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ABSTRACT Major depressive disorder (MDD) is a mental ailment marked by a loss of interest in activities,
persistent depression, and hopelessness. MDD has been on the rise in society in recent decades for varied
reasons and has spurred suicidal tendencies among individuals. Early detection, continuous monitoring,
and effective treatment are crucial for its impact on quality of life and society. EEG signal models the
brain’s electrical activities and has emerged as a potential tool to assess the depression status of a person.
Due to advancements in sensor technology, fast, convenient, and cost-effective EEG acquisition is now
possible, resulting in many EEG-based healthcare monitoring applications in recent years. This work
proposes an EEG-headset-based smart monitoring system for real-time diagnosis of MDD in the Internet of
Medical Things (IoMT) framework. In this study, we proposed a novel Linear Graph Convolution Network-
Transformer-based deep learning approach for categorizingMDD through a time-frequency analysis of EEG
signals. The Stockwell transform (S-transform) is employed to exploit the spectro-temporal information from
the EEG and the resulting 2D representation is then fed into customized Linear Graph Convolution Network
for MDD detection. We have utilized the Weighted Focal Binary Hinge Loss function, specifically designed
for customized Linear Graph Convolution Network, to improve learning and handle unbalanced input.
Subsequently, a novel Transformer model is designed to refine the MDD classification further. The proposed
methodology named SLiTRANet, blends spectral analysis with the S-transform, graph-based learning
with Linear Graph Convolution Network, and the sequence modeling capability of the Transformer. The
proposed SLiTRANet model can be further integrated within an IoMT framework for automated real-time
MDD diagnosis using EEG signals. The proposed methodology is evaluated on two publicly available
datasets, MODMA and HUSM datasets. The evaluation results demonstrate the superior performance of
the proposed SLiTRANet framework against the existing pre-trained and hybrid deep learning models,
achieving remarkable accuracy, sensitivity, specificity, and precision rates of 99.92%, 99.90%, 99.95%, and
99.97%, respectively on HUSM dataset followed by an equally good performance on MODMA dataset
with an accuracy of 99.68%. The proposed comprehensive approach implemented on two varied datasets
highlights significant advancements in depression detection by outperforming state-of-art approaches.
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INDEX TERMS EEG signals, hybrid deep learning network, linear graph convolution network, IoMT, healthcare
monitoring, depression classification.

I. INTRODUCTION
Major Depressive Disorder (MDD) is a potent adversary
of human well-being that causes significant harm to both
people and society. Depression affects approximately 3.8% of
the global population, with higher prevalence among adults,
especiallywomen, and individuals over 60 years old. Roughly
280 million people worldwide grapple with this condition.
Women are 50% more likely to experience depression than
men, with over 10% of pregnant or postpartum women
affected. Seen as the fourth most common cause of death
for individuals aged 15 to 29, suicide tragically claims
over 700,000 lives each year [1]. According to these
figures, depression has a significant negative influence [25]
on people’s lives, and more awareness, resources, and
therapeutic techniques are urgently needed.

The importance of diagnosing MDD is growing as more
research shows a connection between depression and other
illnesses. According to recent research, there is a recip-
rocal association between MDD and long-term conditions
such as diabetes, autoimmune disorders, and cardiovascular
disease [2]. The MDD patients usually don’t discuss their
problem within the family or with the doctors mainly due
to social stigma. Currently, diagnosing the depression status
of a person is a tedious and time-consuming process as
psychiatrists take several sessions/days to reach a diagnostic
conclusion. Therefore, it is important to develop automated
and smart diagnosis tools to facilitate early and faster diag-
nosis of MDD. With the advancements in sensor technology
and computational efficiency in recent years, the Internet
of Medical Things (IoMT) and machine learning-based
smart healthcare applications have gained momentum. These
advanced technologies have the potential to address futuristic
healthcare needs such as personalized and remote healthcare,
sky-rocketing healthcare costs, doctors scarcity, and lack
of medical infrastructure, especially in rural/remote areas.
A typical IoMT and deep learning-based framework to diag-
nose MDD is depicted in Fig. 1. The Electroencephalogram
(EEG) headsets facilitate easy and faster signal acquisition,
which can be pushed to the cloud through intermediate
nodes/computers. The MDD detection task may happen on
the cloud, and results may be fetched back to the end-user
through a user interface like a smartphone. Diagnosis results
may also be fetched by clinicians/hospitals for remote
monitoring of the mental status of the patient and provide
medical feedback/advice accordingly. Furthermore, develop-
ments in neuroimaging methods [5], like functional magnetic
resonance imaging (fMRI), are illuminating the neurological
foundations of MDD and opening up novel therapeutic
and early intervention tools. Given its significance, several
research endeavors center on precisely diagnosing MDD in
order to tackle its striking impact on both public health and
individuals.

EEG serves as a powerful neurophysiological tool for
investigating the brain mechanisms underlying MDD [35].
Its high temporal resolution allows researchers to capture
even subtle changes in brain wave activity, providing crucial
insights into the neurophysiological alterations associated
with the disorder. Specifically, EEG can detect variations in
spectral power across different frequency bands, which often
reflect the emotional dysregulation characteristic of MDD.
This ability to monitor rapid brain oscillations offers valuable
information on the pathophysiology of the disorder [36].
EEG’s portability, affordability, and non-invasive nature [37]
make it suitable for large-scale clinical studies and real-
world applications, unlike more costly and cumbersome
neuroimaging techniques such as fMRI or PET. Moreover,
EEG provides a scalable method for identifying MDD
by examining brain oscillations, which reflect coordinated
neuronal activity spanning both cortical and subcortical
regions, including the frontal, temporal, parietal, and occipital
lobes. EEG captures abnormalities in MDD by evaluating
power amplitudes in specific frequency bands, each linked
to distinct cognitive functions. Altered alpha asymmetry
in frontal regions, a key indicator in MDD, distinguishes
patients from healthy controls [38]. Beta and low gamma
(25–80 Hz) powers in fronto-central regions correlate with
attention deficits, while intrinsic local beta oscillations in
the subgenual cingulate are inversely linked to depressive
symptoms [38]. Additionally, in certain contexts, gamma
rhythms—neural oscillations ranging from 25 to 140 Hz—
have been effective in distinguishingMDDpatients from non-
depressed controls, with various antidepressant treatments
also influencing gamma activity [38]. Additionally, EEG
not only contributes to MDD diagnosis but also aids
in understanding the brain correlates of other psychiatric
conditions similar to MDD like anxiety, psychosis, and
cognitive impairments, thus cementing its role in clinical
research and practice [43].

In recent years, deep learning has gained significant
attention in detection/ classification-related tasks because of
its ability to extract automated hidden non-linear features
from the input data, which results in higher accuracy.
Thus, in the area of EEG based MDD detection, sev-
eral pioneering innovative deep-learning models have been
introduced [39]. DepHNN by Sharma et al. [10] integrates
Long Short-Term Memory (LSTM) and convolutional neural
network (CNN) architectures. Unlike traditional methods
requiring independent feature extraction, DepHNN utilizes
LSTM to incorporate long-term dependencies into the CNN
framework. Trained on data from 45 patients, DepHNN
achieves high accuracy rates of 99.1% with an error rate of
0.2040 in distinguishing depressed individuals from normals.
HybridEEGNet introduced by Wan et al. [13] is a novel con-
volutional neural network featuring two parallel lines. It aims
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FIGURE 1. An IoMT-deep learning framework for MDD Diagnosis.

to differentiate between medicated and non-medicated MDD
patients using synchronous and regional EEG data. Employ-
ing ten-fold cross-validation, HybridEEGNet achieves a
three-category classification quantified in terms of sensitivity
of 68.78%, specificity of 84.45%, and accuracy of 79.08%.
Kang et al. [14] propose a method utilizing low-channel
EEG signals for early depression diagnosis. Their approach
divides signals from four frontal channels into theta, beta,
alpha, and delta band frequencies, which are then fed into
a convolutional layer-based two-dimensional deep learning
model. This method shows promising results with improved
sensitivity, specificity, and accuracy. DeprNet introduced by
Seal et al. [16] is an 18-layer CNN architecture designed
to integrate temporal and spatial features of EEG data. Uti-
lizing Independent Component Analysis (ICA) and filtering
techniques to remove artifacts, DeprNet processes 4-second
EEG inputs from 19 channels. It achieves notable gains
in accuracy compared to previous models, highlighting the
differential effects of depression on left and right hemisphere
activities. Khan et al. [21] estimate effective connectivity
within the brain’s default mode network (DMN) using
EEG recordings from MDD patients and healthy controls.
Their proposed three-dimensional (3D) convolutional neural
network demonstrates exceptional performance, achieving
100% accuracy, sensitivity, and specificity in classifying
MDD and healthy control participants.

In this work, our suggested model plugs in many signif-
icant gaps in most existing works. Although models with
excellent accuracy rates, such as HybridEEGNet [13] and

DepHNN [10], may not be robust enough to handle imbal-
ances in classes or capture spatial relationships in EEG data.
DepHNN may not fully utilize the intrinsic graph structure
of EEG signals since it depends on LSTM to incorporate
long-term dependencies into CNN. Similarly, HybridEEGNet
may miss important spatial correlations across electrode
channels in favor of synchronous and local EEG data.
Furthermore, while Khan et al.’s 3D convolutional neural
network andDeprNet exhibit exceptional 100% performance,
they might be overfitted or not dealt with concerns of class
imbalance. In contrast, our method uses a Transformer archi-
tecture for classification, combines the Stockwell Transform
to extract precise time-frequency information, and uses a
novel Linear Graph Neural Network (LGCN) with Weighted
Focal Binary Hinge (WFBH) loss function to capture spatial
dependencies, allowing for improved modeling of long-
range dependencies. By integrating these components, our
model overcomes the shortcomings of earlier approaches in
depression identification and provides improved resilience,
accuracy, and interpretability when compared to current
techniques.

The major contributions of this work are as follows:
• Introducing an EEG-based automated IoMT framework
for smart MDD monitoring using cutting-edge Deep
Learning technology.

• Introducing a novel approach for feature extraction
in MDD classification by integrating the Stockwell
transform for spectro-temporal EEG representation and
employing the Linear Graph Neural Network (LGCN)
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to analyze EEG data, effectively capturing spatial
dependencies within brain networks.

• Introducing the Weighted Focal Binary Hinge (WFBH)
Loss tailored for LGCN, effectively addressing imbal-
anced data and improving model performance in
depression classification.

• Incorporating a novel Transformer architecture to refine
classification results, leveraging its sequence modeling
capability to enhance accuracy and reliability in depres-
sion detection.

The structure of this research article unfolds as follows:
Section II delves into related works concerning depression
classification. In Section III, we provide detailed insights
into the dataset and the formulation of our proposed
classification architecture. The experimental findings and
results of our framework are elucidated in Section IV.
Section V serves as the conclusion, summarizing the key
findings and highlighting the future scope of the study.

II. RELATED WORKS
A. EXISTING MDD DETECTION APPROACHES
Mumtaz et al. [2] employed resting-state EEGdata to evaluate
a machine learning (ML) strategy on 33 MDD patients and
30 healthy controls. In order to diagnose depression, the
machine learning system used EEG-derived parameters, such
as the power of various EEG frequency bands and EEG
alpha interhemispheric asymmetry, to distinguish between
MDD patients and healthy controls. Mahato and Paul [3]
deployed a variety of classifiers, such as quadratic discrim-
inant analysis, radial basis function network (RBFN), linear
discriminant analysis (LDA), and multi-layered perceptron
neural network (MLPNN). When utilizing linear features
with the MLPNN classifier, alpha power has the best
classification accuracy of 91.67%. For non-linear features,
RWE and WE yielded the highest classification accuracy of
90% using the RBFN and LDA classifiers, respectively. The
maximum classification accuracy of 93.33% was attained
by combining linear and non-linear characteristics, namely
alpha power and RWE, using both MLPNN and RBFN
classifiers.

A three-step method for implementing the concept is
suggested by Sharma et al. [4] The first step is to extract
several important properties from multichannel EEG data,
such as coherence, statistical, time-related, linear, fractal
dimension, and non-linear features. The second step involves
selecting the most relevant characteristics through the use of
three feature selection techniques: Neighbourhood Compo-
nent Analysis (NBA), Relief-based Algorithm (RBA), and
Principle Component Analysis (PCA). After that, the perfor-
mance of several strategies is compared to determine which
is the best way to execute the model. The final step involves
classifying the participants into normal and depressed groups
using five different classifiers. Sharma et al. [5] present
DepCap, a state-of-the-art wearable smart cap that provides
real-time depression diagnosis via EEG signals. In order to

find significant features, the EEG signals of healthy and
depressed participants are first converted into spectrogram
images using the Short-Time Fourier Transform (STFT).
A classification model is then fed these spectrogram images.

Kang et al. [6] suggests a novel method of employing
EEG visualization to diagnose depression, emphasizing
asymmetry as a critical biomarker. This paper presents a
deep-asymmetry methodology that transforms EEG asym-
metry information into matrix pictures for input to a CNN,
in contrast to conventional methods like STFT and wavelet.
This method outperforms many other approaches and
achieves an accuracy of 98.85% in the alpha band. Further,
Aydemir et al. [7] presented a novel automated approach for
diagnosing MDD from EEG waves. The model is divided
into three basic stages: creating multileveled features using
melamine pattern and discrete wavelet transform (DWT);
selecting relevant features using neighborhood component
analysis (NCA); and classifying the results using SVM
and KNN classifiers. A notable aspect of their research is
the application of the melamine pattern, which generates
1536 features using the molecular structure of melamine.
Moreover, DWT coefficients are used to derive statistical
information.

Saeedi et al. [19], proposed an EEG-centered deep learning
architecture in their study to differentiate between people
with MDD and healthy people. They begin by extract-
ing the correlations between the EEG channels utilizing
sophisticated brain connectivity analysis techniques like
Direct Directed Transfer Function (dDTF) and Generalized
Partial Directed Coherence (GPDC). For every subject,
they generate a distinct visual representation by integrating
sixteen connection techniques spread over eight frequency
bands. After that, five different deep learning architectures
are fed these created EEG signal images to get enhanced
performance. This better performance is attributed to the
unusual architecture of themodel, which is adept at recreating
the temporal and spatial correlations observed in brain
connection patterns.

B. EXISTING SMART WEARABLE DEVICES FOR HEALTH
MONITORING
While there are many devices available for detecting physical
disorders in people, there are still few measures available
for evaluating an individual’s mental state. IoMT-based
applications and smart healthcare both depend on the accurate
collection and storage of biosignals [29]. In the last ten years,
portable consumer electronics have provided fresh insights
for researchers studying the Internet of Wearable Devices.
For real-time disease monitoring, these devices integrate a
variety of biosignals, such as electrocardiography (ECG),
electroencephalography (EEG), and photoplethysmography
(PPG).

There are several non-intrusive smart wearable gadgets
have been devised to assess various aspects of health.
An ECG-based wearable device, for example, was suggested
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for the purpose of monitoring arrhythmia disorders [30].
Wireless sensor networks have been used to comprehensively
study the usage of ECG for monitoring cardiovascular
disease [31]. Despite its considerable latency [34], a wearable
system for quick seizure detection utilizing EEG was
proposed. eSeiz, a different EEG-based consumer electronics
product, showed better latency performance [6]. While
some EEG features may be useful in detecting depression,
there is a dearth of research on the real-time application
of smart healthcare equipment for depression diagnosis.
A noteworthy study suggested the use of a wearable smart
device called Dep-Cap to identify depression [5]. This
device uses an algorithm based on deep learning to interpret
biosignals.

The review of the literature identifies a number of
research gaps in the use of EEG signals for the diagnosis
and monitoring of MDD. These gaps involve (a) lack of
integration of linear and non-linear features, (b) dependence
on manual feature extraction approaches, (c) limited explo-
ration of effective deep learning model architectures, and
(d) availability of low latency IoMT devices. The prime
objective of this study is to plug in the aforementioned
research gaps. First of all, by utilizing the Transformer
design to smoothly integrate linear and non-linear features,
it improves classification accuracy and permits a more
comprehensive comprehension of EEG data. Secondly, it gets
beyond the drawbacks of conventional techniques by utilizing
the S-Transform, an improved version of STFT and WT that
is utilized in signal processing to capture spatio-temporal
relationships across EEG channels. To further automate
feature extraction and reduce the need for human involvement
while increasing efficiency, the model also includes a LGCN.
In conclusion, the innovative fusion of the Transformer
design with the S-Transform and LGCN offers a distinct
and sophisticated method for EEG-based MDD diagnosis
required for accurate and reliable monitoring of the mental
state of an individual.

III. PROPOSED SMART MDD DETECTION AND
MONITORING FRAMEWORK
The improvements in the sensor technology and enhanced
on-chip computational power have enabled the IoMT frame-
work to offer numerous e-healthcare opportunities, such as
personalized healthcare, and continuous remote monitoring.
We proposed a similar framework here for MDD patients for
precise and reliableMDD diagnosis and monitoring using the
proposed SLiTRANet deep learning architecture. An EEG-
headset-based automated MDD monitoring approach is
shown in Fig. 2, where EEG signals are captured continuously
from the EEG headset and go for feature extraction and
depression detection modeling after pre-processing. The
computations involved in depression detection may happen
locally on a local computer/smartphone taking input EEG
wirelessly from the headset or on the cloud by directly push-
ing the input EEG to the cloud. The MDD diagnosis results
may be fetched by the consultant doctor/physician from the

hospital/healthcare center for remote monitoring/feedback or
by the patient himself/herself using his/her smartphone. The
different modules of the proposed framework are discussed
in detail below.

A. DATASET AND PREPROCESSING
In the absence of a real-time EEG headset set, the study
presented here is evaluated in offline mode on an open-source
dataset that was acquired from Hospital Universiti Sains
Malaysia (HUSM) [1]. This dataset contains data collected
from 64 participants who were carefully chosen from two
different groups. There are 40 males and 24 females, ages
ranging from 12 to 77. In this dataset, 34 individuals
with a mean age of 40.33 years and a standard deviation
of 12.861 years were diagnosed with Major Depressive
Disorder (MDD). An additional group of thirty healthy
controls with an average age of 38.227 years and a standard
deviation of 15.64 years were also included. The diagnoses
of MDD were conducted in accordance with the Diagnostic
and Statistical Manual IV (DSM-IV), with ethical approval
secured from the relevant committee, and all participants
providing informed consent [9]. EEG data collection adhered
to the international 10-20 electrode placement standard,
encompassing frontal [12], temporal, parietal, occipital, and
central regions with 19 electrodes (Fp1, Fp2, F3, F4, F7,
F8, Fz, T3, T4, T5, T6, P3, P4, Pz, O1, O2, C3, C4, and
Cz). For data preprocessing, first, a Butterworth bandpass
filter (0.5 Hz - 70 Hz) was applied to the EEG signals to
retain relevant neural activity while removing low-frequency
drifts and high-frequency noise. To eliminate power line
interference, a 50 Hz notch filter was used. Following
the filtering, Independent Component Analysis (ICA) [44]
was employed to address common artifacts, [18] such as
eye blinks, muscle movements, and patient motion. ICA
decomposes the multichannel EEG data into statistically
independent components, each representing a different signal
source. The independent components were then inspected,
and those corresponding to artifacts (e.g., large slow-wave
components for eye blinks or sharp components for muscle
activity) were identified and removed. Finally, the cleaned
components were recombined to reconstruct the artifact-free
EEG signals. This process ensures that the data used for
further analysis is free from non-neural artifacts, thereby
improving the accuracy of feature extraction and clas-
sification. After preprocessing step, each 5-minute EEG
recording was segmented into 10-second intervals, with
Z-score normalization employed for amplitude scaling before
input to the neural network. Further segmentation divided the
5-minute dataset into epochs of 4 seconds (1024 samples)
each, ensuring consistent labeling for subsequent machine
learning applications.

Additionally, we have also used another EEG-based
depression dataset that has restricted public availability,
called MODMA dataset [26], to validate our proposed
depression detection framework (S. Transform+LGCN-
Transformer). In this database, there were 52 participants:

VOLUME 12, 2024 173113



S. De et al.: SLiTRANet: An EEG-Based Automated Diagnosis Framework for MDD Monitoring

FIGURE 2. The proposed IoMT-based MDD diagnosis and monitoring framework incorporating the SLiTRANet deep learning
architecture.

29 healthy controls (20 males and 9 females, ages 18–55)
and 23 individuals with depressive diagnoses (16 males and
7 females, ages 16–56). For our study, we initially explored
the full-brain 128-electrode EEG data mode. Nevertheless,
we restricted our focus to 19 distinct electrodes (Fp1/2, F3/4,
F7/8, Fz, C3/4, Cz, P3/4, Pz, O1/2, T3/4, T5/6) in order
to optimize time efficiency and computational resources.
These electrodes have been widely utilized in the study
of MDD, thus this deliberate choice was not only rational
but also consistent with other studies [41], [42], which
makes them quite pertinent to our work. The aforementioned
preprocessing steps (normalization, removal of artifacts using
ICA, and segmentation) have also been applied to this
database records to prepare them for further processing.
A schematic block diagram of the proposed MDD detection
approach is shown in Fig. 3. It can be observed that there are
three major modules in the approach: preprocessing, feature
extraction, and deep learning modeling. Each of the modules
is discussed in detail in subsequent sections.

B. STOCKWELL TRANSFORM-BASED T-F ANALYSIS OF
EEG SIGNAL
The Stockwell Transformation, or S-transform, proposed by
Stockwell et al. in 1996, amalgamates the advantages of
Short Time Fourier Transform (STFT) [32] and Wavelet
Transform (WT), garnering significant interest across various
scientific and engineering domains such as biomedical
imaging and signal processing. Unlike traditional methods,
the S-transform offers frequency-dependent resolution while
maintaining a direct correlation with the Fourier spectrum.
Essentially, it serves as a phase-corrected version of the
WT, furnishing more accurate insights into a signal’s
local features during time-frequency (T-F) analysis. This
property renders the S-transform particularly robust against

non-stationary signals and often provides superior time-
frequency resolution [40]. This is why S-transform is chosen
for T-F analysis of EEG signal for MDD detection in this
work.

Given ρ ∈ L1(R) ∩ L2(R) such that
∫
∞

−∞
ρ(t)dt = 1,

the S-transform of a signal y(t) in L2(R) with respect to the
window function ρ(t) is defined by equation (1):

Sy(t, f ) =
∫
∞

−∞

y(τ )ρ∗(τ − t)e−2π if τdτ (1)

where,
Sy(t, f ) represents the S-transform of y(t) at time t and
frequency f .
ρ∗(t) denotes the complex conjugate of ρ(t).
f denotes frequency while t represents time.

The inverse Stockwell Transform, reconstructing the
original signal, is given by equation (2):

y(t) =
∫
∞

−∞

∫
∞

−∞

Sy(τ, f )ρ(t − τ ) exp(2π ift)dτdf (2)

This equation represents the reconstruction of the original
signal y(t) by integrating over the time-frequency domain,
with g(t − τ ) representing a suitable reconstruction window
function.

At zero frequency f = 0, the Stockwell Transform equals
the signal’s average as shown in equation (3):

Sy(t, 0) =
∫
∞

−∞

y(τ )dτ (3)

This signifies that at zero frequency, the S-transform
effectively computes the average value of the signal over
time, providing insight into its overall magnitude or energy
distribution.
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FIGURE 3. Block-diagram of the proposed pipeline of the MDD diagnosis using SLiTRANet.

The Stockwell Transform can also be formulated in the
frequency domain as depicted in equation (4):

Sy(t, f ) =
∫
∞

−∞

Y (α + f )ρ̂(α/|f |)ej2παtdα (4)

Here, Y (α + f ) represents the Fourier spectrum of the signal
shifted by the frequency f , and ρ̂(f ) denotes the frequency
domain representation of the window function ρ(t). This
formula shows how the S-transform converts a signal from
the time domain to the frequency domain, allowing for an
in-depth analysis of the signal’s frequency content over time.

C. LINEAR GRAPH CONVOLUTION NETWORK (LGCN)
This section elaborates on the structure of the proposed
LGCN architecture used for depression-relevant feature
extraction.

1) GRAPH CONVOLUTION NETWORK IN SPECTRAL DOMAIN
The complex network of the brain influences diverse mental
states, including depression, through connections between
distinct brain regions. Understanding the patterns of brain
activity linked to depression can be gained by analyzing
EEG signals obtained from electrodes applied to the scalp.
Through Pearson correlation analysis, we construct a graph
where EEG signal features represent nodes, reflecting raw
EEG data. The adjacency matrix of this graph, derived from
correlation analysis and thresholding, signifies connectivity
between nodes. Inspired by Zhao et al.’s [23] research,
we propose a depression detection model employing Linear
Graph Convolutional Networks (LGCNs). The flow diagram
of a generalized LGCN is as depicted in Fig. 4
LGCNs, similar to Graph Convolutional Networks

(GCNs), iteratively process node neighborhoods. Utilizing
two LGCN layers, each node aggregates features from
its neighboring nodes, updating its representation. This
aggregation process, which combines node features with
neighboring information, is described by the convolutional

operation in equation (5):

H (l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

)
(5)

Here, Ã represents the adjacency matrix with added self-
loops, D̃ is the degree matrix,W (l) denotes trainable weights,
and σ (·) applies an activation function, commonly ReLU.

Exploring the relationships between EEG electrode pairs in
the International 10-20 system, our LGCN model operates in
the Fourier domain. Utilizing convolution kernels gθ and raw
EEG signals x, we perform spectral convolutions as shown in
equation (6):

gθ ⋆ x = UgθU⊤x (6)

Here, U signifies the eigenvector matrix derived from the
symmetric normalized Laplacian operator, which is com-
putationally intensive. To address this, we employ k-order
Chebyshev polynomials [23], approximating convolutions as:

gθ ′ ⋆ x ≈
K∑
k=0

θ ′kTk (L̃)x (7)

where L̃ is a rescaled Laplacian matrix. This approximation
significantly reduces computational complexity to O(|E |).
Incorporating Chebyshev’s linear model, spectral convolu-

tions simplify to:

gθ ′ ⋆ x ≈ θ
(
IN + D−

1
2AD−

1
2

)
x (8)

However, direct application within deep neural networks
may result in gradient instability. Hence, we normalize the
operation by replacing (IN + D−

1
2AD−

1
2 ) with D̃−

1
2 ÃD̃−

1
2 ,

yielding a layer-wise linear form GCN model expressed as:

H (l+1)
= f

(
H l,A

)
= σ

(
D̃−1/2ÃD̃−1/2H (l)W (l)

)
(9)

2) WEIGHTED FOCAL BINARY HINGE (WFBH) LOSS
FUNCTION
In depression classification, handling imbalanced data is
crucial to ensure the model effectively learns from both
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FIGURE 4. The flow diagram of a generalized Linear Graph Convolution Network.

positive and negative samples. The original loss function used
in Linear Graph Convolutional Networks (LGCNs) is cross-
entropy loss [23], given by:

CEL(z, y) =

{
− log(z) if y = 1
− log(1− z) otherwise

(10)

Here, z represents the predicted probability of a class and y
is the true label. However, in scenarios with imbalanced data,
this loss function may overly prioritize the majority class,
leading to suboptimal performance.

To address this issue, focal loss, initially proposed for
object detection tasks, can be employed. Focal loss(FL) is
formulated as:

FL(z) = −αz(1− z)γ log(z) (11)

In this formulation, z represents the predicted probability,
and αz adjusts the weight of positive and negative samples.
The parameter γ allows for controlling the emphasis on
challenging samples.

Weighted Focal Binary Hinge (WFBH) Loss can be
applied to improve model performance even more in
imbalanced settings. Combining binary hinge loss and focal
loss, WFBH focuses on difficult samples and provides
adaptability against class imbalance. Its formulation is given
by equation (12):

WFBH(z, y) = β · HL(z, y)+ (1− β) · FL(z, γ ) (12)

The binary hinge loss in this case is represented by
HL(z, y) = max(0, 1 − (2y − 1) · z) and the focal loss by

FL(z, γ ). Due to the parameter β, which balances the contri-
butions of hinge and focal loss,WFBH is appropriate for tasks
involving the categorization of depression, where difficult
samples and imbalanced data are frequently encountered.

The working mechanism of the proposed LGCN archi-
tecture is as described below. Each node in the first layer
enhances its own understanding by combining the attributes
of the nodes that are close to it. Each node’s features in
the second layer are a combination of its own characteristics
and those of its neighbors. Each node continues this process,
honing its features in response to its environment. They can
then be utilized to the Transformer model for classification by
merging the characteristics from both layers and reshaping
the output of LGCN module. The overview of the novel
LGCN with WFBH is as illustrated in Fig. 5. Furthermore,
the algorithm of the proposed LGCN with WFBH is as given
in Algorithm 1.

D. PROPOSED NOVEL TRANSFORMER ARCHITECTURE
The proposed novel Transformer model for classifying EEG
signals into healthy and MDD classes begins by embedding
the 2D input matrix representing the EEG signal. This
embedding process transforms the input matrix X into a
sequence of embeddings E , ensuring compatibility with
the subsequent layers. The embedding operation can be
mathematically expressed as:

E = Embed(X ) (13)

Next, the self-attention mechanism [24] is employed
to compute attention scores between each pair of time
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FIGURE 5. The block diagram of the proposed LGCN architecture with WFBH loss function.

Algorithm 1 Algorithm for Proposed Novel LGCN With
WFBH Loss
Input: EEG data represented as graph G = (V ,E), with
features X and adjacency matrix A
Output: Predicted labels for depression
classification
1: Compute the degree matrix D̃ from Ã
2: Initialize parameters: trainable weights W (l) for each

layer l
3: Compute the rescaled Laplacian matrix L̃ from the

adjacency matrix A
4: for each layer l in LGCN do
5: Compute spectral convolutional operation:
6: H (l+1)

= σ
(
θ
(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

))
7: Update node representations using activation function

σ (·)
8: end for
9: ComputeWeighted Focal Binary Hinge (WFBH) Loss:
10: FL(z) = −αz(1− z)γ log(z)
11: HL(z, y) = max(0, 1− (2y− 1) · z)
12: WFBH(z, y) = β · HL(z, y)+ (1− β) · FL(z, γ )
13: Update parameters using gradient descent with WFBH

Loss
14: return Predicted labels

steps in the EEG signal. This enables the model to weigh
each pertinent time step’s significance in the classification
procedure. The attention score calculation is represented by:

Aij = softmax

(
QiKT

j
√
dk

)
V (14)

Multi-head attention (MHA) is then utilized to capture
diverse patterns and dependencies within the EEG signal.
By running the self-attention mechanism multiple times in

parallel with different linear projections, the model can
extract rich representations from the input data. The multi-
head attention [24] operation is mathematically expressed as:

MHA (Q,K ,V ) = Concat (head1, . . . , head h)WO

where headi = Attention
(
QWQ

i ,K WK
i ,V WV

i

)
(15)

The output of the MHA layer is passed through a
position-wise feedforward network (FFN) [24] to capture
complex interactions within the EEG signal. A novel aspect
of this model is the computation of L1 norms (Manhattan
norms) for the probabilistic outputs from all attention heads.
The L1 norm for each attention head is computed as:

L1 Norm(Ai) =
∑
j

|Aij| (16)

The attention head with the highest L1 norm is considered
to have the highest attention probability. This specific
attention output is selected as the most relevant and used as
a residual connection to refine the final projected attention
output (FAO):

FAO = Attention Output+ Attention Outputhighest L1 Norm
(17)

Incorporating this highest norm attention output as a
residual connection ensures that the most pertinent features
are emphasized, thereby enhancing the overall feature
representation and classification accuracy.

This network applies two linear transformations followed
by a ReLU activation function. The FFN operation can be
denoted as:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (18)

Residual connections and layer normalization [24] are
then applied to facilitate smooth gradient flow and alleviate
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FIGURE 6. The schematic of the proposed novel Transformer model for MDD diagnosis.

vanishing gradient issues during training. These connections
ensure that information from earlier layers is preserved
and propagated effectively through the network. The layer
normalization operation is represented as:

LayerNorm(x + Sublayer(x)) (19)

Finally, the output of the Transformer is passed through
a fully connected layer with softmax activation for binary
classification into healthy and MDD classes. This layer
produces the final classification probabilities based on
the learned representations from the input EEG signal.
A schematic diagram of the proposed Transformer model is
illustrated in Fig. 6

E. PROPOSED DEEP LEARNING ARCHITECTURE FOR MDD
DIAGNOSIS AND MONITORING
The input EEG signal is first represented as a 19 ×
2560 matrix, including 10 seconds (after data segmentation)
of data sampled at a rate of 256 samples per second over
19 electrode channels as per HUSM dataset. The signal is
transformed after applying the S-transform, which splits the
time-frequency plane into 256 time bins and 19 frequency
bins. The original matrix is compressed into a 256 ×
19 matrix using this transformation, with each member
denoting a distinct time-frequency bin. The resulting matrix
effectively captures the EEG signal’s time-varying spectral
properties. As a result, a smaller 19 × 256 matrix is used
as the LGCN’s input. The LGCN comprises two layers,
generating 128 and 64 frequency maps, respectively. These
feature maps are concatenated and reshaped, resulting in
an output matrix with a total of 192 feature maps and
dimensions of 6 × 19 x 32. This matrix contains spatial
information. The Transformer receives this output, which is
a reflection of the processed features that were taken out of
the EEG data. Together with Multi-Head Attention (MHA)

modules, self-attention mechanisms within the Transformer
enable the learning of representations over several channels
and time steps. To further improve learning, the encoder
also includes Add and Norm layers. These representations
are iteratively improved by the Transformer across several
layers, culminating in dense layers for additional processing.
A dropout operation with a dropout rate of 0.5 is also applied
to prevent overfitting. The output dimension is flattened and
passed to a dense layer with softmax activation for final
binary classification (i.e. Healthy or MDD). Table 1 gives
the optimal hyperparameters of the LGCN and Transformer
architectures used in this work.

The step-by-step procedure of the proposed SLiTRANet
for MDD detection is given in Algorithm 2.

IV. EXPERIMENTAL RESULTS
A. HARDWARE SPECIFICATIONS AND ENVIRONMENTAL
SETUP
Using Python 3.8.1 and Jupyter Notebook and the Keras
framework, deep learning model training and evaluation were
done. The system used for implementation has following
configurations: an Intel Core i7 processor, an NVIDIA
GTX 1650 GPU that supports CUDA, and 16GB of RAM to
enable effective model training and assessment. This setting
is used to customize and improve the model architecture
throughout the course of a 50-epoch training regimen. Each
epoch begins with a randomization of the dataset to ensure
a varied exposure to the data and support robust learning.
Using an initial learning rate of 0.0001, the ADAM (Adaptive
Moment Estimation) optimizer [33] is used to orchestrate the
model’s optimization with a batch size of 128.

B. TRAINING, VALIDATION AND TESTING PROCEDURE
The development of robust classifier models in machine
learning depends on the efficient preparation of training,
validation, and testing datasets. Validation data helps
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TABLE 1. Optimal hyperparameters for LGCN and transformer.

Algorithm 2 Proposed SLiTRANet Algorithm
Input: Preprocessed EEG data represented as X
Output: Predicted labels for Healthy and MDD
classes
1: Apply Stockwell Transform to X to obtain

time-frequency representation SX
2: Feed SX into Linear Graph Convolution Network

(LGCN) with Weighted Focal Binary Hinge (WFBH)
Loss:

3: LGCNoutput← LGCN(WLGCN, SX )
4: Reshape LGCNoutput into a suitable format:
5: LGCNreshaped← Reshape(LGCNoutput)
6: Feed LGCNreshaped into Transformer for classification

into Healthy and MDD classes:
7: PredictedLabels ←

Transformer(WTransformer,LGCNreshaped)
8: return PredictedLabels

minimize overfitting by adjusting model hyperparameters,
whereas training data serves as the basis for identifying
patterns and generating predictions. Evaluation of the
model’s performance on omitted data is done using testing
data. Random data splitting and subject-based data splitting
are the two primary methods for preparing datasets. Given the
limited subject representation in topic-based splitting, bias
and variability may be introduced, whereas representative
samples and various characteristics are guaranteed by random
splitting. 70% of the dataset samples are used for training,
10% for validation, and 20% for testing using a stratified
random splitting technique, which guarantees variation in
the SLiTRANet framework’s training process. This strategy
improves model performance and prevents overfitting, when
combined with a 10-fold cross-validation method. Table 3
and Table 4 demonstrates that allocating 70% of the dataset
for training, 10% for validation, and 20% for testing
yields the highest accuracy for both datasets. Consequently,
this split ratio was selected for training, validation, and
testing.

C. PERFORMANCE EVALUATION METRICS
We employed a wide range of performance indicators in
our trials to evaluate the effectiveness of our suggested

framework. These metrics include accuracy [11], speci-
ficity [20], precision [17], and sensitivity [22] (recall), which,
taken together, provide a more comprehensive assessment
of our model’s effectiveness. Equations (20) through (25)
provide the mathematical formulations for the above perfor-
mance metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

Specificity =
TN

TN + FP
(21)

Precision =
TP

TP + FP
(22)

Sensitivity (Recall) =
TP

TP + FN
(23)

These performance metrics collectively offer a com-
prehensive assessment of our model’s effectiveness in
depression classification, providing valuable insights into its
capabilities and limitations. We have performed a 10-fold
cross-validation during model evaluation and reported the
averaged cross-validation results.

D. PERFORMANCE ASSESSMENT OF PROPOSED MDD
DETECTION FRAMEWORK
This section presents the performance evaluation of the
proposed approach for the two classes, Major Depressive
Disorder (MDD) and Healthy in terms of different metrics
such as specificity, accuracy, sensitivity, and precision. First,
the proposed deep learning model was trained properly.
On both datasets, setting the learning rate to 0.001 initially
produced high accuracy; however, the validation set revealed
significant variations in accuracy and loss, suggesting inad-
equate training. Training accuracy increased to 0.9992 and
0.9968 for the HUSM and MODMA datasets, respectively,
after the learning rate decreased to 0.0001. The training
loss values for the HUSM and MODMA datasets were
approximately 0.09 and 0.36, respectively. This change in
the learning rate along with the Adam optimizer, and a
batch size of 128, produced optimal results and stabilized
the model’s training/validation performance on both datasets.
The algorithm was run for 50 epochs. The training and
validation accuracy curves, as well as the training and
validation loss curves versus the number of epochs, are
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FIGURE 7. The (A) Training and validation accuracy and (B) Training and validation loss curves using HUSM dataset.

FIGURE 8. The (A) Training and validation accuracy and (B) Training and validation loss curves using MODMA dataset.

depicted in Fig. 7 for the HUSM dataset and in Fig. 8 for
the MODMA dataset.

Table 2 depicts the values of different performance metrics
obtained for the two evaluated databases. The maximum
accuracy was obtained for MDD class (99.96%) followed
by healthy class (99.88%). A similar trend was obtained for
the MODMA dataset also, where the maximum accuracy
of the MDD class was found to be 99.76%. The average
performance metrics for both classes are found to have
an accuracy of 99.92%, sensitivity of 99.90%, specificity
of 99.95%, and precision of 99.97%. These statistics
demonstrate the robust performance of the proposed detection
model in accurately distinguishing between Healthy and
MDD instances. The confusion matrix [27] of the proposed
framework on both HUSM andMODMAdataset is also com-
puted and illustrated in Fig. 9. Since the proposed framework
performs best on the HUSM dataset, all the experimentations,
here onwards, have been performed taking HUSM dataset
only.

E. PERFORMANCE ANALYSIS OF PROPOSED DEPRESSION
DETECTION FRAMEWORK ACROSS DIFFERENT DATA
SPLITTING EXPERIMENTS
Further, to find out the best data splitting ratio for train-
ing, testing, and validation, we have also assessed the
performance of the proposed SLiTRANet model across

different data-splitting experiments. Table 3 and Table 4
display the performance of the HUSM and MODMA
datasets when trained, validated, and tested using various
splitting approaches. Our findings indicate that our model
demonstrates superior performance on the MODMA dataset,
thereby establishing the effectiveness of the proposed
framework over other existing models. As shown in both
the tables, the best performance is achieved with the ratio
70:10:20. Therefore, in this study, the designed framework
is trained, validated, and tested using randomly selected
70%, 10%, and 20%, respectively. It can also be seen that
subject-based splitting produces comparable results on both
datasets, demonstrating the model’s strong generalization
ability.

F. CROSS-DATASET VALIDATION OF THE PROPOSED
MODEL
To demonstrate the robustness of the proposed model on
unseen data, we have also carried out cross-dataset validation,
where training was done on one dataset (HUSM) and
testing was done on another unseen dataset (MODMA)
and vice-versa. This is a very strict validation protocol
but very important to highlight the model’s generalizability
and model’s capability to handle inter-patient variability,
especially in EEG-based applications [45], [46]. Table 5
presents the performance of classifiers on different datasets
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TABLE 2. Performance assessment of the proposed depression detection framework on two datasets.

FIGURE 9. The confusion matrix of the proposed Depression Detection framework on
testing using both datasets.

TABLE 3. Performance of the proposed model on testing data while
trained, validated, and tested using different data splitting approaches
(HUSM dataset).

through cross-dataset validation (CDval), training on 90% of
one database and testing on 10% of another. This approach
is essential as it ensures the model’s generalizability and
robustness across diverse datasets, preventing overfitting to a
single dataset. In Experiment CDval1, themodel trained on the
HUSM dataset and tested on MODMA achieved an average
accuracy of 97.10%, demonstrating strong performance
in detecting both Healthy and MDD classes. Conversely,
in Experiment CDval2, where the training and testing datasets
were swapped, the model obtained an average accuracy
of 96.02%. The model was adapted to each dataset to
ensure uniformity during analysis, confirming that while
performance may vary slightly due to dataset characteristics,
the model is capable of generalizing effectively across
different datasets.

TABLE 4. Performance of the proposed model on testing data while
trained, validated, and tested using different data splitting approaches
(MODMA dataset).

TABLE 5. Performance overview of classifiers on different datasets.

G. CROSS-SUBJECT VALIDATION OF THE PROPOSED
MODEL
Cross Subject Validation (CSval) is a technique used to
assess the robustness and generalization ability of a machine
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TABLE 6. Performance overview of proposed architecture on
cross-subject validation.

learning model in handling variations across different indi-
viduals (subjects). In CSval , the dataset is divided such that
one subject’s data is held out for testing, while the data from
the remaining subjects is used for training the model. This
process is repeated for every subject, and the test results
are averaged to obtain the final accuracy. CSval is partic-
ularly important in real-world applications because human
data often exhibits high inter-subject variability, making
subject-independent testing crucial for model reliability. The
importance of CSval lies in its ability to simulate real-world
conditions where a model trained on a specific group of
individuals must generalize well to unseen subjects. This
validation method ensures that the model does not overfit to
individual-specific patterns but captures generalized features
relevant to all subjects. In Table 6, two experiments were
performed: CSval1 on the HUSM dataset and CSval2 on
the MODMA dataset. For CSval1, the model achieved an
average accuracy of 98.05%, with 97.68% accuracy for
classifying healthy subjects and 98.42% for MDD subjects.
Similarly, CSval2 showed 97.08% average accuracy with
healthy subjects at 96.34% and MDD subjects at 97.82%,
indicating the model’s strong performance across datasets.

H. IMPORTANCE OF THE PROPOSED LGCN
CUSTOMIZATION IN IMPROVING THE DETECTION
ACCURACY
To highlight the importance of the proposed customizations
in the base model of LGCN-Transformer, we have compared
the base model and the focal loss model of the deep learning
architecture in this section. The comparison of different
versions of the LGCN-Transformer for detectingMDD offers
valuable insights and emphasizes the role of customization
in achieving better performance. Table 7 illustrates the
performance of the aforementioned LGCN variants with the
Transformer. At first, the LGCN-Transformer base model
shows good performance, with well-balanced precision,
specificity, and sensitivity, and achieves an accuracy of
94.98%, suggesting its dependability. When Focal Loss is
included, performance improves. This is demonstrated by
the LGCN(Focal Loss)-Transformer in Table 7, with an
accuracy of 97.32% and improved sensitivity and precision,
which are essential for precise detection tasks. When the loss
function changes to Weighted Focal Binary Hinge (WFBH)
loss as done in the proposed architecture, presented as

TABLE 7. Performance overview of LGCN(WBFH)-Transformer against
other LGCN variants.

LGCN(WFBH)-Transformer, MDD detection performance
improved significantly with high precision, specificity, sensi-
tivity, and accuracy (99.92%) as depicted in the comparison
table, outperforming earlier models by substantial margins.
These results highlight LGCN-based models’ utility and
emphasize the importance of incorporating WFBH loss
function for additional performance improvement.

I. ABALATION ANALYSIS
The ablation analysis (performed on HUSM dataset) pre-
sented in Table 8 highlights the impact of removing or
modifying key components of the proposed SLiTRANet
model on its performance metrics, including accuracy,
precision, specificity, and sensitivity. The SLiTRANet model
achieves an exceptional accuracy of 99.92%, precision of
99.97%, specificity of 99.95%, and sensitivity of 99.90%,
indicating its robust MDD classification capabilities. The
removal of the S-Transform, which transforms raw data
inputs into 2D T-F representation, leads to a substantial
accuracy drop to 90.28%, underscoring the S-Transform’s
vital role in effectively extracting MDD-relevant features.
Replacing the LGCN with a conventional CNN results in
further performance degradation, resulting in an accuracy of
84.72%, emphasizing the LGCN’s ability to model complex
spatial relationships. Notably, the elimination of the novel
Transformer reduces accuracy to 85.72%, revealing that its
unique architecture enhances contextual feature extraction
beyond that of a baseline Transformer, which achieves
only 89.38% accuracy. Moreover, the absence of WBFH
results in an accuracy drop to 94.98%, highlighting its
effectiveness in addressing class imbalance by focusing more
on hard-to-classify samples. Thus, each component of the
SLiTRANet model synergistically contributes to superior
performance, demonstrating its technical superiority over
traditional methodologies in complex classification tasks.

J. PERFORMANCE COMPARISON ANALYSIS OF THE
PROPOSED MODEL WITH THE PRE-TRAINED CNN AND
HYBRID-CNN ARCHITECTURES
A performance comparison analysis was done between
the existing pre-trained CNN models and the proposed
Transformer model. We have implemented prominent
pre-trainedCNNmodels such asVGG16/19, ResNet101/152,
DenseNet121, etc. The findings demonstrated notable
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TABLE 8. Ablation study of SLiTRANet: Performance impact of removing layers.

TABLE 9. Performance comparison of transformer with existing CNN
models for classification.

improvements in precision and accuracy across a range
of models. The VGG16 model obtained 90.80% accuracy
and 88.87% precision, while the VGG19 model achieved
93.90% accuracy and 93.70% precision. ResNet101 achieved
even more progress, attaining a precision of 95.83% and
an accuracy of 95.91%. Surprisingly, ResNet152 revealed
significant enhancement with 98.95% accuracy and 98.90%
precision. DenseNet121 outperformed the competition,
achieving 99.04% accuracy and 99.60% sensitivity. But
the proposed Transformer model outscored them all, with
a precision and accuracy combination of 99.97% and
99.92% respectively. Numerous variables contribute to the
Transformer model’s superiority over current CNN models
in data classification applications. In processing data, where
spatial interactions are intricate and non-local, transformers
are indispensable for capturing long-range dependencies
inside sequences. Transformers’ second advantage is its
self-attention mechanism, which facilitates thorough feature
extraction and improves comprehension of the complex
patterns. Transformers are also very parallelizable, which
makes it possible to train them effectively on big datasets.
This is useful for jobs like data classification that demand
a lot of process power. Overall, the Transformer performs
better in this area due to its capacity to process vast amounts
of data, precisely model intricate spatial relationships, and
extract significant characteristics. These results highlight the
Transformer model’s effectiveness and highlight its potential
in dealing with challenging classification tasks. Table 9
summarizes the better classification results obtained by the
proposed and existing CNN models.

Furthermore, we have also compared three hybrid CNN
architectures, i.e., CNN-LSTM, CNN-GRU, and CNN-
BiGRU, with our proposed Transformer architecture in

Table 9. The Transformer model delivers remarkable results
with an accuracy of 99.92%, precision of 99.97%, speci-
ficity of 99.95%, and sensitivity of 99.90%. On the other
hand, CNN-LSTM, CNN-GRU, and CNN-BiGRU perform
marginally worse, with respective accuracy rates of 96.47%,
95.66%, and 95.86%. From here, we can conclude that the
proposed Transformer design architecture is quite appropriate
for capturing depression-related minute EEG features, result-
ing in high MDD detection accuracy as demonstrated by the
above analysis.

K. COMPARISON OF PROPOSED DEPRESSION
DETECTION FRAMEWORK WITH THE EXISTING METHODS
In this section, we have presented a comparative performance
analysis of the proposed approach with similar recent works
reported in the literature. In order to have a fair comparison,
we have chosen existing works evaluated on the same
dataset. Table 10 depicts the performance comparison among
different existing approaches for depression detection in
terms of precision, accuracy, sensitivity, and specificity.
With an accuracy of 99.92% and sensitivity, specificity,
and precision of 99.97%, 99.95%, and 99.90%, respectively,
our suggested model, which combines the S-Transform
with the LGCN-Transformer, outperforms all other existing
methods, demonstrating its better performance in depression
identification. Mumtaz et al. [2] have employed power and
symmetry features in conjunction with SVM to achieve
perfect specificity and 98.4% accuracy. By combining alpha
power, RWE, and MLPNN, Mahato and Paul [3] were able
to achieve 93.33% accuracy with a good sensitivity but a
lesser specificity. Non-linear characteristics were used with
RBFSVM by Sharma et al. [4] to achieve good accuracy and
balanced sensitivity and specificity. Similarly, Sharma et al.
achieved near-perfect accuracy as well as good sensitivity
and specificity by combining STFT with CNN-LSTM.
Aydemir et al. [7] used SVM to apply melamine patterns,
and while sensitivity was somewhat reduced, accuracy and
specificity were quite high. Wavelet coherence was used by
Khan et al. [8] to achieve reasonable accuracy with a balanced
sensitivity and specificity. By using 2D-CNN on asymmetric
pictures, Kang et al. [14] achieved excellent accuracy
while maintaining a balanced sensitivity and specificity.
A competitive performance was achieved by a CNN model
proposed by Loh et al. [15], whose MDD performance is
very close to our approach. The existing methods obtain
satisfactory performance however, remain marginally lower
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TABLE 10. Comparison table of our proposed architecture with the existing works.

than the depression detection performance obtained by the
proposed method.

V. CONCLUSION
This work proposed a smart IoMT-based end-to-end frame-
work for automated real-time MDD diagnosis and remote
monitoring. This research initiative seeks to advance the
field of IoMT-enabled smart healthcare systems for remote
monitoring of the mental state of a person through wearable
EEG headsets and cutting-edge deep learning approaches.
This work has proposed a method for depression identifica-
tion by integrating the S-transform with the modified Linear
Graph Convolution Network (LGCN) and Transformer-based
models. This method achieved significantly high depression
detection performance with 99.92% accuracy, 99.90% sensi-
tivity, 99.95% specificity, and 99.97% precision, highlighting
the effectiveness of the proposed framework. Compared
to other existing methods, such as LGCN combined
with traditional CNNs, the Stockwell Transform-modified
LGCN+Transformer architecture demonstrates its superior-
ity in capturing complex temporal and spatial correlations
within depression-related EEG data.

Future directions in depression detection include a wide
range of approaches targeted at improving the precision,
scalability, and usefulness of current techniques. Integrating
multimodal data sources, such as physiological signs, social
media activity, and EHRs, are possible future avenues.
Researchers can learn more about the intricate interac-
tions between biological, psychological, and environmental
components that contribute to depression by combining
these various data sources. The creation of interpretable
deep-learning models that can forecast depression and
shed light on the underlying processes causing depressive
symptoms is another area of future research. Methods like
explainable AI have the potential to clarify the key elements
that lead to the development and progression of depression.
Furthermore, developments in wearable sensor technology
have the potential for ongoing observation of behavioral
and physiological indicators linked to depression, facilitat-
ing early identification and customized therapies. Lastly,
developing predictive tactics and tailored interventions can

be aided by using longitudinal data and deep learning
approaches to find trends in the trajectory of depression
symptoms over time.
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