speed and
high-precision detection is growing, prompting researchers
to continuously seek ways to enhance one-stage detection
algorithms. For instance, Guo et al. [23] improved fea-
ture extraction and utilized contextual information through
CenterNet++ to enhance the accuracy of small target detec-
tion, but this methodmay not be as effective in handling large-
scale targets. Bao et al. [24] developed a complementary
pre-training technique that significantly improved detection
performance in SAR images, although this method requires
substantial annotated data, making implementation costly
in practical applications. Wang et al. [25] enhanced the
capabilities of SSD through data augmentation and transfer
learning, but this approach may have limited effectiveness
in dealing with the specific noise and interference present
in SAR images. Tang et al. [26] introduced N-YOLO,
which addresses segmentation and occlusion challenges
in SAR images through noise classification and complete
target extraction, but this method may not be sensitive
enough to rapidly moving targets. Jiang et al. [27] achieved
excellent detection results by customizing YOLOv4 [28]
for SAR image characteristics, but this method may lack
generalization when dealing with targets under different
environmental conditions. Sun et al. [29] proposed BiFA-
YOLO, a dual-flow feature fusion network adept at detecting
ships in any direction, though it may be computationally
costly when handling high dynamic range SAR images.
Wang et al. [30] designed YOLO-SD, integrating multi-scale
convolution and feature transformation modules to enhance
the detection of small vessels, though this method may not
be precise enough when dealing with large-scale targets.
Guo et al. [31] improved LMSD-YOLO, a lightweight
algorithm based on YOLOv5 for multi-scale SAR ship

detection, but this method may be slower when handling
high-resolution images. Ren et al. [32] proposedYOLO-Lite,
which optimizes network structure and feature fusion to
achieve high precision and fast inference, though it may
not be robust enough when dealing with complex back-
grounds. Liangjun et al. [33] achieved significant success
in multi-scale detection tasks by enhancing the channel
and spatial attention mechanisms of YOLOv8 [34], but
this method may lack sensitivity when dealing with small
targets. Finally, Tang et al. [35] developed DBW-YOLO,
which integrates a dynamic background weighting module to
automatically adjust the weight of background features, thus
making the network more focused on target areas, though
this method may lack flexibility when dealing with rapidly
changing environments.

These contributions reflect the dynamic evolution of
SAR ship detection, with each advancement pushing the
boundaries of speed, accuracy, and robustness in response
to complex environments. However, ongoing research high-
lights the scientific community’s commitment to meeting
the stringent demands of SAR ship detection, ensuring the
continued relevance and impact of this technology in both
military and civilian applications. Despite these advances,
existing algorithmic models still face substantial challenges
in accurately detecting ships of varying scales, particularly
those near the coastline. The primary issues stem from
two main factors: firstly, SAR images typically feature
high noise levels and low resolution, making it difficult
for models to distinguish fine details such as the shapes
and edges of background and target ships, especially in the
case of small-sized ships near the coastline. Secondly, the
large scale variation of ship targets in SAR images requires
fine-grained features for precise detection. However, many
current algorithms prioritize the detection of small targets,
inevitably compromising the detection accuracy for large-
scale ships.

To address these challenges, we propose a novel SAR
ship detection model named DGSP-YOLO, designed to
enhance the model’s capacity for detecting and identifying
ships across diverse backgrounds and scales. The main
contributions of this research are as follows:

1. To deal with the low-resolution problem common
in SAR imagery and the widespread presence of small-
sized ships, we have integrated SPDConv into the YOLOv8
backbone and replaced the backbone and neck convolutions
with GhostConv. This modification not only strengthens
the network’s ability to extract features from small targets
but also refrains from substantially increasing the model’s
parameter count.

2. To enhance the model’s capability to detect and identify
multi-scale targets, we have combined C2f with MHSA
Attention, enabling the application of self-attention mech-
anisms across features of varying scales. This integration,
along with the SPPF fusion module, significantly boosts the
model’s detection performance for ships of different sizes.
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3. We have replaced YOLOv8’s conventional up-sampling
layer with DySample, a module that refines edge up-sampling
by dispersing a single point into multiple points and reduces
model variance through a multi-stage cross-modal alignment
process, thereby enhancing both the model’s robustness and
accuracy.

4. The introduction of EIoU aims to mitigate the sample
imbalance issue in bounding box regression, steering the
model to focus more on optimizing prediction frames with
higher overlap with the ground truth frames.

The subsequent sections of this paper are organized as
follows: Section II elaborates on the intricacies of our
model; Section III presents a detailed analysis of comparative
experiments alongside ablation studies for each module;
Section IV showcases empirical tests and discusses our
model’s performance; and Section V provides a conclusive
synthesis of our findings.

II. METHODS
The architectural framework of the DGSP-YOLO model,
illustrated in Figure 1, closely resembles the structural design
of YOLOv8n. The model is primarily composed of three key
components: a backbone feature extraction network, a neck
network, and a head detection module.

1) BackboneNetwork: The backbone of theDGSP-YOLO
model has been carefully refined from the orig-
inal YOLOv8 framework through the integration
of advanced convolutional techniques, including
Ghost convolution, the SPD-Conv module, and the
C2fMHSA module. These enhancements significantly
improve the network’s ability for feature extraction and
multi-scale semantic perception without substantially
increasing the parameter count, thereby boosting
detection precision for both large and small-scale
ship targets in SAR imagery. Notably, the SPD-Conv
module effectively addresses common challenges in
SAR ship detection, such as detecting small targets
and accommodating the varying resolutions of SAR
imagery, by employing a spatial-to-depth transforma-
tion layer followed by a non-stepping convolutional
layer. The C2fMHSA module, introduced before the
feature fusion layer (SPPF), replaces the conventional
C2f, allowing the model to focus more intensely on
target features, which subsequently enhances detection
accuracy.

2) Neck Section: The neck component of the DGSP-
YOLO network preserves the structural essence of
its YOLOv8 counterpart while introducing a pivotal
innovation: the traditional upsampling layer has been
replaced by the DySample module. This strategic
substitution reduces the parameter count typically
associated with the conventional upsampling layer
(UpSample), all while maintaining an expedited infer-
ence rate and ensuring performance is not compro-
mised.

FIGURE 1. Overall architecture of the proposed DGSP-YOLO.

3) Head Section: The detection head of the DGSP-YOLO
retains the original structural design of YOLOv8,
featuring a decoupled architecture that separates the
classification and regression heads. This modular
approach promotes more effective feature learning
and utilizes a feature aggregation strategy to integrate
multi-scale features, thereby improving both detection
precision and overall model effectiveness.

The subsequent sections of this paper are meticulously
organized to delve deeper into the intricacies of our model’s
design, the comparative experimental analyses, and the
implications of our findings on the field of SAR ship target
detection.

A. BACKBONE IMPROVEMENTS
1) INTRODUCTION OF SPDConv MODULE
SAR imagery often encounters challenges such as low
resolution, small target sizes, and complex background
noise, with these issues becoming particularly pronounced
during the detection of small-sized ship targets. These
characteristics pose significant challenges to traditional target
detection methodologies. In response to these challenges, this
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study introduces a novel convolutional approach known as
spatial depth transformed convolution (SPDConv) [36]. This
method consists of a spatial-to-depth (SPD) layer followed
by a non-band-step convolutional layer, as illustrated in
Figure 2. The integration of SPDConv results in a significant
enhancement in the detection of ship targets within SAR
imagery, representing a notable advancement in the field of
SAR-based ship detection.

FIGURE 2. Details of SPDConv module.

SPDConv achieves efficient feature compression and
information retention by effectively downsampling the fea-
ture maps within a convolutional neural network (CNN).
The implementation details are as follows: first, given an
intermediate feature map X with size S × S × Ci, it is
downsampled using a specific slicing operation to generate
a series of sub-feature maps fx,y, which are then further
processed to create the final feature representation.

fscale −1, scale −1

= X [ scale − 1 : S : scale − 1 : S : scale ] (1)

The subgraph fx,y is meticulously constructed from elements
X (i, j) within the feature map that meet the criteria i+ x and
j + y being divisible by a predefined scaling factor, denoted
as scale. In this context, i and j represent integer multiples
of scale. To illustrate, when scale = 2, the feature map X is
segmented into four distinct sub-feature maps. Each sub-map
condenses its spatial extent by integrating along the channel
axis, concomitantly expanding the channel dimension. This
aggregation results in a novel feature map X ′, whose spatial
dimensions are reduced to 1

scale of the initial size, with the
channel dimensions expanding by a factor of scale2.
Subsequently, after the spatial depth transformation, a non-

stepping convolutional layer with a stride of 1 is employed,
along with a C2 convolutional filter. Here, C2 represents a
specified channel count that satisfies C2 < scale2 < C1,
facilitating the further conversion of X ′ to X ′′.

X ′

(
S

scale
,

S
scale

, scale2C1

)
→ X ′′

(
S

scale
,

S
scale

,C2

)
(2)

The primary rationale for employing non-spanning con-
volution in SAR ship detection is to preserve as much
information as possible regarding all discernible features.
Using a 3 × 3 filter with a stride of 3 may reduce the

dimensions of the feature map; however, it means that
each pixel is sampled only once, which could compromise
information integrity. In contrast, employing a stride of 2 risks
non-uniform sampling. In the context of SAR imagery, this
can be particularly detrimental, as it may lead to blurring
of the extracted features and a loss of critical details. For
the precise detection of small targets, such as ships, these
subtle details are crucial, directly influencing the accuracy
and reliability of the detection process.

2) INTEGRATION OF THE C2fMHSA MODULE
Within the YOLOv8 framework, the C2f module plays a
crucial role in enhancing the ability to capture intricate
details and contextual information, thereby enriching the
expressiveness of the extracted features. This improvement
is achieved through the strategic combination of dual
convolutional layers and advanced feature fusion techniques.
Additionally, the incorporation of cross-layer connectivity
within the module helps reduce redundant computational
processes,significantly improving overall computational effi-
ciency. The intricate design elements of the C2f module are
illustrated in Figure 3.

FIGURE 3. Details of C2f module.

While the C2f module has shown improvements in feature
fusion, its traditional approach may not fully leverage the
diverse levels of feature information in certain scenarios,
thereby limiting the model’s detection and generalization
capabilities. To address this limitation, we introduce the
C2fMHSA module, which incorporates an attention mech-
anism specifically designed to enhance the model’s feature
extraction capabilities. This innovative integration allows for
a more nuanced analysis of multi-tiered feature data, thereby
improving overall performance in SAR ship target detection
tasks.

The attention mechanism enables the model to focus
on the salient features of the target, thereby enhanc-
ing detection accuracy. The Multi-Head Self-Attention
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FIGURE 4. Details of MHSA attention.

mechanism (MHSA) [37] introduced in this study enriches
feature representation through the synergistic operation of
multiple attention heads, augmenting the model’s expressive-
ness and robustness. The architecture of MHSA is illustrated
in Figure 4. Within the operational framework of MHSA,
input features are partitioned into h distinct subspaces,
each conducting attention computations independently. The
outputs from all attention heads are then consolidated and
subjected to linear transformation to produce the final
output. MHSA excels at capturing long-range dependencies
within images, a capability crucial for ship detection due to
challenges posed by intricate backgrounds, size variability,
and partial occlusions that hinder conventional convolutional
neural networks from achieving precise recognition. By inte-
grating MHSA, the network can extract multi-scale ship
feature information more efficiently, significantly enhancing
detection accuracy. The detailed derivation of the MHSA
module is presented subsequently:

1) First, given an input feature map, the input features are
linearly transformed to obtain the query (Q), key (K) and
value (V) matrices:

Qi = QWQ
i ,Ki = KWK

i ,Vi = VWV
i (3)

whereWQ
i ,WK

i ,WV
i are trainable weight matrices.

2) Calculate the attention score:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V (4)

3) Divide the input features into h subspaces (i.e.,
multiple heads) and compute attention independently for each
subspace:

headi = Attention (Qi,Ki,Vi) (5)

4) The outputs of all the attention heads are spliced together
and linearly transformed to obtain the final output:

MultiHead (Q,K ,V )

= Concat (head1, head2, . . . , headh)WO (6)

where WO is a trainable linear transformation matrix of the
shape (dmodel, dmodel).

The integration of the multi-attention mechanism with the
C2f module of the YOLOv8 architecture results in significant

enhancements in SAR ship target detection. This hybrid
module synergistically interacts with the Spatial Pyramid
Pooling Feature (SPPF) module, facilitating a more efficient
fusion of multiscale features. Such strategic integration
enables the network to simultaneously discern ship targets
across a range of sizes, with particular emphasis on improving
the detection accuracy of smaller vessels. This approach is
crucial for advancing the performance metrics of SAR-based
ship detection systems.

FIGURE 5. Details of C2fMHSA module.

The C2fMHSAmodule initially processes the input feature
map by integrating local feature extraction through the
C2f structure with global context modeling via the MHSA
mechanism. The output of this module is a feature map
enriched with both local and global dependencies. This
feature map is then fed into the SPPF module, which applies
spatial pyramid pooling at various scales (e.g., 1 × 1, 3 × 3,
5×5) to capture multi-scale spatial information. The outputs
from these pooling operations are concatenated to form
a multi-scale feature representation, which is subsequently
utilized for further processing within the network. This
interaction enables the network to leverage both global
attention and multi-scale spatial features, enhancing its
capability to manage objects of varying sizes and complex
spatial relationships.

Furthermore, the integration of the MHSA mechanism
into the C2f module of the YOLOv8 framework effectively
mitigates the influence of extraneous background elements.
This is accomplished by assigning varying levels of impor-
tance to distinct features, thereby guiding the network’s
focus towards the critical targets of interest. The MHSA
mechanism significantly enhances the network’s feature
extraction capacity and improves the model’s resilience in
complex background environments. The schematic design
and operational principle of the C2fMHSA module are
illustrated in Figure 5. This module provides robust support
for the detection of ships within SAR imagery through a
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meticulously crafted feature processing workflow, ensuring
a higher level of detection accuracy and reliability.

3) IMPLEMENTATION OF THE GhostConv MODULE
In the domain of target detection, convolutional layers (Conv)
play a crucial role in extracting essential image features such
as edges, textures, and colors, which are vital for accurate
target identification. However, the traditional convolutional
approach in YOLOv8 can lead to increased computational
costs, as the parameter count scales with the dimensions
of the output feature map. To address this challenge,
we introduce GhostConv [38], an innovative optimization
of the convolutional layer. This method enhances the
network’s representational capacity by generating additional
‘‘ghost’’ feature maps while concurrently reducing the
parameter count. The feature extraction process begins
with a conventional convolution, followed by an efficient
linear transformation to create a derived feature map. This
dual-step approach improves the efficiency and accuracy of
feature extraction while minimizing computational overhead.
This pioneering technique enables YOLOv8 to significantly
enhance the model’s performance and efficiency without
compromising recognition accuracy.

The detailed implementation of GhostConv is as follows:
Initially, a 1 × 1 convolutional filter is deployed to
condense the channel count of the input feature map, thereby
generating an intrinsic feature map. This step minimizes
redundant computation attributed to the channel reduction.
The subsequent equation elucidates this process.

Y ′
= X ∗ f ′ (7)

Let X ∈ Rc×h×w denote the input feature map, where f ∈

Rc×k×k×m represents the convolution filter. The output Y ′
∈

Rh′
×w′

×m, yielded by the primary convolution, comprises a
set of m feature maps. Here, h and w signify the height and
width, respectively; c indicates the total input channel count;
m represents the total output channel count; and k is the kernel
size of the convolution. Subsequently, to procure the desired
n feature maps, each intrinsic feature map of Y ′ undergoes
a low-cost linear transformation, resulting in s ghost feature
maps, as delineated in the following equation:

yij = 8i,j
(
y′i

)
, ∀i = 1, . . . ,m, j = 1, . . . , s (8)

where 8i,j is denoted as a linear transformation and yij is
meant to be the generated ghost feature map. This approach
increases the feature set more efficiently while minimizing
redundancy. The GhostConv module is depicted in the
Figure 6.

B. IMPROVEMENTS IN THE NECK REGION
1) DySample MODULE
In the canonical YOLOv8 architecture, the up-sampling layer,
located within the neck region, is responsible for increasing
the resolution of downsampled, low-resolution feature maps,

FIGURE 6. Details of GhostConv module.

thereby aligning them with the higher-resolution outputs pro-
duced by the Backbone. This up-sampling process is essen-
tial for recovering spatial details and retaining high-level
semantic information. However, conventional up-sampling
techniques often fall short, as they can introduce noise or
blurring that compromises the integrity of featuremaps, while
also increasing computational demands and slowing down
model inference.

To address these limitations, this paper introduces DySam-
ple [39], an innovative dynamic upsampling module.
DySample transforms the upsampling paradigm by employ-
ing a point sampling strategy, thereby circumventing the
computational overhead associated with kernel-dependent
upsampling methods. Unlike existing dynamic upsampling
modules such as CARAFE [40], FADE [41], and SAPA [42],
DySample eliminates the need for high-resolution guiding
feature inputs and does not require additional CUDA support.
This innovation strikes an optimal balance between perfor-
mance and efficiency, significantly reducing the experimental
burden in scientific research endeavors. The architectural
design and operational mechanism of the DySample module
are illustrated in Figure 7.
The procedural design elements of the DySample module

are concisely outlined as follows:
The generation of offsets commences with a linear layer,

which is followed by the incorporation of a dynamic range
factor σ ∈ [0, 0.5] to enhance the adaptability of the offsets.
This approach is delineated in the subsequent equation:

O = 0.5sigmoid (linear1 (X)) · linear2 (X) (9)

The aforementioned offsets are subsequently deployed to
resample the progressively interpolated feature maps. This
resampled output represents a synthesis of the offsets O
and the initial sampled network G. Thereafter, this sampled
output is repurposed to further resample the feature maps,
as articulated in the following equation:

S = O+ G (10)

Ultimately, the resultant featuremapX ′ is acquired through
the process of bilinear interpolation, as articulated in the
accompanying equation:

X ′
= grid_sample (X , S) (11)
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FIGURE 7. Details of DySample module.

C. LOSS FUNCTION
The BBR loss function is crucial in the field of ship
detection. In this study, we introduce a novel loss function
called EIoU [43], specifically designed for the recognition
of synthetic aperture radar (SAR) ship images. The EIoU
loss function enhances the conventional CIoU loss function
by incorporating a broader set of geometric parameters,
thereby improving the optimization process in terms of both
efficiency and stability. This refinement leads to reduced
training errors and accelerated convergence rates. Notably,
the EIoU loss function significantly mitigates the effects of
insufficient gradient information, particularly in scenarios
where bounding box overlap is minimal. This characteristic
enhances the model’s generalization capabilities, enabling it
to accurately identify ship targets across various background
contexts.

The BBR loss function, which is computed based on the
Intersection over Union (IoU), is defined as follows:

LIoU = 1 − IoU = 1 −
WiHi
Si

(12)

Wi = max
(
0,min

(
x2pre, x2gt

)
− max

(
x1pre, x1gt

))
(13)

Hi = max
(
0,min

(
y2pre, y2gt

)
− max

(
y1pre, y1gt

))
(14)

Within this framework, as depicted in Figure 8, Si denotes
the intersecting area of the prediction box with the real

box, with Hi and Wi signifying the height and width of the
overlapping region, respectively.

FIGURE 8. Overlap area diagram. The yellow area represents the
overlapping part.

The scenario where Hi = 0 or Wi = 0 typically
suggests that the prediction box has degenerated into a point
or a line segment, culminating in an overlap area of zero
with the actual bounding box. Under such circumstances,
the conventional BBR loss Li is prone to the challenge of
vanishing gradients.

To address the gradient vanishing issue, enhancements
have been progressively integrated into the Intersection over
Union (IoU) loss function. The Generalized IoU (GIoU)
[44]introduces a term that accounts for the smallest enclosing
box, while the Distance IoU (DIoU) [45]incorporates a cen-
troid Euclidean distance measure. Furthermore, the Complete
IoU (CIoU) includes an aspect ratio discrepancy, and the
Shape IoU (SIoU) [46]focuses on shape dissimilarity, thereby
enhancing the precision of shape alignment.

An effective loss function must impose appropriate geo-
metric penalties when the predicted bounding box intersects
with the actual bounding box. Throughout the training phase,
it is crucial to carefully consider the potential adverse
impacts of low-quality samples within the dataset, as this can
bolster the model’s generalization capabilities and minimize
the need for interventions. Such samples, influenced by
factors such as the aspect ratio of the annotated frames
and their proximity to the target, may hinder the model’s
generalization. In the context of SAR imagery, ship target
recognition poses challenges due to the diverse shapes and
sizes of ships, as well as the complexity of the background.
To address these challenges, the Enhanced IoU (EIoU)
introduces three geometric penalty terms to improve the
loss function’s effectiveness. The EIoU formulation can be
articulated as follows:

LEIoU = LIoU + Ldis + Lasp (15)
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Ldis =
ρ2

(
b, bgt

)
(wc)2 + (hc)2

(16)

Lasp =
ρ2

(
w,wgt

)
(wc)2

+
ρ2

(
h, hgt

)
(hc)2

(17)

LEIoU = 1 − IoU +
ρ2

(
b, bgt

)
(wc)2 + (hc)2

+
ρ2

(
w,wgt

)
(wc)2

+
ρ2

(
h, hgt

)
(hc)2

(18)

where IoU denotes the intersection and concurrency ratio
between the predicted and actual boxes, ρ symbolizes the
Euclidean distance, and b and bgt represent the centroids of
the predicted and actual bounding boxes, respectively. The
dimensions w, h, wgt , and hgt correspond to the widths and
heights of the predicted and actual boxes, respectively, while
wc and hc denote the widths and heights of the smallest
enclosing bounding rectangles that encompass both boxes.

Furthermore, Ldis, termed the distance loss or centroid
distance penalty, is calculated by taking the square of the
Euclidean distance between the centroids of the predicted
box b and the true box bgt , ρ2(b, bgt ), and normalizing
it by the square of the diagonal of the smallest enclosing
rectangle, (wc)2 + (hc)2. This component is instrumental
in providing gradient information in instances where the
bounding boxes lack overlap, thereby guiding the model to
refine the positioning of the predicted box.
Lasp, referred to as the aspect ratio loss, includes two

penalty terms that assess the discrepancies in width and
height between the predicted box and the true box. Each
term is computed as the square of the difference between
the predicted and actual dimensions, ρ2, normalized by the
square of the width (wc)2 and the square of the height (hc)2

of the smallest enclosing rectangle, respectively. This aspect
ratio loss incentivizes themodel to accurately learn the width-
to-height ratio, ensuring effective gradient provision even
when bounding boxes do not intersect.

By integrating the traditional IoU loss with these additional
geometric penalty terms—distance loss and aspect ratio
loss—the EIoU loss function is designed to enhance the
convergence rate and accuracy of the model in bounding box
regression tasks. This is particularly beneficial in scenarios
involving small targets or bounding boxes with minimal
overlap, thus optimizing the detection performance in SAR
ship target detection.

III. RESULTS
To validate the efficacy of the DGSP-YOLO model in the
domain of synthetic aperture radar (SAR) ship target detec-
tion, we conducted comprehensive experimental validation
across three significant public datasets: HRSID [47], LS-
SSDD-v1.0 [48], and SSDD [49]. This section of the paper
first outlines the experimental setup, the datasets used, the
evaluation metrics, and the details of the training process.
Following this, ablation studies are performed to ascertain
the contribution of each component module. Subsequently,

a comparative analysis positions the proposed DGSP-YOLO
model against the current state-of-the-art (SOTA) detectors in
the field.

A. EXPERIMENTAL SETUP
In our experiments, we use YOLOv8 as the baseline model,
the dataset is in TXT format of the YOLO model, the batch
size is set to 30, the number of training rounds is 300 epoch,
the SGD optimizer is used, and the initial learning rate is used
to be 0.01 and the momentum is 0.927. All the experiments
are carried out on a 4060ti GPU. The software and hardware
environments required for the experiments are shown in
Table 1.

TABLE 1. Software and hardware requirements for the experiment.

B. DATASETS
In this study, we use three datasets, HRSID, LS-SSDD-
v1.0 and SSDD, to evaluate the performance of the DGSP-
YOLOmodel, where the dataset division ratio is 7:2:1 for the
training set: validation set: test set. The specific parameters
of the three datasets are shown in Table 2. The images sizes
is the size set in the experiment.

1) HRSID DATASET
The HRSID dataset was introduced by Hao Su of the
University of Electronic Science and Technology (UEST)
in January 2020 as a comprehensive resource for ship
detection, semantic segmentation and instance segmentation
in SAR images. This dataset comprises 5,604 images,
encompassing 16,965 annotated ship instances. The images
are formatted at a size of 800 × 800 pixels. The ship
target annotations in HRSID are depicted in Fig. 9a, and
representative sample images are shown in the subsequent
Figure 10.

2) LS-SSDD-v1.0 DATASET
Assembled by Professor Xiaoling Zhang’s team at the
University of Electronic Science and Technology (UEST),
the LS-SSDD-v1.0 dataset is tailored for the detection of
small vessels within large-scale SAR images. This dataset
comprises 9,000 images, extracted from 15 extensive SAR
images, totaling 6,015 ship targets. Each image in the dataset
is formatted at a size of 800 × 800 pixels. The annotations
for ship targets in LS-SSDD-v1.0 are illustrated in Figure 9b,
with exemplary images provided in the accompanying
Figure 11.
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TABLE 2. Specific parameters of the three datasets.

FIGURE 9. Ship scale information on three datasets: (a) distribution of
ship targets on HRSID; (b) distribution of ship targets on LS-SSDD;
(c) distribution of ship targets on SSDD.

FIGURE 10. Samples of HRSID dataset. (a) Multiscale ship samples,
(b) inshore ship samples, and (c) small ship samples.

FIGURE 11. Samples of LS-SSDD-v1.0 dataset. (a) Offshore ship samples,
and (b) inshore ship samples.

3) SSDD DATASET
Crafted by the Department of Electronics and Information
Engineering at Naval Aeronautics and Astronautics Uni-
versity (NAAU), the SSDD dataset is specifically designed
for ship detection tasks. It encompasses 1,160 images with
2,456 ship targets. The sizes of the original images in the
dataset were not uniform, but in this experiment we resized
all images to a uniform size of 500 × 500 pixels to ensure
consistency and ease of processing. The distribution of aspect
ratio information for ship targets within the SSDD dataset
is detailed in Figure 9c, with a selection of images from the
dataset displayed in the Figure 12.

FIGURE 12. Samples of SSDD dataset. (a) Offshore ship samples, and
(b) inshore ship samples.

C. EVALUATION METRICS
To conduct a comprehensive evaluation of the DGSP-YOLO
model’s performance in SAR ship target detection, we utilize
three key metrics: precision (P), recall (R), and mean average
precision (mAP). Precision (P) quantifies the proportion of
detections accurately identified as ships relative to all positive
identifications, while recall (R) measures the proportion of
actual ships correctly identified compared to the ground
truth data. These metrics are derived from the following
components: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). TP represents the
correctly identified ship targets, FP denotes the incorrectly
identified non-ship targets classified as ships, TN signifies
the correctly identified background areas as non-targets, and
FN refers to the missed ship targets that were incorrectly
classified as background. Consequently, precision (P) is
calculated as the ratio of TP to the sum of TP and FP,
expressed as:

P =
TP

TP+ FP
(19)

The recall rate R is the number of all vessels detected as a
percentage of the total number of vessels and is expressed as:

R =
TP

TP+ FN
(20)

AP is the area bounded by the PR curve, expressed as:

AP =

∫ 1

0
P (R) dR (21)

The mAP is the mean of the AP values of multiple
categories, and since there is only one ship category in this
study, where N = 1, the mAP value is equal to the AP, which
is expressed as:

mAP =
1
N

N∑
i=1

APi =

∫ 1

0
P (R) dR (22)

D. ABLATION EXPERIMENT
To ascertain the individual contributions of each module to
the model’s detection capabilities, we conducted ablation
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studies. Initially, we selected the publicly available HRSID
dataset as a benchmark for evaluating the impact of each
module on detection performance compared to the YOLOv8
model. The performance metrics employed for this assess-
ment include precision (P), recall (R), mAP50, and mean
average precision across IoU thresholds from 50% to 95%
(mAP50:95). The configuration of the ablation experiments
is presented in Table 3, where the modules are denoted as
follows: A for SPDConv, B for DySample, C for C2fMHSA,
D for GhostConv, and E for EIoU.

The analysis presented in the table reveals that the incor-
poration of the SPDConv module significantly bolsters the
baseline model’s performance across all evaluated metrics,
with particularly notable enhancements in precision (P) and
mAP50:95, which exhibit improvements of 1% and 0.7%,
respectively. These gains are attributed to SPDConv’s supe-
rior detection capabilities for small targets. The integration
of the dynamic up-sampling module, DySample, allows
the model to preserve richer semantic information during
the up-sampling process, thereby enhancing the model’s
recognition accuracy. The inclusion of the C2fMHSAmodule
augments the model’s feature extraction capabilities. While
there is a slight decrease in the accuracy rate, this module
leads to improvements in the recall rate, mAP50, and
mAP50:95. The addition of the GhostConv module enables
the model to obtain a greater number of feature maps at
a reduced computational cost, particularly beneficial for
scenarios involving small targets, and results in a 2.1%
increase in mAP50:95 compared to the preceding model
iteration.Furthermore, the adoption of the EIoU loss function
has yielded a marked improvement in mAP, achieving a
rate of 94%. This enhancement is due to EIoU’s ability to
mitigate the detrimental effects of low-quality samples on
detection performance by offering a more comprehensive
similarity metric, which allows for a more precise assessment
of the alignment between predicted and target bounding
boxes.

E. COMPARATIVE EXPERIMENTS
1) VALIDATION OF THE C2fMHSA
Within the backbone of the YOLOv8 benchmark model,
we integrated the Multi-Head Self-Attention (MHSA) mod-
ule alongside the Channel and Spatial Feature Fusion
(C2f) module, preceding the SPPF module. This integration
enhances the backbone’s feature extraction capabilities,
synergistically improving the network’s ability to capture the
subtleties of SAR imagery through SPPF. To substantiate
the efficacy of the C2fMHSA module, a comparative
analysis was conducted with other prevalent attention
modules. Specifically, we assessed the performance of the
initial module against traditional attention mechanisms,
including Convolutional Attention (CA) [50], Squeeze-and-
Excitation (SE) [51], Efficient Channel Attention (ECA)
[52], and Convolutional Block Attention Module (CBAM)
[53], across three datasets: HRSID, LS-SSDD-v1.0, and

SSDD. The comparative evaluation, incorporating diverse
attention mechanisms into the benchmarkmodel, is presented
in Table 4.

The tabulated results clearly demonstrate the improved
performance of the model integrated with the MHSA
attention module. Notably, on the HRSID ship dataset, there
is a marginal yet significant increase in accuracy (P) by
0.4% and in mAP50 by 0.2% compared to the baseline
model; however, no substantial change was observed in
recall. In the case of the LS-SSDD-v1.0 dataset, while recall
(R) experienced a slight decline of 1.5%, accuracy (P) saw
a notable rise of 2.2%, and mAP50 increased by 1.3%.
On the SSDD dataset, the model achieved a 1.7% increase
in accuracy, a 4.6% increase in recall, and a 0.4% increase
in mAP50. The incorporation of the MHSA attention module
allows the model to focus more intently on critical regions,
thereby enhancing its overall performance. Comparative
analysis with other attention mechanisms reveals that MHSA
not only performs admirably but also excels due to its robust
feature extraction capabilities and adaptability in various ship
recognition scenarios.

2) COMPARISON OF DIFFERENT LOSS FUNCTIONS
To assess the efficacy of the EIoU loss function in the context
of SAR ship target detection, we conducted a comparative
analysis against three variants of the Basic Box Regression
(BBR) loss functions: GIoU, CIoU, DIoU, and SIoU. This
evaluation was performed using the HRSID dataset, with the
experimental outcomes presented in Table 5.

The data presented in the table clearly delineates the
following outcomes: On the HRSID dataset, the model uti-
lizing the CIoU loss function achieved the highest accuracy,
reaching 94.1%. However, its recall and mAP values were
surpassed by those of the EIoU loss function. The EIoU
loss function not only maintained a higher accuracy but also
attained a recall rate of 86.9%, which is an improvement
over the DIoU loss function’s recall rate of 87.2%. Although
the DIoU loss function demonstrated the best recall rate, its
accuracy and mAP50 stood at 92.2% and 93%, respectively,
still falling short compared to EIoU. Collectively, EIoU’s
mAP50 value reached 94%, outperforming all other loss
functions in comparative experiments on the HRSID dataset.

It is particularly noteworthy that on the LS-SSDD-
v1.0 dataset, which comprises small-scale ship targets, the
EIoU loss function surpassed other loss functions in terms of
recall andmAP50, with rates of 62.1% and 69%, respectively.
This indicates that the incorporation of the EIoU loss function
significantly reduces the model’s false negative rate when
detecting small-scale ship targets.

Furthermore, experimental results on the SSDD dataset
demonstrated accuracy (P) and mAP50 values of 97.4%
and 99%, respectively. These outcomes substantiate the
model’s robust generalization capabilities and comprehensive
performance when equipped with the EIoU loss function for
SAR ship detection tasks.
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TABLE 3. Results of ablation experiments.

TABLE 4. Performance comparison of different methods.

TABLE 5. Performance comparison of different loss functions.

3) COMPARISON OF DIFFERENT DETECTORS
For a more comprehensive assessment of the DGSP-YOLO
model’s performance, four key metrics were employed to
evaluate its efficacy across three datasets: HRSID, LS-SSDD-
v1.0, and SSDD. These metrics include precision (P), recall
(R), mAP50, and mAP50:95. The input images from the
three datasets were uniformly resized to 800 × 800 pixels to
ensure consistency throughout the experiments. Comparative
experiments were also conducted with several mainstream
detectors, including the two-stage detector Faster R-CNN,
the single-stage convolutional SSD, various versions of the
YOLO model, and the Transformer-based RT-DETR [54]
detector. Table 6 presents a comparative analysis of DGSP-
YOLO’s experimental outcomes against those of other
prominent target detection algorithms.

The data presented in the tables unequivocally demonstrate
the enhanced detection capabilities of DGSP-YOLO when
evaluated across the HRSID, LS-SSDD-v1.0, and SSDD
datasets. Relative to the baseline model, DGSP-YOLO has
achieved significant improvements in both mAP50 and
mAP50:95 metrics—on HRSID, increasing from 93% and
69.8% to 94% and 72.2%; on LS-SSDD-v1.0, improving
from 66% and 24.2% to 69% and 25.3%; and on SSDD, rising
from 98.5% and 71.8% to 99% and 75.1%. On the HRSID
dataset, DGSP-YOLO notably attains a recall rate of 86.9%,
surpassing other detectors and underscoring its relevance in
ship detection scenarios. Moreover, it excels in mAP50 and

mAP50:95, reaching 94% and 72.2%, respectively, indicating
a substantial improvement over other algorithms, particularly
in detecting ships at various scales.

On the LS-SSDD-v1.0 dataset, which features smaller ship
targets and thus poses greater detection challenges, DGSP-
YOLO maintains a commendable accuracy of 83.7% and a
robust recall of 62.1%. It also achieves key metric scores of
69% for mAP50 and 25.3% for mAP50:95, surpassing other
detection models. In the SSDD dataset evaluation, DGSP-
YOLO achieves an accuracy of 97.4% and a recall of 96.4%,
with mAP50 and mAP50:95 reaching 99% and 75.1%,
respectively. These results are the most outstanding among
all compared models and further confirm DGSP-YOLO’s
generalization and robustness across different datasets.

The PR Figure 13 presents a comparison of the perfor-
mance of mainstream YOLO series detection models, where
DGSP-YOLO occupies a larger area, indicating broader
coverage in terms of precision and recall. Considering
the experimental results across three datasets, the superior
performance of DGSP-YOLO in ship detection tasks is
evident. It outperforms existing mainstream detectors in
precision, recall, and mean Average Precision (mAP). These
impressive results can be attributed to the incorporation of
SPDConv and attention modules, as well as improvements to
the overall model architecture, which facilitate more effective
extraction of ship targets and enhance the model’s detection
capabilities. Furthermore, the adoption of the EIoU loss
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TABLE 6. Performance comparison of different detectors.

FIGURE 13. Precision-Recall Curve. (a) HRSID datasets, (b) LS-SSDD-v1.0 datasets, and (c) SSDD datasets.

function refines the model’s object bounding box predictions,
thereby enhancing its generalization and robustness.

IV. DISCUSSION
To rigorously assess the efficacy of our approach for detecting
small-scale ship targets across various dimensions in real-
world scenarios, we deliberately selected a subset of images
for evaluation.

Specifically, we extracted three representative images
from each of the three comprehensive datasets: HRSID,
LS-SSDD-v1.0, and SSDD. Subsequently, we conducted
inference validation using both the YOLOv8 and DGSP-
YOLOmodels. The outcomes of these inference assessments
are graphically depicted in Figure 14.

Figure 14(a) illustrates the ground truth annotations, while
Figures 14(b) and 14(c) depict the detection inferences of
YOLOv8 and DGSP-YOLO, respectively. In Figure 14(a1),
where the image background is predominantly oceanic
with minor trailing noise interference, both YOLOv8 and
DGSP-YOLO exhibit commendable performance. However,
the confidence levels of the ship targets identified by
YOLOv8 are generally lower than those of DGSP-YOLO.
In Figure 14(a2), which features an image with an entirely
oceanic background and smaller-sized targets, YOLOv8 fails
to detect one of the small ship targets, as indicated by the
yellow circle. This observation confirms YOLOv8’s lower

recall rate on the LS-SSDD-v1.0 dataset. In contrast, DGSP-
YOLO accurately detects all 11 ships present, demonstrating
superior confidence levels compared to YOLOv8. Thus,
it can be concluded that DGSP-YOLO maintains a signif-
icant advantage in detecting small targets. Figure 14(a3)
presents the detection outcomes of both algorithms in
a near-shore scenario, which is challenging due to the
complex background and numerous interferences. YOLOv8
erroneously classifies a shore object as a ship, marked by
the blue circle, whereas DGSP-YOLO demonstrates superior
performance, not only in confidently detecting large-sized
ship targets but also in accurately identifying small-sized
ship targets. DGSP-YOLO effectively discriminates gen-
uine ship targets from the noisy near-shore background,
without any false positives or omissions. Furthermore, the
heightened recognition confidence on the SSDD dataset is
attributed to the presence of more large-sized targets and
the dataset’s enhanced adaptability relative to LS-SSDD-
v1.0 and HRSID. In summary, DGSP-YOLO’s performance
is remarkable, surpassing the benchmark model YOLOv8
across all three datasets, thereby validating its efficacy and
robust generalization capabilities in SAR ship detection.

To ascertain the nature of the features that our model
has learned and to evaluate whether these features align
with our expectations or if the model has inadvertently
learned to exploit spurious cues, we employ a visualization
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technique that renders the model’s gradient computations
within the image as a heatmap. Gradient-weighted Class
Activation Mapping (Grad-CAM) [55] plays a crucial role
in this analysis, as it isolates the model’s focus on specific
regions of interest, providing insights into the information
that the network prioritizes.

FIGURE 14. Visual detection results on HRSID, LS-SSDD-v1.0, and SSDD
datasets. (a1), (a2) and (a3) are denoted as the ground truth of HRSID,
LS-SSDD-v1.0, SSDD, respectively, (b1), (b2) and (b3) are denoted as the
detection results of YOLOv8n, and (c1), (c2) and (c3) are denoted as the
detection results of DGSP-YOLO.

This method allows us to assess whether the network is
genuinely learning the intended features and information.
We utilized Grad-CAM to visualize the gradient information
extracted from the feature maps by themodel from the images
across the three datasets. The results of this visualization are
depicted in Figure 15, which elucidates the model’s decision-
making process and the relevance of the learned features to
the task of SAR ship detection.

In the heatmap visualization, the intensity of the red color
block is indicative of the model’s focus on specific image
areas, with more intense red signifying a higher concentration
of extracted feature information. In Figure 15(a1), which
utilizes offshore samples from the HRSID dataset, it is evi-
dent that YOLOv8 is heavily concentrated on environmental
features not directly associated with the ship, while the
DGSP-YOLO model demonstrates a more targeted focus on
the ship itself, with the red areas predominantly highlighting
the ship’s hull. Figure 15(a2), representing a nearshore image
from the LS-SSDD-v1.0 dataset, reveals that due to the
dataset’s prevalence of small-scale targets, the heatmaps
generated by YOLOv8 exhibit a greater number of non-red
regions, suggesting potential challenges in detecting smaller
targets. In contrast, DGSP-YOLO maintains strong perfor-

FIGURE 15. Grad-CAM visualization results of HRSID, LS-SSDD-v1.0, and
SSDD datasets. (a1), (a2) and (a3) are denoted as the ground truth of
HRSID, LS-SSDD-v1.0, SSDD, respectively, (b1), (b2) and (b3) are denoted
as the visualization results of YOLOv8n, and (c1), (c2) and (c3) are
denoted as the visualization results of DGSP-YOLO.

mance, with the red color consistently covering the entire
target area, indicating its superior capability in capturing
target information for small-scale target detection and thus
enhancing identification accuracy. Figure 15(a3), an image
from the SSDD dataset showcasing a significant size vari-
ation in ship targets, demonstrates that our method, DGSP-
YOLO, effectively focuses on the ship targets themselves,
rather than irrelevant details, irrespective of whether the target
is large or small. This consistent focus on relevant target areas
underscores DGSP-YOLO’s exceptional performance in the
detection of ships within SAR imagery.

In summary, this study employed heatmap visualization
techniques to compare the performance of the DGSP-YOLO
model with the traditional YOLOv8model in terms of feature
extraction and target detection. Our analysis indicates that
DGSP-YOLO exhibits significant advantages in several key
aspects:

1) Precise Feature Focus: The DGSP-YOLO model is
capable of concentrating more intently on features
directly related to the target, such as highlighting the
hull of a ship in maritime samples. In contrast, the
YOLOv8 model tends to focus more on environmental
features that are not directly associated with the ship.

2) Detection Capability for Small-Scale Targets: In
datasets that include small-scale targets, the DGSP-
YOLOmodel demonstrates superior performance, with
its heatmap consistently covering the entire target area.
This indicates a stronger ability to capture information
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from small-scale targets, thereby enhancing recogni-
tion accuracy.

3) Adaptability to Target Size Variations: The DGSP-
YOLO model effectively focuses on ship targets of
varying sizes rather than irrelevant details, emphasizing
its excellent performance in detecting ships in Syn-
thetic Aperture Radar (SAR) images.

These advantages suggest that the DGSP-YOLO model
significantly outperforms traditional methods in terms of
accuracy and robustness in target detection, especially in
complex environments for detecting small-scale targets.

V. CONCLUSION
This paper introduces a pioneering Synthetic Aperture Radar
(SAR) ship target detectionmodel, designated DGSP-YOLO.
The model has been meticulously engineered to deliver
superior performance across a spectrum of environmental
conditions, ensuring precise detection and localization of
maritime vessels. Extensive experimental validation using
ship datasets, including HRSID, LS-SSDD-v1.0, and SSDD,
has established DGSP-YOLO’s marked superiority over
existing models such as SSD, Faster R-CNN, RTDETR,
and the YOLO series. Notably, DGSP-YOLO has achieved
mAP50 metrics of 94%, 69%, and 99% on the HRSID,
LS-SSDD-v1.0, and SSDD datasets, respectively. These
results attest to the model’s exceptional efficiency and robust
generalization capabilities.

It is particularly noteworthy that DGSP-YOLOhas realized
significant enhancements in two pivotal performance metrics
compared to the benchmark model: accuracy and recall. The
model’s performance in SAR ship detection is impressive,
adeptly handling a variety of complex environmental condi-
tions and ship target detection tasks across different scales.

However, we acknowledge that optimizing real-time
performance and efficiency for practical applications remains
a critical area of ongoing research. The current model faces
challenges in achieving adequate detection accuracy within
resource-constrained deployment scenarios. To overcome
these challenges, we intend to pursue further model optimiza-
tion in future research endeavors, aiming to develop a more
streamlined design better aligned with real-world industrial
requirements.
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