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A Novel Approach for State of Health Estimation 

and Remaining Useful Life Prediction of  

Supercapacitors Using an Improved  

Honey Badger Algorithm Assisted  

Hybrid Neural Network 

Zhenxiao Yi, Shi Wang, Zhaoting Li, Licheng Wang, and Kai Wang 

Abstract—Supercapacitors (SCs) are widely recognized 

as excellent clean energy storage devices. Accurate state of 

health (SOH) estimation and remaining useful life (RUL) 

prediction are essential for ensuring their safe and relia-

ble operation. This paper introduces a novel method for 

SOH estimation and RUL prediction, based on a hybrid 

neural network optimized by an improved honey badger 

algorithm (HBA). The method combines the advantages 

of convolutional neural network (CNN) and bidirectional 

long-short-term memory (BiLSTM) neural network. The 

HBA optimizes the hyperparameters of the hybrid neural 

network. The CNN automatically extracts deep features 

from time series data and reduces dimensionality, which 

are then used as input for the BiLSTM. Additionally, 

recurrent dropout is introduced in the recurrent layer to 

reduce overfitting and facilitate the learning process. This 

approach not only improves the accuracy of estimates and 

forecasts but also significantly reduces data processing 

time. SCs under different working conditions are used to  
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validate the proposed method. The results show that the 

proposed hybrid model effectively extracts features, en-

riches local details, and enhances global perception capa-

bilities. The proposed hybrid model outperforms single 

models, reducing the root mean square error to below 1%, 

and offers higher prediction accuracy and robustness 

compared to other methods. 

Index Terms—Supercapacitors, state of health, re-

maining useful life, honey badger algorithm, recurrent 

dropout. 

Ⅰ.   INTRODUCTION 

s the energy crisis and environmental pollution 

worsen, supercapacitors are increasingly adopted 

as new energy storage elements due to their high effi-

ciency, practicality, and environmental friendliness [1], 

[2]. Compared to conventional capacitors, supercapac-

itors have faster dynamic responses and larger capaci-

ties, enabling quicker charging and discharging [3][5]. 

This capability allows supercapacitors to provide higher 

power output within a short period. Unlike traditional 

batteries, supercapacitors offer high power density, fast 

charging and discharging, a wide operating temperature 

range, and a long service life [6], [7]. In hybrid energy 

storage systems, they are typically connected in series 

and parallel with batteries to reduce electrical stress 

fluctuations on the battery load, and to increase the 

voltage and current of the energy storage system [8], [9]. 

This configuration also enhances the overall energy 

efficiency of the energy storage system [10], [11]. 

However, due to microscopic differences in monomer 

structure parameters and application conditions, the 

service life of different supercapacitors varies signifi-

cantly. This can lead to problems such as uneven tem-

perature distribution and voltage imbalance in hybrid 

energy storage systems [12], [13]. These issues further 

affect the aging process of supercapacitors, compro-

mising the safety and reliability of the entire system. 

A 
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Accurately estimating the health status and predicting 

the remaining service life of supercapacitors constitute a 

critical area of research in supercapacitor technology 

[14]. These assessments are vital for developing 

maintenance and replacement plans and provide a reli-

able reference for preventing related accidents 

[15][17]. Therefore, accurate state of health (SOH) 

estimation and remaining useful life (RUL) prediction 

for supercapacitors are essential. 

SOH is a key indicator for evaluating the life of su-
percapacitors, representing their aging state from the 

beginning of life to the end of life (EOL) [18][20]. 
SOH is typically defined as the ratio of the current 

maximum capacity to the rated capacity of a superca-

pacitor. This study adopts the same definition for SOH. 

When its value falls below 80%, the supercapacitor is 

considered to have reached the EOL [21][23]. This 
threshold is also known as the supercapacitor lifetime 

failure threshold. Due to the phenomenon of capacity 
regeneration during the aging process of supercapacitors, 

evaluating their health condition solely based on SOH 

can lead to discrepancies, as supercapacitors may have 

the same remaining usable capacity and SOH but dif-

ferent points of RUL. Capacity regeneration can extend 
the lifespan of supercapacitors to some extent but does 

not imply a full restoration to their previous health level 

corresponding to the same SOH [24][27]. Therefore, 
relying solely on SOH for health assessment is insuffi-

cient for obtaining a comprehensive and accurate eval-

uation. Integrating the current SOH and RUL of super-
capacitors is necessary for a thorough diagnosis. How-

ever, commonly used methods often estimate only one 

of these indicators [28][31]. Thus, as a complement to 
SOH, this paper aims to predict RUL alongside SOH. 

RUL typically refers to the remaining number of charge 

and discharge cycles from the current state to EOL [32]. 

To predict RUL, the attenuation model is generally es-
tablished based on capacity data from supercapacitor 

aging experiments. There are currently two primary 

approaches to this: model-based and data-driven.  

The model-based approach is primarily defined by the 

internal aging mechanisms of the supercapacitor and the 

identification of parameters used to characterize its op-

eration. Currently, the dominant approaches include the 

Kalman filter (KF) and its derived algorithms. For ex-

ample, in [33], the extended Kalman filter (EKF) and the 

multiscale hybrid Kalman filter are used to estimate 

SOH. Similarly, in [34], an ensemble Kalman filter 

(EnKF) is employed to estimate the internal state of a 

Li-ion battery, yielding favorable results. In [35], parti-

cle filter (PF) algorithms are used to predict the RUL of 

supercapacitors with high accuracy based on aging 
conditions, as well as capacitance and resistance 

thresholds. Another study employs a multiscale ex-

tended Kalman filter and Gauss-Hermite particle filter to 

update the in-situ parameters of the capacity degradation 

model for final RUL prediction [36]. However, due to 

the complex internal characteristics of supercapacitors, 

such models often involve numerous mathematical 

equations and parametric variables, leading to draw-

backs such as complicated computational processes and 

difficulty in accounting for environmental factors. Ad-

ditionally, designing accelerated aging tests to collect 

effective offline training data is challenging, making 

these models difficult to apply effectively in practice.  

Data-driven approaches, particularly those based on 

neural networks, are currently a hot research topic [37]. 

These approaches offer advantages such as adaptability, 

flexibility, and speed, without requiring complex 

mechanisms. Among them, recurrent neural networks 

(RNNs), which use hidden neurons to add recurrent 

connections to effectively extract and update temporal 

data relevance, becoming an effective means of pro-

cessing such data [38][40]. However, simple RNNs 

suffer from the disadvantages of gradient vanishing and 

gradient explosion, making them less practical for tasks 

involving extended temporal dependencies. To address 

these issues, the long short-term memory (LSTM) neural 

network incorporates additional interactions within each 

module (or unit), thereby overcoming limitations related 

to temporal dependencies. Reference [41] uses enhanced 

LSTM to estimate the SOH of lithium-ion batteries, 

demonstrating good robustness and estimation accuracy. 

Reference [42] proposes a data-driven method based on 

a stochastic partial charging process and sparse Gaussian 

process regression (GPR), achieving high accuracy un-

der three different types of battery data. This method 

also shows the highest accuracy and reliability compared 

with other methods and is more suitable for practical 

applications. Reference [43] combines a fully connected 

layer and LSTM to accurately and efficiently estimate 

SOH, leveraging the complementary strengths of multi-

ple algorithms for improved results. Furthermore, the 

integration of LSTM networks with other methods has 

been shown to enhance estimation accuracy. Reference 

[44] proposes a battery capacity prediction method 

based on charging data and data-driven algorithms, 

which can effectively reduce the limitations of battery 

management systems in measurement and computing 

capabilities. A sequence-to-sequence model is used to 

predict future capacity trajectories and two residual 

models based on GPR are proposed to compensate for 

prediction errors caused by local capacity changes, 

achieving an error below 1.6% in predicting the re-

maining capacity sequence. Reference [45] proposes a 

deep learning integration method based on Bayesian 

model averaging (BMA) and LSTM to predict the RUL 

of lithium-ion batteries. The online iterative training 

strategy of the BMA algorithm is introduced to achieve 

superior prediction performance compared to offline 

training strategies. Furthermore, some studies use the 

bidirectional long-short-term memory (BiLSTM) model 
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to enable the output layer to receive time series infor-

mation from backward and forward, and the results show 

that the BiLSTM model provides a higher prediction 

accuracy. Reference [46] uses BiLSTM to establish a 

data-based model to predict supercapacitor RUL. By 

adding reverse recurrent layers, the capacity space is 

increased, and the prediction error is reduced. In the 

feature extraction stage, the one-dimensional convolu-

tional neural network (1D-CNN) model is used to au-

tomatically extract features based on the characteristics 

of the sequence data, which can capture more detailed 

information with minimal manual intervention, making 

it a current research hotspot. However, when dealing 

with long sequence data, CNN cannot capture the de-

pendencies between sequence information. Therefore, to 

address this shortcoming, it generally needs to be used 

with other neural networks. Reference [47] proposes a 

hybrid CNN-LSTM model to realize the prediction of 

battery RUL, which has excellent performance. Refer-

ence [48] realizes the estimation of battery SOH by 

constructing a CNN-LSTM fusion neural network and 

combining it with a gated recurrent unit (GRU). Com-

pared with traditional single models, the proposed com-

bination model has higher estimation accuracy. How-

ever, due to the simplified structure of GRU, its per-

formance in handling long time series data such as those 

from supercapacitors, is not as good as LSTM. Fur-

thermore, the combined model may face issues such as 

high computational complexity, complex structure, and 

difficulty in manual tuning. To sum up, LSTM is effec-

tive for learning long-term dependencies, while CNN 

can capture local and global correspondences, playing a 

crucial role in feature mapping. Since LSTM can only 

capture the unidirectional long-term and short-term 

characteristics of the input data, the BiLSTM model 

integrates forward and backward information, is more 

advantageous for long-term series data. 

However, most of the current algorithms are mainly 

applied to lithium batteries. Due to the differences in 

structure, composition, working principle, and applica-

tion conditions of supercapacitors, some methods ex-

hibit poor prediction accuracy or applicability when 

used on supercapacitors. To address the limitations that 

CNN and LSTM models can only capture local features 

and unidirectional long-term and short-term features, 

this paper combines the advantages of 1D-CNN and 

BiLSTM models, and innovatively proposes an im-

proved CNN-BiLSTM hybrid model. Using improved 

honey badger algorithm (HBA) to optimize the model 

overcomes the problems of high mathematical com-

plexity, strong model dependence, difficult parameter 

optimization, and low precision present in existing 
methods. While improving the estimation and predic-

tion accuracy, the time required for data processing is 

also greatly reduced. Therefore, the model can flexibly 

and robustly extract the long-term and short-term fea-

tures from complex data sets and the characteristics of 

time series data. 

The contributions to this research can be summarized 

as follows. 

1) The 1D-CNN demonstrates powerful feature ex-

traction capabilities, excelling at gathering local varia-

bles through convolutional operations and preserving all 

local clues as feature maps. By leveraging bidirectional 

information flow, BiLSTM captures correlations and 

long-term dependencies in sequences comprehensively. 

Therefore, the proposed model retains the structural and 

generalization advantages of both 1D-CNN and 

BiLSTM, enabling accurate and fast estimation and 

prediction of SOH and RUL for supercapacitors. The 

experimental results indicate significant potential of this 

approach. 

2) Introducing recurrent dropout and applying drop-
out in the recurrent layers reduce overfitting, thereby 

facilitating the learning process. 

3) By incorporating opposition-based learning (OBL), 

the honey badger optimization algorithm has been en-

hanced to possess a powerful global search capability, 
aiding in the discovery of the global optimal solution. 

By simulating adaptive behaviors observed during 

foraging processes, automatic adjustment of algorithm 

parameters is achieved. As a result, the proposed 
method exhibits higher robustness and scalability. 

4) The proposed hybrid model effectively leverages 

information present in observational data, making it 

applicable to supercapacitors under various operating 

conditions and demonstrating good generalization abil-
ities. Additionally, this method may provide valuable 

reference for health estimation of lithium-ion batteries. 

In this research, an innovative neural network archi-

tecture called HBA-CNN-BiLSTM is proposed. By 
combining local features based on 1D-CNN with global 

variables from the BiLSTM model and utilizing the 

advanced improved HBA intelligent optimization algo-

rithm to optimize and adjust the network’s hyperpa-

rameters, precise estimation and prediction of SOH and 
RUL for supercapacitors operating under different 

conditions are achieved.  

The rest of the paper is organized as follows. Section Ⅱ 

clarifies the rationale and structure of supercapacitor 
SOH estimation and RUL models. In Section Ⅲ, the 

supercapacitor aging test platform and its aging factors 

are introduced. Section Ⅳ presents the experimental 

results and error analysis for SOH estimation and RUL 

prediction. Section Ⅴ presents the conclusion. 

Ⅱ.   METHODOLOGIES 

This section examines the proposed methods for SOH 

estimation and RUL prediction for supercapacitors. The 

proposed HBA-CNN-BiLSTM model is introduced in 

detail. The main idea of this method is to use the HBA 

algorithm to optimize the hyperparameters of the 
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CNN-BiLSTM structure. Combining the advantages of 

1D-CNN and BiLSTM, recurrent dropout is used to 

prevent overfitting and improve the stability and 

learning efficiency of the network. It is worth noting 

that the proposed model is the first attempt at the ap-

plication of SOH estimation and RUL prediction of 

supercapacitors.  

A. One Dimensional Convolutional Neural Network 

CNN has an excellent ability to process multidimen-

sional data and has gained wide attention in the fields of 

image recognition, natural language processing, and 

time series classification [49], [50]. CNN with different 

dimensions is used to process different data to obtain 

better results [51]. Among them, 1D-CNN has out-

standing performance in processing one-dimensional 

time series data [52][54]. Since the experimental data 

of the supercapacitor is one-dimensional time series 

data, it is a reasonable choice to use 1D-CNN to extract 

and learn the relevant features in the input data. Based 

on the characteristic that the data has intrinsic depend-

ence between adjacent dimensions, 1D-CNN can use 

shared convolutional filters to extract the identification 

features of the data. Complex feature representations are 

extracted from the data using a convolutional layer in 

1D-CNN, a pooling layer is used to achieve dimen-

sionality reduction while maintaining relevant features, 

and a fully connected layer is used to obtain prediction 

results [55][57]. The activation function is rectified 

linear unit (ReLU), which is resilient to the gradient 

vanishing problem and can improve the trainability of 

the network [58]. Among others, the use of local con-

nectivity, shared weights, pooling, and multilayers 

constitute the key to the success of 1D-CNN. 

The 1D-CNN module is the first component of the 

proposed HBA-CNN-BiLSTM architecture. The de-
signed 1D-CNN consists of a one-dimensional convo-

lutional layer, batch normalization layer, ReLU layer, 

pooling layer, and a flatten layer. The convolutional 

layer extracts hidden information along the time di-
mension, generating a substantial number of useful 

convolutional features, which are then passed on to 

subsequent layers in higher quality and denser form. 

The batch normalization layer helps alleviate internal 

covariate shifts originating from the convolutional layer. 
The pooling layer compresses the convolutional fea-

tures, to some extent, to avoid overfitting. The ReLU 

activation function mitigates the gradient vanishing 

problem, making the network easier to train. Finally, the 
flatten layer transforms all the features into a vector 

format that meets the input requirements of BiLSTM, 

which feeds into the subsequent BiLSTM layers. 
To understand more easily how they work, their 

structure is schematically shown in Fig. 1(a). 

 

Fig. 1.  Schematic diagram of the internal structure of the network. (a) Schematic diagram of the structure of 1D-CNN. (b) Schematic 

diagram of the structure of BiLSTM. 
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B. BiLSTM Neural Network 

LSTM models are widely used for processing and 

predicting long time series data because of their 

memory function and their ability to easily learn 

long-term dependencies [59]. In the LSTM network, the 

forgetting gate is responsible for analyzing the infor-

mation of the memory cell and deciding whether to 

retain or forget the information; updating the state of the 

memory cell is handled by the input gate; and the output 

gate is responsible for controlling the output [60]. To 

solve the problem that the LSTM model only utilizes the 

past information of time series data, BiLSTM is pro-

posed, which integrates the forward and backward in-

formation based on the whole time series, and is more 

advantageous for long time series data. 1D-CNN au-

tomatically extracts effective features from time series 

data as input to the BiLSTM network, learns the im-

portant parts of the sequence seen so far, and forgets the 

unimportant parts. Thus, it can discover and synthesize 

the relationship between input and output sequences. 

The internal structure of BiLSTM is shown in Fig. 1(b). 

In the two-layer LSTM, the past sequence information 

is contained in the hidden layer in the forward time 

direction and the current sequence information is 

computed. The future sequence information is sent to 

the hidden layer in the reverse time direction, and the 

reverse sequence information is added to the computa-

tion. Finally, the output layer outputs the values deter-

mined by the two LSTM networks. The BiLSTM net-

work can obtain the final output by integrating the 

forward output results and the reverse output results. 

The principle of the reverse process is the same as that 

of the forward process, but the order is reversed. The 

symbol of the reverse process can be expressed by 

subscript b instead of f. And by adding a recurrent 

dropout layer, overfitting can be prevented, and the 

generalization ability of the module is improved. See 

[61] for more on BiLSTM. 

C. Honey Badger Algorithm 

The honey badger algorithm is a new intelligent opti-

mization algorithm. Research has shown the effective-

ness of HBA in solving complex search space optimiza-

tion problems. Compared with more than a dozen famous 

metaheuristic algorithms, HBA has a significant ad-

vantage in terms of convergence speed and explora-

tion-exploitation balance. The algorithm mainly conducts 

optimization by simulating the intelligent foraging be-

havior of honey badgers and has characteristics such as 

strong optimization ability and fast convergence speed. 

The overall candidate solution is shown in (1), and the 

number of candidate solutions is represented by P: 

11 1

1

D

n nD

x x

x x

 
 


 
  

P                            (1) 

where D represents the number of parameters to be 

optimized and n represents the number of candidate 

solutions. 

The ith position of the honey badger is denoted by ix . 

First, in the initialization stage, the parameters to be 

optimized are initialized according to: 

lb 1 ub lb( )
i i i

ix L r U L                        (2) 

where 1r is a random number between 0 and 1; while 

ubi
U  and 

lbi
L  are the upper and lower bounds of the 

search space, respectively. 

Then the intensity I is defined, iI  is the trend from 

the current value to the target value and is defined by: 

2 24
i

i

S
I r

d
 


                            (3) 

where 2r  is a random number between 0 and 1; S is 

source strength; id represents the difference between the 

target parameter and the ith parameter. And there are:  
2

1

prey

( )i i

i i

S x x

d x x


  


 

                         (4) 

where 
preyx  is the global optimal value of the ith pa-

rameter.  
The factor  , which decreases with the number of 

iterations, is updated by (5) to reduce the randomization 
over time and to ensure a smooth transition from ex-
ploration to exploitation. 

max

t

t

C



                              (5) 
where   is the density factor controlling the 

time-varying randomization; 1C≥ (default 2C = ); 

and maxt  is the maximum number of iterations. 

To avoid getting trapped in a local optimum region, a 

flag F that changes the search direction is used, thus 

enabling more opportunities for the agent to strictly 

scan the search space. 

 new prey prey 3 4 5cos(2 ) 1 cos(2 )ix x F Ix Fr d r r     

(6) 

where newx  is the updated value of
preyx , which is the 

optimal value; 1≥ (default 6 = ) represents the 

performance of the algorithm; 3r , 4r , 5r  are three ran-

dom numbers between 0 and 1; and there is: 

6  1,  0.5

1,  otherwise

r
F


 



≤
                       (7) 

where 6r  is a random number between 0 and 1.  

The second stage is the honey stage and the mathe-
matical expression is: 

new prey 7 ix x Fr d                         (8) 

where 7r  is a random number between 0 and 1.  

The detailed optimization process of HBA is shown 

in Fig. 2. 
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Fig. 2.  Schematic diagram of the optimization process using HBA. 

The CNN-BiLSTM model has many parameters that 
need to be adjusted, including learning rate, number of 

neural network layers, number of convolution layers, 

convolution kernel size, batch size, and maximum 

number of training epochs, etc. The improved HBA is 

used to optimize the hyperparameters of the model. The 
first stage is the initialization stage, which involves ini-

tializing the number N of candidate solutions and the 

parameters ix  to be optimized. Next, set the maximum 

number of iterations 
maxt , the parameter   that deter-

mines the search capability, and the constant C that af-

fects the smooth transition of the density factor. Since   

and C have a significant impact on HBA performance, 

these two parameters need to be set carefully [62]. As 

shown in Fig. 3(a), by comparing the fitness of HBA for 

  and C under different situations, the optimal param-

eter values are 6   and 2C   respectively. Then the 

candidate solution is obtained through the objective 

function and assigned a value, the optimal solution is 
saved and assigned a corresponding fitness value, the 

density factor is updated and the search intensity is cal-

culated. Then, determine the size of the parameter ir  

value, and use formulas (6) and (8) respectively to up-

date the candidate solutions. Within the maximum 

number of iterations, the objective function is further 
used to solve and assign values, and compared with the 
optimal solution, and updated to obtain the optimal so-

lution for the hyperparameters of the CNN-BiLSTM 

model. The improved HBA optimization algorithm can 

automatically search the hyperparameter space more 

efficiently and systematically explore high-performance 
hyperparameter combinations. Therefore, the introduc-

tion of the improved HBA optimization algorithm fur-

ther improves training efficiency. The changes in each 

optimized parameter are shown in Fig. 3(b), At the same 

time, combined with the final experimental results, it can 
be seen that the improved HBA optimization algorithm 

further improves the prediction accuracy and matching 

degree of the model by optimizing the hyperparameters 

of the proposed model. 

 

 
Fig. 3.  (a) HBA fitness to parameters β and C. (b) Parameter 

tuning process under HBA. 

D. Opposition Based Learning 

OBL is a learning method that utilizes opposition 

between objects. In metaheuristic algorithms, opposing 

candidate solutions are obtained in the search space. 

The main objective of this method is to make the initial 

random solution more similar to the ideal solution. 

Randomly generating a solution often leads to ineffi-

cient exploration patterns that revisit regions in the 

search space that are not promising. OBL considers both 

a candidate solution and its opposite solution at the 
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same time. Experimental results show that if no prior 

knowledge is used to optimize the problem, an opposite 

candidate solution has a higher chance of reaching the 

global optimum than a random solution. Therefore, 

introducing a random solution and its corresponding 

opposite solution is more promising than introducing 

two independent randomly generated solutions. 

Suppose y is a real number in range [a, b], the oppo-

site point of y denoted as y  is defined as follows:  

y a b y                          (9) 
If opposite numbers are defined in n dimensions, 

the concept of opposite point can be generalized to 
n-dimensional space, where 2.n≥  Given an 

n-dimensional vector  1 2, , , ny y yΓ  with iy   

 ,i ia b , where 1,2, , .i n   1 2, , , n  A  and 

 1 2, , , nb b bB  are two boundary vectors. The oppo-

site vector of Γ  is defined as  1 2, , , ny y yΓ , i.e., 

  Γ A B Γ                        (10) 

where   i i i iy a b y , and iy is real numbers between 

ia  and ib . 

HBA combined with OBL is used to converge to the 

best solution in the search space and allows scanning of 

the search space from different directions. As shown in 

Fig. 4, the boundary of the search space for the problem 

changes according to the fitness values of the random and 

opposite candidate solutions in OBL. By jumping to 

different parts of the search space in HBA-OBL, getting 

stuck in local optima can be avoided. OBL can be 

adapted to different task requirements by adjusting the 

loss function, while HBA can accelerate the update pro-

cess of the loss function. At the same time, OBL can help 

the model better distinguish between positive and nega-

tive samples, and HBA can speed up the training process. 

Combining these two algorithms can realize a more flexi-

ble and effective loss function design, which can enable 

the model to converge faster to the optimal solution. 

 

Fig. 4.  Schematic diagram of the optimization process using 

improved HBA. 

E. Recurrent Dropout 

Dropout is a classical technique for reducing overfit-

ting by randomly setting some input cells of a layer to 

zero, thereby breaking spurious correlations within the 

data of that layer. How to use dropout properly in re-

current networks is a key issue. Reference [63] proposes 
a correct method of using dropout in recurrent neural 

networks for the first time: a consistent dropout mask 

(same pattern of dropped units) should be used for each 

time step. Specifically, the non-time-varying dropout 
mask should be applied to the internal recurrent activa-

tions of the layer (called a recurrent dropout mask). 

Classic dropout is located between the input and hidden 

layers, controlling the dropout rate of neurons in the 

input linear transformation. Recurrent dropout is be-
tween hidden layers, controlling the dropout rate of 

neurons in the linear transformation of the recurrent 

state. The principle and schematic diagram of its 

structure is shown in Fig. 5. This allows the network to 
propagate its learning error correctly over time without 

corrupting the error signal, thereby preventing overfit-

ting and facilitating the learning process. 

 
Fig. 5.  The schematic diagram above illustrates. (a) the standard 

dropout. (b) the recurrent dropout structures. 

In Fig. 5, each circle represents an LSTM unit, and 

the horizontal arrows represent time dependencies (cy-

clic connections). Vertical arrows indicate inputs and 

outputs. Colored connections represent dropped inputs, 

and different colors correspond to different dropout 

masks. The dashed line corresponds to a standard con-

nection with no dropout on the cyclic layer, while the 

recurrent dropout uses the same dropout mask at each 

time step, including the cyclic layer. 

F. HBA-CNN-BiLSTM Hybrid Neural Network 

A well-designed combinatorial neural network can 

leverage the unique strengths of each component net-

work, allowing them to complement each other. 

Therefore, we propose an improved CNN-BiLSTM 
combined network, where the CNN analyzes the time 

series data in the input model and its output serves as the 

input of the BiLSTM. The CNN identifies and extracts 
the desired features during the training phase, and the 
BiLSTM determines the information that needs to be 

analyzed and stored. CNN possesses powerful feature 

extraction capabilities, excelling in collecting local 
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variables through convolution operations and preserv-

ing all local clues as feature maps. BiLSTM compre-
hensively captures the correlations and long-term de-

pendencies within a sequence by leveraging bidirec-

tional information flow. The improved HBA optimiza-

tion algorithm can automatically search the hyperpa-

rameter space more efficiently and systematically ex-
plore high-performance hyperparameter combinations, 

further improving training efficiency and reducing the 

overall processing time of the model’s time series data. 

At the same time, the improved HBA is used to optimize 
the hyperparameters of the network, further enhancing 

the robustness and scalability of the model. Therefore, 

the proposed model not only extracts features and en-

riches local details but also enhances the global per-

ception capability of the model. 

In the process of estimating the SOH and predicting 

the RUL of supercapacitors, the preprocessed raw data 

of the supercapacitors serves as the input feature varia-

bles for the model. The output observation dataset used 

to construct the model consists of a series of available 

capacities of the supercapacitors. First, a flexible su-

percapacitor degradation state space model is estab-

lished using the proposed algorithm for SOH estimation. 

Then, the relationship between the cycle count and the 

feature variables extracted by CNN is reconstructed, 

and the feature variables are updated and inputted into 

the proposed model. The degradation features of the 

supercapacitor are continuously updated, and the failure 

time point is obtained from the performance degrada-

tion curve by setting a degradation threshold. The re-

maining useful life prediction result is obtained by in-

ferring the time interval between the existing degrada-

tion amount and the degradation threshold through the 

model. Finally, the robustness and reliability of the 

proposed framework are validated using datasets from 

different operating conditions and cycle counts. It is 

important to note that the model needs to be trained in 

advance to enable online prediction of the health con-

dition of the supercapacitor. The improved 

HBA-CNN-BiLSTM model is proposed in this paper, 

which the structure as shown in Fig. 6. 

 

Fig. 6.  The flowchart of improved HBA-CNN-BiLSTM for SOH estimation and RUL prediction. 

Ⅲ.   SUPERCAPACITOR AGING TEST AND ANALYSIS 

A. Hardware System for Aging Test Experiments 

The supercapacitor aging state testing system consists 

of three main components: the testing system, the upper 
computer, and the high and low temperature chamber. 
Due to the influence of temperature, voltage, and fre-
quency on supercapacitors, the supercapacitor capaci-
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tors are chosen to be measured under the same envi-
ronment respectively to ensure the consistency of pa-
rameter measurement standards. 

The testing system utilized is the REPOWER 

HRCDS-5 V, which is capable of discharging super-

capacitors using constant current (CC), constant voltage 

(CV), and constant power (CP) modes. This system 

boasts a variety of built-in test modes, including CC-CV, 

CC, and CP charging-discharging tests, capacitance 

measurements, and direct current resistance tests spe-

cifically designed for supercapacitors. Each testing 

mode undergoes step transitions based on the set time, 

voltage, current, or power conditions. The data collec-

tion includes feedback on testing steps, status, voltage, 

current, capacitance, and other data. There are also 

various flexible sampling options available, which can 

be determined based on time, voltage, current, or ca-

pacitance conditions. The CPU model of the upper 

computer is Intel i7-11700, which is used to store and 

process the data; the high and low-temperature chamber 

is used to provide a specific temperature environment 

for the aging state test of the supercapacitor. The 

TIGSTOR supercapacitor, model TIG-1W160P010R01, 

was selected for this experiment. The capacity of the 

supercapacitor is 10 F, the rated voltage is 2.7 V, and 

the operating temperature range is [40℃, 70℃]. 

Charge the supercapacitor in a constant current mode of 

3 A until the voltage reaches 2.7 V, then continue 

charging in a constant voltage mode. Perform multiple 

charge and discharge tests at different temperatures and 

voltages, maintaining a discharge depth of 50%. Con-

duct these tests in the same environment without taking 

vibration into consideration, repeating the cycles hun-

dreds of thousands of times. We arranged and combined 

four different voltage and temperature conditions, and 

selected four supercapacitors under each condition to 

observe their aging trends. Consequently, we collected 

aging experimental data for a total of 64 supercapacitors. 

Table I presents one set of cyclic test conditions for the 

supercapacitors under the four different voltage and 

temperature conditions. The test platform is shown in 

Fig. 7(a). 

 

Fig. 7.  Supercapacitor aging test experiment. (a) Supercapacitor aging test system (supercapacitor charging/discharging with CC-CV 

charging protocol at different temperatures and voltages). (b) Schematic diagram of the experimental procedure. (c) Capacity degra-

dation trajectory of supercapacitor with an increasing number of cycles at 25°C, 50°C, 65°C, and 80°C. (d) Capacity degradation 

trajectory of supercapacitor at 2.7 V, 2.9 V, 3.1 V, and 3.2 V capacitors with increasing cycle times. 
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TABLE I 

CYCLIC TEST CONDITIONS OF SUPER CAPACITORS 

Supercapacitor number Voltage (V) Temperature (℃) 

SC 1 3.2 25 

SC 2 3.2 50 

SC 3 2.9 80 

SC 4 2.7 25 

SC 5 3.2 80 

SC 6 2.7 80 

SC 7 2.7 50 

SC 8 3.1 25 

SC 9 3.1 50 

SC 10 3.1 65 

SC 11 2.9 65 

SC 12 3.1 80 

SC 13 

SC 14 

SC 15 

SC 16 

3.2 

2.7 

2.9 

2.9 

65 

65 

25 

50 

B. Aging Characteristics Analysis 

In this experiment, the supercapacitor was cyclically 

charged and discharged under different temperature and 

voltage conditions using the CC-CV charging protocol, 

and the experimental process is shown in Fig. 7(b). The 

aging trends of the capacitors under different tempera-

ture and voltage conditions were analyzed, and the re-

sults are shown in Fig. 7(c) and Fig. 7(d). The results 

reveal that the aging rate of the supercapacitor is closely 

related to temperature and voltage, and the aging ac-

celerates as the temperature increases. This is because 

the movement of ions in the electrolyte and various 

reactions occurring on the electrode surface are affected 

by the temperature. Meanwhile, supercapacitors cannot 

operate at overvoltage for a long time. 

The degradation trend of capacity is similar at dif-

ferent voltages and temperatures, i.e., the SOH of the 

supercapacitor follows a similar change pattern. 

Therefore, the method proposed in this paper applies to 

SOH estimation and RUL prediction of supercapacitors 

under different operating environments. 

Ⅳ.   EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present the results of SOH esti-

mation and RUL prediction of supercapacitors using 

LSTM, BiLSTM, CNN-BiLSTM, and HBA-CNN- 

BiLSTM models. The initial parameters of the CNN 

network are filters of 32, kernel_size of 3, strides of 1, 

activation is ‘ReLU’, the pool_size in MaxPooling1D is 

3, the number of hidden layer cells in BiLSTM is 32, 

dropout is 0.1, recurrent_dropout is 0.5, the initial value 

of learning rate is 0.01. The training time is calculated 

by the time. time function in Python Time Library. The 

offline data of the supercapacitor is divided into training 

and test sets, which are 70% and 30%, respectively. To 

demonstrate the generalization capability of this model, 

two datasets, SC 14 and SC 15, at different temperatures 

and voltages, were randomly selected for validation and 

error analysis, and the metrics root mean square error 

(RMSE), mean absolute error (MAE), 2R , absolute 

error (AE), and relative error (RE) were used to measure 

the performance of the model. 

A. Evaluation Metrics 

RMSEe  (the value of RMSE) is used to represent the 

statistical value that causes the deviation from the mean 

to be too large or too small. The magnitude of 
RMSEe  

represents the average difference between the predicted 
and true values, and the smaller the value, the more 
accurate the model and the more stable the model. The 
calculation formula is as follows: 

2

RMSE

1

1
ˆ( )

N

n n

n

e y y
N 

                  (11) 

MAEe  (the value of MAE) can suppress the problem of 

errors canceling each other out by taking the average of 

the absolute errors between the predicted and true values. 

It provides a clear reflection of the actual situation of the 

predicted value errors: the smaller its value, the higher the 

model’s accuracy. The calculation formula is as follows: 

MAE

1

1
ˆ

N

n n

n

e y y
N 

                    (12) 

The 2R  coefficient of determination is a visual rep-
resentation of the correlation between the model and the 

true value. The higher the value of the 2R  coefficient of 

determination, the more accurate the model is. If 2 1R  , 
it means that the model predicts the true value exactly 
correctly and all observations fall on the regression line. 

2 0R   means that the model predicts the true value with 

poor accuracy. 2 0R ＜  means that there is a lack of 

linear correlation between the data. It is widely used in 
model prediction evaluation because it has no magnitude 
problem and compensates for the defect that prediction 
cannot be made due to the presence of several 0 values in 
the data. The calculation formula is as follows: 

2

2 1

2

1

ˆ( )
1

( )

N

n nn

N

n nn

y y
R

y y






 






                   (13) 

where ny  represents the true value; ˆ
ny  represents the 

predicted value; and ny  represents the arithmetic mean 

of the dependent variable in the original data set. In this 

paper, RMSEe , MAEe  and 2R  are used as performance 

metrics for estimation and prediction accuracy. 
The accuracy of the supercapacitor RUL prediction at 

a specific capacity threshold can be represented by the 
difference between the actual and predicted number of 

cycles. Therefore, we introduce AEe  and REe  (the val-

ues of AE and RE) for evaluation. 

re prAE RUL RULe e e                       (14) 
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re pr

re

RUL RUL

RE

RUL

100%
e e

e
e


                (15) 

where 
reRULe denotes the actual value and 

reRULe denotes 

the predicted value. 

B. The Estimation Results and Analysis of SOH 

In this study, experimental data from supercapacitors 
under different operating conditions were randomly 
used to train the LSTM, BiLSTM, CNN BiLSTM, and 
HBA-CNN-BiLSTM models to predict the capacity and 
further determine the SOH values of the supercapacitors. 

The first 70% of the supercapacitor dataset was allo-
cated for offline training of the models, while the re-
maining dataset was used for online testing. To com-
prehensively evaluate the robustness and effectiveness 
of the models, all methods employed the same offline 
training strategy, thus enabling a comprehensive as-
sessment of the models’ robustness and effectiveness. 

RMSEe  and MAEe  are the evaluation indexes of accuracy, 

and the 2R  decision coefficient is used to reflect the 
correlation between the model and the real values. The 
experimental results are shown in Fig. 8, and the spe-
cific error values are presented in Table Ⅱ. 

TABLE Ⅱ 

SC 4 (2.7 V, 3 A, 25°C) SUPERCAPACITOR STATE OF HEALTH AND REMAINING USEFUL LIFE PREDICTION RESULTS 

Method RMSEe  
MAEe  2R  

RULree  (×105) RULpre  (×105) 
AEe  (×103) 

REe  (%) 

LSTM 0.0297 0.0255 0.9761 2.227 2.16 6.7 3.009 

BiLSTM 0.0261 0.0235 0.9864 2.227 2.17 5.7 2.5594 

CNN-BiLSTM 0.0238 0.0207 0.9894 2.227 2.19 3.7 1.6614 

HBA-CNN-BiLSTM 0.0149 0.0121 0.9943 2.227 2.22 0.7 0.3143 
 

 

 
Fig. 8.  Comparison of SOH estimation results for SC 4 super-

capacitor (2.7 V, 3 A, 25°C) for four different methods. (a) SOH 
estimation result. (b) SOH estimation error. 

As can be seen from Fig. 8, the LSTM, BiLSTM, 
CNN-BiLSTM, and HBA-CNN-BiLSTM models all 

have good fits for the capacity decay curve of super-

capacitors. 

In comparison, the proposed HBA-CNN-BiLSTM 
model can better fit the overall trend of the superca-
pacitor aging curve. This is because the hybrid neural 
network can fully utilize the unique advantages of each 
network, and thus has higher prediction stability and 
accuracy. The hybrid neural network optimized by the 
improved HBA algorithm has the highest estimation 

accuracy, with RMSEe  of 0.0149, MAEe  of 0.0121, and 
2R  of 0.9943. Compared with the network not opti-

mized by the improved HBA algorithm, RMSEe , and 

MAEe  are reduced by 0.0089 and 0.0086, respectively. 

At the same time, the improved 2R  value further proves 
the superiority of the model. To verify the generalization 
ability of the model, we randomly selected an untrained 
supercapacitor dataset under two different temperature 
and voltage operating conditions. The experimental 
results are shown in Figs. 9(a) and (b), and the specific 
error values are presented in Tables Ⅲ and Ⅳ. To fur-
ther evaluate the models, Figs. 9(c) and (d) respectively 
display the boxplots of the prediction errors and the 
distribution of the errors. Taking all factors into account, 
the proposed models exhibit smaller prediction errors 
and better prediction performance. 
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Fig. 9.  SOH estimation results and errors of supercapacitor under 

different methods. (a) SC 14 (2.7 V, 3A, 65℃). (b) SC 15 (2.9 V, 

3 A, 25℃). (c) Boxplot analysis of the prediction errors for the 

four models under SC 14 experimental data. (d) Analysis of the 

distribution of prediction errors for the four models under SC 14 

experimental data. (e) Boxplot analysis of the prediction errors 

for the four models under SC 15 experimental data. (f) Analysis 

of the distribution of prediction errors for the four models under 

SC 15 experimental data. 

Although each model has different performances for 

supercapacitors under different working conditions, our 

proposed HBA-CNN-BiLSTM hybrid neural network 

model consistently achieves better accuracy. 

In addition, the training time can reflect the training 

and prediction efficiency of the model. The training 

time of the proposed model is 20.5% lower than that of 

the BiLSTM model. BiLSTM processes time series data 

sequentially, while CNN, due to its intrinsic convolu-

tional nature, can perform parallel computations. This 

parallel computation enables faster processing of time 

series data, thereby expediting the training process. The 

initial feature extraction accomplished by CNN reduces 

the input dimensionality for subsequent BiLSTM layers, 

resulting in higher computational efficiency. Further-

more, the subsequent BiLSTM layers can focus on 

capturing long-range dependencies and higher-level 

temporal representations, enabling BiLSTM to handle 

more concise and information-rich input data, thus en-

hancing training efficiency. The introduction of the 

improved HBA optimization algorithm eliminates the 

manual trial-and-error process of adjusting hyperpa-

rameters, allowing for a more efficient automatic search 

of the hyperparameter space and systematic exploration 

of high-performance hyperparameter combinations. 

Therefore, the introduction of the improved HBA op-

timization algorithm further improves training effi-

ciency and reduces the overall processing time of time 

series data by the neural network model. This is of great 

significance for the health detection of supercapacitors 

and better promotion of applications. The SOH estima-

tion results show that the HBA-CNN-BiLSTM model is 

effective and robust, providing a solid foundation for 

predicting the supercapacitor RUL. 

C. The Prediction Results and Analysis of RUL 

Accurately predicting the RUL of supercapacitors is 

crucial for predictive maintenance. It determines the 

number of remaining available charge/discharge cy-

cles before performance degrades to an unacceptable 

level, and guides proactive replacement to avoid fail-

ures. This prediction also helps to maximize the 

lifespan of supercapacitors by indicating when to take 

appropriate measures. When the capacity value or 

SOH reaches the failure threshold, the estimated 

number of charge/discharge cycles marks the end of 

RUL prediction for that supercapacitor. The RUL 

prediction results are shown in Fig. 10, and the specific 

error values are presented in Table Ⅱ. 

To validate the generalization capability of the model 

for RUL prediction, two randomly selected untrained 

supercapacitors were tested under different temperature 

and voltage conditions. The experimental results are 

shown in Fig. 11, and the specific error values are pre-

sented in Table Ⅲ and Table Ⅳ. By comparing the RE 

values in the tables, it can be observed that the proposed 

model also demonstrates high robustness in the RUL 

prediction of supercapacitors, with RE values of 0.3193 

and 0.3271 respectively, which are excellent for su-

percapacitors with tens of thousands of cycles or more. 

This robustness is attributed to the model’s high relia-

bility in estimating SOH. Therefore, we can infer that 

accurate capacity prediction holds significant im-
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portance and precise SOH estimation serves as a crucial 

foundation for accurate RUL prediction. 

 

Fig. 10.  Predicted supercapacitor degradation data for SC4 (2.7 V, 

3 A, 25°C) under different methods. 

 

 

 

 
Fig. 11.  Predicted results and errors of supercapacitor degradation 

data for SC 14 (2.7 V, 3 A, 65°C) and SC 15 (2.9 V, 3 A, 25°C) 

under different methods. (a) and (b) SC14 (2.7 V, 3 A, 65°C). (c) 

and (d) SC 15 (2.9 V, 3A, 25°C). 

The above experimental results indicate that the pro-

posed method is applicable to supercapacitors under 

different operating conditions, and the HBA-CNN- 

BiLSTM shows high robustness in both SOH estimation 

and RUL prediction. Since the supercapacitor data under 

this condition are not trained, the initial prediction error is 

relatively large. Moreover, LSTM has certain limitations 

when dealing with long-term sequence problems and 

unresolved gradient issues. Therefore, there are still cer-

tain deficiencies in the prediction of large-scale data such 

as supercapacitors. For SC 15 with large data samples, 

the proposed model demonstrates significant advantages 

over LSTM and BiLSTM. When the failure threshold is 

reached, the RE between the prediction and the true value 

is only 0.3271%, outperforming the other three methods.  

TABLE Ⅲ 

SC 14 (2.7 V, 3 A, 65℃) SUPERCAPACITOR STATE OF HEALTH AND REMAINING USEFUL LIFE PREDICTION RESULTS 

Method RMSEe  
MAEe  2R  

RULree  (×105) RULpre  (×105) 
AEe  (×103) 

REe  (%) 

LSTM 0.0292 0.0245 0.9781 2.543 2.6251 8.21 3.2284 

BiLSTM 0.0271 0.0239 0.9874 2.543 2.48537 5.763 2.2662 

CNN-BiLSTM 0.0235 0.0207 0.9894 2.543 2.58121 3.821 1.5026 

HBA-CNN-BiLSTM 0.0163 0.0132 0.9986 2.543 2.53488 0.812 0.3193 
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TABLE Ⅳ 

SC 15 (2.9 V, 3 A, 25℃) SUPERCAPACITOR STATE OF HEALTH AND REMAINING USEFUL LIFE PREDICTION RESULTS 

Method RMSEe  
MAEe  2R  

RULree  (×105) RULpre  (×105) 
AEe  (×103) 

REe  (%) 

LSTM 0.0296 0.0251 0.9783 4.83 5.213 38.3 7.9296 

BiLSTM 0.0261 0.0225 0.9878 4.83 4.512 38.1 6.5838 

CNN-BiLSTM 0.0228 0.0201 0.9934 4.83 4.757 7.3 1.511 

HBA-CNN-BiLSTM 0.0168 0.0131 0.9983 4.83 4.8142 1.58 0.3271 

Table Ⅴ provides a comparative analysis between the 

proposed method and other recently published methods. 

The comparison of RMSE values highlights the supe-

riority of the proposed method over the others. The 

proposed model exhibits higher prediction accuracy 

under different operating conditions. This is because, in 

the hybrid model, CNN effectively reduces data scale 

and filters inputs to extract significant features, thereby 

comprehensively capturing local and relevant infor-

mation. As a result, it achieves high prediction accuracy 

even on untrained datasets. The model further benefits 

from improved HBA optimization for its hyperparam-

eters, which enhances optimization capabilities and 

ensures fast convergence.  

TABLE Ⅴ 

COMPARISON OF RECENT PUBLICATIONS WITH OUR PROPOSED 

METHOD 

Methods Refs. Metric Error 

HHO-LSTM [3] RMSE 0.0301 

TCN [4] RMSE 0.0270 

Mixers-BTCN [13] RMSE 0.0248 

SSA-Elman [19] RMSE 0.0295 

LSTM-DA [45] RMSE 0.0222 

BMA-LSTMN [49] RMSE 0.0324 

BiLSTM [50] RMSE 0.0297 

HBA-CNN-BiLSTM 
Proposed in this 

paper 
RMSE 0.0163 

Randomly selecting untrained supercapacitors SC 42, 

we tested the RUL prediction performance of various 

models under different starting points. The results of 

RUL prediction based on four different models from 

various starting points are shown in Fig. 12. It can be 

observed that the proposed method demonstrates satis-

factory robustness for RUL prediction on a dataset with 

random starting points. As the starting point values 

increase, the accuracy of predictions from all models 

improves. This is because the degradation trend of su-

percapacitors is more pronounced in the initial stage 

compared to the later stages. Therefore, as the random 

starting point value increases, the accuracy of predic-

tions also increases accordingly. 

With the continuous development of electronic 

technology, in the future electrical and electronic ar-

chitecture, the data processing and algorithm computa-

tion functions of the supercapacitor management system 
(SMS) will be transferred to domain processors, which 

have more powerful computational capabilities. This 

will provide opportunities for the practical application 

of neural networks. Therefore, a comprehensive per-

formance analysis of the above methods is conducted, 

and evaluation metrics include FLOPs, parameters, 

training time, and storage size. FLOPs are used to 

measure computational complexity, and parameters 

indirectly affect the model’s storage size. The storage 

size is calculated using the os.path.getsize function. 

Training time represents the training efficiency of the 

model and is measured using the time.time function. 

Table Ⅵ presents the aforementioned parameters for 

each model. The proposed model has lower time com-

plexity. CNN can reduce data dimensions while ex-

tracting effective features, thereby reducing memory 

consumption and possessing higher robustness and 

generalization ability. Compared to other models, the 

proposed model does not have an advantage in terms of 

storage size. However, in practical applications, model 

accuracy and robustness should also be considered. 

With the continuous development and progress of pro-

cessors, a reasonable balance needs to be struck based 

on specific practical application scenarios. 
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Fig. 12.  The RUL prediction results of each model under random 

starting points for SC 42 (2.9 V, 3 A, 25°C). (a) HBA-CNN- 

BiLSTM. (b) CNN-BiLSTM. (c) BiLSTM. (d) LSTM. 

TABLE Ⅵ 

COMPREHENSIVE EVALUATION OF THE PROPOSED METHOD 

Methods 

Performance index 

FLOPs 

(×106) 

Parameters 

(×106) 

Training 

time (s) 

Storage 

size (kB) 

HBA-CNN- 

BiLSTM 
1.231 0.0258 252 2412 

CNN-BiLSTM 1.203 0.0241 316 2136 

BiLSTM 0.681 0.0075 354 976 

LSTM 0.604 0.0045 301 762 

Ⅴ.   CONCLUSION 

This research presents a novel HBA-CNN-BiLSTM 

method that utilizes an improved HBA optimization to 

estimate and predict the SOH and RUL of supercapac-

itors. The method combines the architectures of hybrid 

CNN and BiLSTM networks to address the limitations 

of capturing only local features and unidirectional 

temporal features in CNN and LSTM models, respec-

tively. The improved HBA optimizes the hyperparam-

eters of the hybrid network, enhancing model conver-

gence speed and reliability. Recurrent dropout is in-

troduced to prevent overfitting and enable the network 

to propagate its learning errors over time without dis-

rupting the error signals, thereby promoting the learning 

process. Different datasets of supercapacitors under 

various operating conditions were used to test the per-

formance of various models, while untrained data of 

supercapacitors at different cycle starting points were 

utilized to verify the generalization ability of the models. 

The results demonstrate that the proposed model out-

performs the other three models in terms of lower error, 

higher robustness, as well as better training and predic-

tion efficiency. Therefore, it has the potential for further 

research and development. While the proposed model 

has advantages in prediction accuracy and efficiency, it 

exhibits higher complexity and storage size than LSTM, 

resulting in a greater computational burden. However, 

with the continuous development of electronic tech-

nology, future domain processors will have more pow-

erful computational capabilities, facilitating the practi-

cal application of neural networks. Compared to the 

other three popular algorithms, this hybrid approach has 

better performance in handling non-smooth and non-

linear time series. The impact of adding convolutional 

layers is significant for large databases, and the data 

processing time of the hybrid model is much shorter 

than that of the BiLSTM network. The experimental 

results provide sufficient evidence for the effectiveness 

of the proposed method compared to others. 

In future work, it is worth further investigating how 

to reduce the computational burden, improve model 

convergence speed, and decrease training time while 

enhancing prediction accuracy and efficiency. Addi-

tionally, compared to lithium-ion batteries, there is a 

scarcity of publicly available datasets for supercapaci-

tors, and further research is needed to fill this gap. The 

model proposed in this study has advantages in handling 

time series problems and can potentially be applied to 

other similar fields. 
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