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Visual Rotated Position Encoding Transformer for
Remote Sensing Image Captioning

Anli Liu , Lingwu Meng , and Liang Xiao , Senior Member, IEEE

Abstract—Remote sensing image captioning (RSIC) is a crucial
task in interpreting remote sensing images (RSIs), as it involves
describing their content using clear and precise natural language.
However, the RSIC encounters difficulties due to the intricate
structure and distinctive features of the images, such as the issue
of rotational ambiguity. The existence of visually alike objects
or areas can result in misidentification. In addition, prioritizing
groups of objects with strong relational ties during the captioning
process poses a significant challenge. To address these challenges,
we propose the visual rotated position encoding transformer for
RSIC. First of all, rotation-invariant features and global features
are extracted using a multilevel feature extraction (MFE) module.
To focus on closely related rotated objects, we design a visual
rotated position encoding module, which is incorporated into the
transformer encoder to model directional relationships between
objects. To distinguish similar features and guide caption genera-
tion, we propose a feature enhancement fusion module consisting of
feature enhancement and feature fusion. The feature enhancement
component adopts a self-attention mechanism to construct fully
connected graphs for object features. The feature fusion component
integrates global features and word vectors to guide the caption
generation process. In addition, we construct an RSI rotated object
detection dataset RSIC-ROD and pretrain a rotated object detec-
tor. The proposed method demonstrates significant performance
improvements on four datasets, showcasing enhanced capabilities
in preserving descriptive details, distinguishing similar objects, and
accurately capturing object relationships.

Index Terms—Image captioning, remote sensing, transformer,
visual position encoding.

I. INTRODUCTION

THE widespread availability of remote sensing technology
has led to a growing focus on applications based on RSIs,

including object segmentation [1], detection [2], and classifi-
cation tasks [3], [4]. However, as the demand increases and
new application scenarios are explored, these applications find
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it difficult to fully convey the semantic and content information
of images [5].

In recent years, there has been significant progress in natural
image captioning task, aiming to describe the visual content of
images in natural language. This has inspired scholars to focus
on RSIC task and achieved initial success.

Compared to natural images obtained from horizontal shoot-
ing, the RSIs obtained from top-down perspective have more
complex scenes and objects. This poses the following challenges
for RSIC.

1) The rotation ambiguity problem [13] in RSIs leads to the
unclear of object orientation, making it difficult to obtain
accurate semantic information.

2) The abundance of objects in RSIs poses a challenge in
describing closely related groups of objects [38], [44].
For example, “ship,” “port,” and “ocean” have close con-
ceptual and spatial relationships. Likewise, “building,”
“road,” and “car” is also close. In contrast, objects like
“ship” and “road” are not related.

3) The presence of visually similar objects or regions can
potentially cause misidentification by the model, leading
to inaccurate and inconsistent captions [44].

Moreover, detailed captions often depend on high-level vo-
cabulary and structural information embedded in global image
features. To mitigate these challenges, most methods [9], [10],
[11], [12], [13], [14] extract image features from the last con-
volutional layer of a CNN [19]. However, these methods are
unable to model fine-grained semantic relationships, resulting
in low-quality sentences. Some methods [63] consider the mul-
tiscale problems, and there are also methods [64] that attempt to
address these challenges by incorporating image segmentation.
Recently, object-based methods [44] have demonstrated their
potential on RSIC.

In this article, we propose a method to overcome these
challenges by exploring the guiding role of global features in
the process of generating descriptions from object features in
RSIs, and relationships among rotated objects. First, we extract
object-level rotation-invariant features with their corresponding
position and orientation information and extract global fea-
tures in multilevel feature extraction (MFE) module. Existing
rotated object detection datasets have fewer classes, which is
significantly different from the object classes in RSIC tasks.
To accurately extract rotated object features for RSIC datasets,
we propose a rotated object detection dataset RSIC-ROD based
on NWPU-Captions [37] and pretrain a rotated object de-
tector. Furthermore, we design a feature enhancement fusion
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Fig. 1. Framework of the proposed method in this article. For image representation, the MFE module employs ResNet-152 and Redet to extract global features
and object features from an input image. The FEF module uses self-attention to enhance the internal relationships between object features and fuses the global
feature with word embeddings and positional encoding, which is employed as the input to the decoder. Then, we obtain a VRoPE module through operating of
object features” rotated positions. The enhanced object features serve as the input to the first encoder layer. Finally, the VRoPEA incorporates the VRoPE G into
self-attention, and it is hired in the transformer encoder. ⊕ and AAP, represent addition operator and adaptive average pooling.

(FEF) module that consists of feature enhancement and feature
fusion components. Follow [28], feature enhancement compo-
nent refines object–object relationships by a graph attention
network [20]. The feature fusion component establishes the
relationship between global features and text features to generate
accurate captions.

In addition, we propose a visual rotated position encod-
ing (VRoPE) module that encodes the spatial relationships of
rotated objects. Then, the relationships are incorporated into
self-attention of transformer [9], [10], [11] to regulate semantic
closeness and encourage the generation of more reasonable and
contextually relevant image captions.

Integrating the concepts outlined above, we propose a
VRoPE-Transformer for RSIC. As shown in Fig. 1, VRoPE-
Transformer comprises an MFE module, an FEF module, and
a transformer equipped with a VRoPE module. In the MFE
module, object-level rotation-invariant features and their corre-
sponding position and orientation information are first extracted
using a pretrained REDET [1]; global features are extracted using
a pretrained Resnet-152 [19]. The FEF module enhance rotated
object features and text features. The enhanced rotated object
features are fed into the transformer with VRoPE module to
generate captions.

The main contributions of this article are as follows.
1) To better model the relationships among rotated objects,

we propose the visual rotated position encoding (VRoPE)
module, which integrates the position and geometric in-
formation of the objects into self-attention mechanisms.

2) To generate more comprehensive and detailed captions
and to differentiate similar objects, we introduce the FEF
module. This module integrates global features and tex-
tual information to guide the generation of object feature
captions, while also utilizing self-attention mechanisms to
enhance the relevance and distinctiveness of the objects.

3) To improve the identification of rotated objects in RSIC
datasets, we have constructed the RSIC-ROD dataset,
which includes 15 scenes with a diverse range of rotated
objects, and have annotated 32 object categories.

4) Extensive experiments on four RSIC datasets have been
conducted to validate the superior performance of our
proposed method.

II. RELATED WORK

In this section, we delve into the related research in two key
areas: RSIC and visual position encoding.

A. Remote Sensing Image Captioning

RSIC has witnessed prominent evolution in technology. Ini-
tial attempts at image captioning primarily relied on template-
based [21], [22], [23] and retrieval-based [24], [25], [26] meth-
ods. Retrieval-based approaches involved selecting the most
similar sentence or a collection of highly related sentences from
a predefined pool based on the given image, whereas template-
based approaches generated sentences by populating predefined
slots with detected visual elements. However, these methods
often suffered from limited adaptability and heavy reliance on
manually crafted features, which hindered the generation of
high-quality captions.

With the advent of deep learning, substantial progress has
been made in neural network-based methods [8], [9], [11]. The
majority of these methods have adopted the encoder–decoder
framework [15], [17]. Vinyals et al. [27] were the pioneers in
introducing this framework, utilizing a CNN [28] for encod-
ing to abstract high-level visual features, while an RNN [29]
is used for decoding to produce captions. Following this, Xu
et al. [30] subsequently enhanced an decoder based on LSTM by
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incorporating hard and soft attention mechanisms which allowed
it to concentrate on various areas of the image.

In the context of RSIC, Shiet al. [31] highlighted the challenge
of capturing a range of objects across various scales, and con-
veying their characteristics and relational statuses. Lu et al. [13]
raised issues such as scale, category, rotation ambiguities in
RSIC and contributed the largest RSICD dataset to the field. This
underscored the importance of accurate feature extraction and
fusion for this task. Early attempts at RSIC relied on pretrained
CNNs to extract pixel-level features. However, these methods
were limited in their ability to capture semantic information
effectively. Anderson et al. [9] made a significant advancement
by introducing bottom-up and top-down attention mechanisms,
leveraging Faster R-CNN [32] to extract features at the object
level. This approach elevated the visual features in attention from
the levels of pixels and grid to the levels of prominent region and
object, greatly enhancing the descriptive power of captions. To
fuse features from different levels. Zhang et al. [33] introduced
attribute attention, which combines high-level features derived
from deeper fully connected (FC) layers with low-level features
from shallower convolutional or softmax layers. This approach
enables the model to encapsulate both detailed and abstract
information, leading to more accurate and informative captions.
Other researchers have explored different strategies for feature
fusion. Ma et al. [34] extracted object-level features from convo-
lutional layers of VGG-16 [35] and scene-level features using the
ResNet-50. By combining these features, they achieved better
performance in RSIC. Wang et al. [36] proposed a two-phase
multiscale structure representation approach, collecting features
from the conv4 and conv5 layers and using self-attention and
gated cross-attention for multilevel CNN feature interaction.
This approach enhanced the object discrimination capability of
the model and improved the accuracy of descriptions. Cheng
et al. [37] introduced MLCA-Net, which dynamically fuses
image features from distinct spatial locations and across various
scales. This network enabled the model to focus on relevant re-
gions and scales, leading to more accurate and detailed captions.
Zhang et al. [38] furthered this research by introducing GVFGA
and LSGA mechanisms. These mechanisms allowed the model
to attend to both semantic and visual information, improving the
quality of captions.

In recent years, the attention-based methods have experienced
rapid progress, with the transformer model emerging as a pop-
ular choice for RSIC. Chen et al. [39] utilized a multiscale
vision transformer (ViT) for encoding images, while intro-
ducing a decoder of transformer for sentence generation. Liu
et al. [40] further advanced this line of research by introducing
the MLAT, which integrated the strengths of both transformer
and LSTM [41]. In addition, Herdade et al. [42] innovated by
incorporating geometric relationships among regional features
into the transformer framework for generating captions. More re-
cently, Cornia et al. [43] introduced trainable prior information to
enhance the attention mechanism in the encoder of transformer,
establishing comprehensive connections between each decoder
layer and encoder layer through a grid structure. Building upon
these advancements, Meng et al. [44] proposed a prior knowl-
edge enhanced attention module that establishes relationships
between objects to select those more relevant to the scene area.

While the previously mentioned methods can produce gram-
matically descriptions, they usually overlook the consequences
of rotation ambiguity and may struggle with creating more
nuanced captions. To preserve the positional and directional
data of features as thoroughly as possible for later stages of
processing, we incorporate rotation-invariant attributes, along
with their respective rotated coordinates as input.

B. Visual Position Encoding

As deep learning technology has progressed, a growing body
of research has concentrated on empowering models to ef-
fectively harness position information within images. Initial
approaches primarily involved embedding position informa-
tion into network architectures through hard-coding. Coord-
Conv [45] is a technique that infuses position information into
CNNs by representing absolute or relative coordinates via sup-
plementary channels in the input feature maps. Wang et al. [46]
developed Axial-DeepLab, a CNN model for semantic segmen-
tation that leverages an axial attention mechanism in conjunction
with axial absolute position encoding. This enables the network
to gain a more nuanced understanding of semantic information
at various positions within an image.

Then, Dosovitskiy et al. [47] introduced visual position en-
coding and proposed the ViT model, which divides images into
fixed-size patches and uses trainable position embeddings to
encode the position information of each image patch, embedding
this information into the image’s feature representation. Wu
et al. [48] studied the forms of visual position encoding and
how they are embedded into the image’s feature representation.
Graham et al. introduced LeViT [49], a vision model that uses a
trainable position encoding method to improve inference speed
on image classification tasks. Wang et al. [46] introduced the
Axial-DeepLab model, which uses an axial attention mechanism
and axial position encoding to better handle the semantic content
at various locations within the image. Guo et al. [50] proposed a
geometry-aware self-attention mechanism capable of capturing
the relative geometry relationships among objects, guiding the
development of the RSTNet [8].

However, most of the aforementioned position encodings
have been applied to grid features rather than objects, lacking
consideration for rotation and neglecting the importance of di-
rection and positional relationships between objects. Therefore,
we propose a novel rotated position encoding that introduces di-
rectional information and acts on rotated objects, integrating the
orientation relationships between objects into the Transformer
architecture to direct the model in focusing on content with
higher contextual relevance, thereby producing more contex-
tually appropriate captions.

III. PROPOSED METHODOLOGY

A. Overall Framework

The overall architecture of the proposed VRoPE-Transformer
approach is shown in Fig. 1. It includes an MFE module, an
FEF module, as well as a transformer equipped with a VRoPE
module. We first present the MFE module in Section III-B,
which extracts global features Vg and object features Vo from
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the RSI I, along with their corresponding rotated positions
P. Then, in Section III-C, we demonstrate the feature fusion
enhancement (FFE) module. It enriches object features Vo by
leveraging relationships between objects to obtain enhanced
object features Ve, and fuses the global feature Vg with word
embeddings W to create an enhanced decoder input Y. Next
in Section III-D, we describe the VRoPE G, which is obtained
through the operation of object features” rotated positions P. In
Section III-E, we introduce the implementation of the VRoPE-
based transformer designed by us, which uses the VRoPE and
enhanced object features Ve, combined with the global feature,
to generate captions. In particular, every encoding layer within
the transformer incorporates a visual rotated position encoding
attention (VRoPEA) module that merges the VRoPE G into the
multihead self-attention mechanism. Then, the decoder forecasts
new words by utilizing the output of the encoder along with
previously produced words. Finally, we established a dataset,
RSIC-ROD.

B. Multilevel Feature Extraction

To enhance the semantic representation of RSI, feature ex-
traction is divided into two components: global feature extrac-
tion and object feature extraction. Global features are crafted
to encapsulate the overall structural and high-level semantic
content of the imagery, providing a comprehensive contextual
overview of the scene. In contrast, object features focus on
the distinct details of each entity within the RSI, capturing
the fine-grained information that is critical for identifying each
object’s characteristics and attributes.

1) Global Feature Extraction: To obtain a global feature rep-
resentation that includes more advanced semantic information
and capture relationships between objects and the overall struc-
ture of the scene, we leverage the powerful feature extraction
capabilities of CNNs. We use the deep features extracted by
CNNs as the depiction of RSIs, serving for the subsequent gen-
eration of captions. Among them, ResNet-152 [20] is a typical
CNN architecture that excels at extracting multiscale features
and is, thus, well-suited for RSIs. Therefore, we choose the
backbone of pretrained ResNet-152, denoted as ResNetavgpool,
where avgpool is the last adaptive average pooling layer, to
serve as the CNN feature extractor. The result after the AAP
operation is used as the global feature. This yields the feature
representation Vg = {vg

1 , . . .,v
g
N}, with the shape of RN×D1 .

This process can be represented as

Vg = ResNetavgpool(I) (1)

where I ∈ RHi×Wi×Ci is the input image.
2) Object Feature Extraction: To ensure consistent catego-

rization across varying orientations, we utilize the backbone of
ReDet [1] to extract rotation-invariant features along with their
corresponding rotated positions P. Trained on our RSIC-ROD
dataset, we employ RRoI features derived from the Rotation-
invariant RoI Align operation as the representative object fea-
tures. We select the top M objects, and their feature vectors
are denoted as Vo = {vo

1, . . .,v
o
M}, forming a matrix of size

RM×D2 . The extraction process is formulated as follows:

Vo = RedetRROIAlign(I). (2)

For each object, the result after performing bounding box regres-
sion is used as the rotated position P, represented as P = {p1

(x1, y1, w1, h1, θ1), . . .,pM (xM , yM , wM , hM , θM )}, with a
shape of RM×5. This process can be represented as

P = RedetbboxRegression(I). (3)

C. Feature Enhancement Fusion

To enhance the distinguish ability of similar features and
guide caption generation using global features rich in advanced
semantic information, we propose the FFE module. It includes
two parts: feature enhancement and feature fusion.

1) Feature Enhancement: Since similar object features may
be extracted for different objects, we need to enhance the differ-
ences between similar features. The self-attention mechanism
can adjust each feature during the learning process, ensuring the
model’s heightened focus on distinguishing subtle differences
between similar features. By adding a self-attention module to
enhance the input, we improve the distinguish ability of different
object features in the encoder.

First, we apply dot product to each pair of object features
vo
i and vo

j to represent the relationship between object features,
resulting in attention weights eoij

eoij = softmaxj

(
vo
iW

o
q

(
vo
jW

o
k

)T
/
√
d
)

(4)

where Wo
k ∈ Rd×d and Wo

q ∈ Rd×d refer to the trainable pa-
rameter matrices; d refers to the scaling factor.

Thus, each feature is enhanced based on its relationships with
other features to obtain the enhanced feature ve

i

ve
i =

∑
j∈Ni

eoij
(
vo
jW

o
v

)
(5)

where Wo
v ∈ Rd×d is the trainable parameter matrix.

We utilize multihead attention to further optimize the rela-
tionship between object features, obtaining the final enhanced
object features Ve ∈ RM×d, represented as

Ve = Concat(Ve
head1 , . . .,V

e
headp)W

r (6)

where Wr ∈ Rd×d refers to the trainable parameter matrix,
and each head i denotes a round of dot-product attention that
generates the refined Ve

headi .
2) Feature Fusion: Inspired by GLCM [51], we apply global

features to the decoder to directly guide image caption genera-
tion through cross-attention. Before that, it is necessary to fuse
the text word with the global feature.

First, the text word are processed. Given a sentence L gen-
erated at time step t, represented as L = {l0, . . ., lt−1}, the
subsequent word lt is forecasted based on l. the ith word li ∈ R1

corresponds to an index in the vocabulary, with l0 indicating the
sentence’s initial token. To align with the network structure, the
words of the sentence L must be incorporated into the sentence
vector W ∈ Rt×C = {w0, . . .,wt−1}. Through the word2vec
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Fig. 2. Principle of VRoPE. Extracting the rotated object box of the object.
(xi, yi), wi, hi, θi are the center coordinates, width, height, and rotation angle
of box i.

technology [61], it is represented as

W = Embedding(L). (7)

After adaptive average pooling and linear projection, the
global feature Vg is projected to the same dimension as W

V̂g = FC(AAP(Vg)) (8)

Y = W + V̂g (9)

where the dimension of Y is RT×C . Then, a masked self-
attention operation is utilized on the fused input Y to derive
Ymask, which is used for final cross-attention.

D. Visual Rotated Position Embedding

To represent the spatial relationships between described ob-
jects and to calculate their degrees of closeness, we propose
the visual rotated position embedding (VRoPE) to encode the
position and geometric relationships of objects, which is inte-
grated into self-attention mechanism. Initially, we obtain the ro-
tated positions P = {p1(x1, y1, w1, h1, θ1), . . .,pM (xM , yM ,
wM , hM , θM )}, where we consider both the positional and
geometric characteristics of the object bounding boxes, as shown
in Fig. 2. For each pair of objects i and j, their positional
relationship is represented by the ratio of the difference in center
coordinates to the geometric size, their geometric relationship is
represented by the aspect ratio, and their directional relationship
is represented by the difference in rotation angles. These are
concatenated into a 5-dimensional vector λij representing the
rotated relative geometric relationship:

λij =

⎡
⎢⎢⎢⎢⎢⎢⎣

log(|xi − xj |/wi)

log(|yi − yj |/hi)

log(wi/wj)

log(hi/hj)

θi − θj

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

where (xi, yi), wi, hi, θi are the center coordinates, width,
height, and rotation angle of box i, respectively. Since we need
to assess the influence of each piece of information segment
on attention, we weight the components of λij . Then, to unify
the dimensions and integrate with the attention mechanism, we
transform it into a high-dimensional representationGij using an

Fig. 3. Encoder of the VRoPE-Transformer. The encoder consists of a series
of N uniform encoding layers. Each encoding Layer primarily consists of the
VRoPEA. ⊕ denotes the addition operation.

FC layer and subsequently apply an ReLU activation function
activation as

Gij = ReLU(FC(λij)W
T
g ) (11)

where Wg are the trainable weight parameters, and Gij ∈
RN×N is the rotated relative geometric relationship, where
N = h× w. The obtained G is used as the VRoPE to improve
the encoder module in the next section, optimizing the final
caption generation.

E. Vrope-Transformer

The VRoPE-Transformer employs an encoder–decoder
framework, with both components comprising layered multi-
head attention mechanisms. The encoder enhances self-attention
by integrating rotated position encoding for object pairs, thereby
encoding directional relationships within the object features.
The decoder leverages the outputs from these encoding layers to
produce captions word by word incrementally. The architecture
is detailed as follows.

1) Encoder: Drawing from the conventional transformer de-
sign [10]. As shown in Fig. 3, the encoder consists of N identical
layers stacked atop one another. Each encoding layer integrates
a VRoPEA module alongside a position-aware FC feedforward
network (FFN). The input to the first layer is the enhanced
object feature Ve combined with the VRoPE G, and the input
to each subsequent encoding layer includes the output from the
preceding encoding layer combined with G. Taking the first
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Fig. 4. Decoder of the VRoPE-Transformer. The decoder is constructed from
a series of N uniform decoding layers. Each decoding Layer is primarily made
up of meshed cross-attention (MCA).©σ,�, and⊕, denote the sigmoid activation
function, the concatenation operation, and the Hadamard product.

encoding layer as an example, the queriesQ, keysK, and values
V are all enhanced object features Ve. After matrix operations,
Q andK are first fused withG and then withV for computation,
as shown in the following equation:

Q = VeWq,K = VeWk,V = VeWv

Vr = softmax(QKT /
√
d+G)V (12)

where Wv ∈ Rd×d, Wk ∈ Rd×d, Wq ∈ Rd×d are trainable
matrices.

The core mechanism of the VRoPEA module is to use the
geometric and positional relationships between object pairs to
adjust the correlation between queries and keys, that is, fea-
ture relevance. This allows object pairs with higher geometric
closeness to be given more attention and integrated into the
self-attention mechanism, thereby improving the ability to infer
closely related object pairs. Then, the resulting features are
added to the original features and pass through an FFN layer
to obtain the output of the first encoding layer, X1. In this way,
we can obtain the encoder’s output X = {X1, . . .,XN}, where
Xi ∈ RM×D from the ith layer, represented as follows:

X = AddNorm(FFN(AddNorm(Vr))). (13)

This procedure is iterated for every following encoding layer,
with the output of each layer serving as the input to the decoder.

2) Decoder: We adopt the meshed cross-attention from M2

transformer [43] to design our decoder architecture. Instead of
only focusing on the last encoding layer, the meshed attention
operator performs cross-attention on all encoding layers. This
effectively utilizes the multilevel information from the encoding
layers. Specifically, the decoder comprises N uniform decoder
layers as shown in Fig. 4. For each decoder layer, the output
from the preceding decoder layer is employed as the query, and
the output of each encoding layer is used as the value and key.

This cross-attention operation allows the decoder to consider
the context from both the previously produced words and the
encoded image features. We perform cross-attention between
the masked input Ymask and the output of each encoding layer

Q = YmaskW
i
q,K = ViW

i
k,V = ViW

i
v

Ci = softmax(QKT /
√
d)V (14)

where Wi
k ∈ Rd×d, Wi

q ∈ Rd×d, and Wi
v ∈ Rd×d are train-

able matrices. After that, in order to produce the output of
this layer, we must mix the features. First, we calculate the
weighted matrix αi, which represents the contribution of each
encoding layer, calculated from the masked input Ymask and the
output of each encoder layer. Then, we weight Ci to obtain
the mixed features Z1 ∈ RM×d, followed by AddNorm and
FFN operations to obtain the output Y1 of the first decoder,
as expressed in the following equation:

αi = softmax ([Ymask,Ci]W
α
i + bα

i ) (15)

Z1 =

N∑
i=1

αi �Ci (16)

Y1 = AddNorm(FFN(AddNorm(Z1))) (17)

where Wα
i ∈ R2d×d represents the trainable parameter matrix,

� refers to the Hadamard product, bα
i ∈ Rd denotes the bias

term, and [·, ·] signifies the concatenation operation.
In the following layers, we sequentially perform cross-

attention operations between the output of the previous decoder
layer and the output of each encoding layer, and use the output
from the final decoder layer as the ultimate output of the decoder.
The final output Ŷ is then passed through a mapping head,
which consists of an FC layer that projects the decoder’s output
space into the vocabulary space, preceded by a softmax layer
that converts the output into a probability distribution across the
vocabulary. This cycle is iterated for each successive decoder
layer, with the final output of the last decoder layer being the
completed caption or a chain of words which represents the
caption for the input image.

F. Training and Objectives

Inspired by prevalent practices in image captioning [9], we
initiate the training process by employing the cross-entropy loss
(XE). This loss function is formulated as follows:

LXE(θ) = −
T∑

t=1

log(pθ(s
∗
t |s∗1:t−1)) (18)

where T refers to the maximum time step; s∗1:t−1 = [s∗1, . . . ,
s∗t−1] denotes the ground truth sequence up to the (t− 1)th time
step; θ represents the model’s variable parameter. The objective
is to maximize the logarithm of the likelihood for the true word
(s∗t) based on the preceding words in the sequence.

G. RSIC-ROD

To train the backbone of REDET for extracting object features,
we constructed the rotated object detection dataset RSIC-ROD.
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This dataset encompasses the object categories of objects de-
scribed in current mainstream RSIC datasets. Therefore, it can
be used for the rotated feature extraction part of object-level
RSIC models.

Data source: We built the RSIC-ROD dataset based on the
NWPU-Captions [37] RSIC dataset.

Data processing: We selected images rich in objects, clear,
and representative of each scene, and manually annotated ro-
tated object bounding boxes on them by three volunteers with
extensive experience.

Dataset scale: The dataset consists of 10 500 256×256 RSIs
and their corresponding rotated object annotations. The dataset
contains 15 scene categories, which are as follows: Wharf,
ground track, field, basketball court, airport, baseball diamond,
tennis court, storage tank, ship, stadium, roundabout, railway,
intersection, overpass, and harbor The dataset contains 32 ob-
ject categories, which are as follows: Airport, baseball diamond,
ground track, basketball court, field, harbor, wharf, intersection,
overpass, railway, roundabout, ship, storage tank, stadium,
tennis court, airplane, bridge, river, railway, boat, farmland,
crosswalk, runway, freeway, highway, car, truck, road, meadow,
trees, buildings, parking lot, and bare land.

Previous rotated object detection datasets had too large a gap
in object categories compared to existing RSIC datasets, which
could lead to object-level feature-based RSIC models having
more difficulty with category ambiguity. RSIC-ROD is large in
scale, has many categories, and is more compatible with RSIC
datasets, making it significant for future object feature RSIC
models.

IV. EXPERIMENT RESULTS

A. Datasets

We evaluate the proposed method on four RSIC datasets:
RSICD [13], Sydney-Captions [12], UC Merced (UCM)-
Captions [12], and NWPU-Captions [37].

Sydney-Captions: Sydney-Captions is a derivative of the Syd-
ney Dataset [52]. The Sydney Dataset comprises 613 images cat-
egorized into seven classes: airport, residential, runway, indus-
trial, ocean, rivers, and meadow. These images, obtained from
Google Earth and manually cropped, are all 500 × 500 pixels at
a resolution of 0.5 m.

UCM-Captions: UCM-Captions is an extension based on the
UCM Land Use Dataset [53]. The UCM dataset consists of 2100
images covering 21 scene classes, including baseball diamond,
harbor, dense residential, intersection, beach, chaparral, river,
golf course, forest, mobile home park, tennis courts, freeway,
parking lot, overpass, medium-density residential, airplane, stor-
age tanks, buildings, sparse residential, and agricultural. Every
category in the dataset consists of 100 images, each measuring
256 by 256 pixels, and each pixel corresponds to a ground
distance of 0.3048 m.

RSICD: RSICD comprises 10 921 RSIs covering various
geographical areas and scenes. The dataset includes 30 scene
types such as open land, industrial area, beach, medium residen-
tial, stadium, playground, mountain, bridge, farmland, church,
school, desert, meadow, pond, sparse residential area, commer-
cial center, port, river, dense residential, viaduct, railway station,

forest, park, airport, baseball field, parking area, resort, square,
and storage tanks. The images in RSICD, obtained from Google
Earth, are sized 224 × 224 pixels with varying pixel resolutions.

NWPU-Captions: NWPU-Captions is the largest RSIC
dataset. NWPU offers a wealth of image diversity, encompassing
images from various satellites and aerial sensors. The dataset
contains abundant scenes and objects such as airports, building
complexes, and ports. It comprises 331 500 aerial RSIs, each
equipped with RGB three-band data, and ground sampling dis-
tances varying from 0.2 to 30 m.

B. Evaluation Metrics

To assess the quality of produced captions for RSIs, we
employ ten metrics: BLEU-n [54], METEOR [55], ROUGEL

[56], CIDEr [57], SPICE [58], S∗
m, and Sm [38].The metrics

SPICE, CIDEr, ROUGEL, METEOR, and BLEU-n can be com-
puted using the COCO caption evaluation toolkit. METEOR,
BLEU-n, and ROUGEL were originally devised for machine
translation and emphasize caption accuracy. CIDEr and SPICE,
were specifically crafted for image captioning, with a focus on
human-likeness. S∗

m and Sm serve as overall metrics, balancing
both aspects.

BLEU: Originally designed for machine translation, BLEU
measures the overlap of phrases between candidate and ref-
erence sentences based on the match of n consecutive words,
represented as n-grams. In our study, we use four variations
of the BLEU metric, namely BLEU-1, BLEU-2, BLEU-3, and
BLEU-4, withn set to 1, 2, 3, and 4. These scores are normalized
on a scale between 0 and 1, indicating the quality of the generated
captions.

ROUGEL: ROUGEL is part of the Recall-oriented understudy
for gisting evaluation (ROUGE), it evaluates similarity between
reference sentences and candidate by determining the longest
common subsequence, prioritizing recalls over precision. Com-
monly used in image captioning evaluations.

CIDEr: Specifically designed for image captioning, CIDEr
considers each sentence as an individual document. It then calcu-
lates a TF-IDF vector for each sentence, which is used to measure
the similarity between reference captions and candidate. CIDEr
focuses on the accuracy of n-grams and considers their frequency
across the entire dataset through weighting operations. It mea-
sures caption consistency by computing the cosine similarity.

SPICE: Also designed for image captioning, it encodes re-
lations, objects, and attributes using a graph-based approach. It
parses sentences into syntactic dependency trees, maps them to
scene graphs, and calculatesF -scores for objects, attributes, and
relations.
S∗
m and Sm: Averages of the aforementioned metrics, offer-

ing comprehensive evaluation of caption quality. Calculation
processes are provided as follows:

S∗
m =

1

4
(C + R+M+BELU4) (19)

Sm =
1

5
(C + R+M+ S + BELU4). (20)
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C. Experimental Settings and Training Details

1) Dataset Splitting: To facilitate an equitable and objective
comparison with state-of-the-art methods and to analyze the
effectiveness of the proposed method, we randomly shuffle the
first three datasets and split them into 10% for testing, 80%
for training, and 10% for validation. To eliminate the impact of
random splitting, we conduct five experiments on each dataset.
After discard the best and worst results, we calculate the average
and standard deviation of the remaining results as the final result.
For NWPU-Captions, we use its original split [37].

2) Feature Extraction: For global features, we employ the
ResNet-152 architecture pretrained on ImageNet [59]. We ex-
tract the feature map from the final adaptive average pooling
layer, which is of size 14 ×14× 2048. This is then flattened
into a matrix with dimensions 196 × 2048 (D1 = 2048 and
N = 196), serving as our final global feature.

For object features, we use the backbone of Redet pretrained
on the ImageNet and fine-tune it on our proposed dataset RSIC-
ROD. Specifically, we freeze the ReResNet modules pretrained
on ImageNet and train the subsequent ReFPN modules on
RSIC-ROD for 200 epochs with the learning rate of 1e− 5.
The intersection over union threshold is set at 0.1. For each
RSI, we choose the highest-scoring 50 object proposals to serve
as object features (M = 50), each with a size of 7 ×7× 256.
After that, we perform an AAP operation followed by a linear
mapping operation to reduce each object’s dimension to 1024
(D2 = 1024), which serves as our final object feature.

3) Model Configuration and Training: For all our
transformer-based models, we configure the encoder and
decoder with N = 3 layers each, and we utilize 8 parallel
attention heads within the multihead attention mechanism. The
dimension for word embeddings is set at C = 512. We apply
positional encoding to sequences with a maximum length of 128,
and we limit the maximum length of the output sequences to 20.
During training, we set the batch size to 50 and apply Dropout
at a rate of 0.9 following each feedforward and attention layer.
Adam is utilized as the optimizer with parameters β1 = 0.9
and β2 = 0.98 . The model is trained using XE, and we employ
a learning rate scheduling strategy that includes a warmup
period of 10 000 iterations. Our experiments are conducted on
an NVIDIA GeForce RTX 3080Ti, using PyTorch 1.10.0 and
CUDA 10.2 as our software environment.

D. Comparisons With the State-of-the-Art

To objectively validate the performance of the proposed
VRoPE-Transformer on RSIC, we selected several state-of-
the-art methods and some representative methods to generate
captions for RSIs from different viewpoints. These methods
were then compared through experimental analysis. They are
as follows.

1) mRNN [12] and mLSTM [12]: Classical encoder–
decoder architectures, using VGG-16 as their encoder
and employing different RNNs as their decoders.

2) Attention-based (hard/soft) method: Building upon the
CNN-LSTM framework, hard attention and soft atten-
tion [9] utilize VGG-16 for encoding and LSTM for de-
coding, pioneering the investigation into the application

of attention mechanisms for the generation of captions
from RSIs.

3) SD-RSIC [60]: A method for RSIC. The method first
summarizes multiple ground-truth captions (GT) for
RSIs into a single caption. Then, it utilizes an adaptive
weighting strategy that merges the condensed caption
with typical captions to produce more precise and infor-
mative captions. It utilizes ResNet-152 for encoding and
LSTM for decoding purposes.

4) WS-RSIC [61]: It decomposes the image caption tas
into two distinct phases: extracting relevant words and
crafting sentences. In the first stage, the method uses
ResNet-18 as a word extractor to extract words that
represent different visual features from the image. In the
second stage, a transformer is employed as the sentence
generator to combine these words into coherent sentence
captions.

5) AoANet [62]: It introduces an attention mechanism
called “attention on attention (AoA).” This attention
mechanism enables the model to concentrate on image
features at multiple levels during the decoding process,
allowing the model to interpret the image content more
accurately and generate corresponding captions. The en-
coder part commonly employs CNN for image feature
extraction, whereas the decoder part utilizes an LSTM
combined with the AoA module to generate captions.

6) GVFGA+LSGA [38]: Using a CNN-RNN framework
and combines two attention mechanisms to better uti-
lize image and text information. First, through GVFGA,
the model filters out redundant information and places
greater emphasis on the most important regions within
the image. Second, through LSGA, the model further
adjusts the fusion of image and text information based
on the current language state to produce more precise
and consistent captions.

7) MLCA-Net [37]: Integrating a multilevel attention mech-
anism to dynamically combine image features from tar-
geted spatial areas and scales. In addition, a contextual
attention module is used to reveal the hidden context
in RSIs. This approach improves the flexibility and
detail of captions, ensuring they remain accurate and
concise.

8) RSGPT [67]: A large visual language model tailored for
the remote sensing field, trained on the high-quality RSIC
dataset RSICap.

9) RS-LLAVA [68]: An improved version of the large lan-
guage and vision assistant model (LLAVA), specifically
adapted for RSIs through a low-rank adaptation ap-
proach.

10) M2 Transformer [43]: Embedding prior knowledge
about object relationships into the self-attention mech-
anism of the transformer encoder. The encoder’s role is
to encoding image features into semantic representations
while embedding object relationships within the self-
attention mechanism. The decoder then creates captions
from the encoder’s output, using multilayer self-attention
and position encoding to enhance the interpretation of the
input image and produce corresponding captions.
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TABLE I
QUANTITATIVE COMPARISON RESULTS ON SYDNEY-CAPTIONS

TABLE II
QUANTITATIVE COMPARISON RESULTS ON UCM-CAPTIONS

11) PKG-Transformer [44]: Extracting object-level and
scene-level features in the MFE module. In addition,
a feature enhancement module employs a combination
of attention mechanisms and graph neural networks
to encapsulate correlations and differences among di-
verse objects or distinct scene areas. Finally, the prior
knowledge-enhanced attention module establishes rela-
tionships between objects to select more relevant objects
to the scene area. The decoder part is consistent with M2

transformer [43].
12) Baseline: To assess the independent contributions of

each component and promote comparison with PKG-
Transformer, we created a baseline model that merges
the standard transformer encoder with object features as
input with the decoder of PKG-Transformer [44].

Tables I–IV display the comparative outcomes against
other approaches, which correspond to UCM-Captions, RSICD
datasets, Sydney-Captions, and NWPU-Captions. The presented
results are all in the form of percentages (%).

1) Sydney-Captions: Table I presents the comparative out-
comes for the Sydney-Captions dataset. The proposed method
exhibits the best performance across all metrics, with relative
improvements of 3.93%, 4.73%, 6.14%, 7.78%, 7.10%, 4.20%,
13.41%, 3.10%, 10.59%, and 9.94%. Notably, the proposed
method shows a significant increase in CIDEr, indicating that

the generated descriptions are more natural and precise in lan-
guage expression and semantics. In addition, the BLEU-3 and
BLEU-4 scores, which have stricter requirements for generating
multiple consecutive words, suggest that the proposed method
can produce more precise phrases.

2) UCM-Captions: Table II presents the comparative out-
comes for the UCM-Captions dataset. The proposed method
outperforms PKG-Transformer in BLEU, CIDEr, S∗

m and Sm,
with relative improvements of 0.10%, 0.42%, 0.74%, 1.12%,
2.70%, 1.77%, and 1.42%, respectively. The other evaluation
metrics also surpass those of the comparative methods. On
the METEOR and SPICE metrics, PKG-Transformer performs
better, indicating a higher recall rate due to its exploration
of scene-scene/object-object and object-scene relationships in
RSIs, resulting in more accurate objects, attributes, and rela-
tionships. However, the S∗

m and Sm metrics indicate that the
proposed method still has a better overall performance.

3) RSICD: Table III lists the comparison results for the
RSICD dataset. Due to the lack of descriptions of relative spatial
relationships in the RSICD dataset, the proposed method does
not achieve the best results on all metrics. However, the results
of the proposed method are very close to the best results, and
it achieves the best result on the most critical metrics CIDEr,
S∗
m and Sm, fully proving the competitiveness of the proposed

method.
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TABLE III
QUANTITATIVE COMPARISON RESULTS ON RSICD

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON NWPU-CAPTIONS

TABLE V
ABLATION STUDIES ON SYDNEY-CAPTIONS

4) NWPU-Captions: Table IV lists the comparison results
for the NWPU-Captions dataset. The results of the proposed
method are comparable to those of the comparative methods
on METEOR and SPICE metrics, and it achieves significant
improvements in BLEU, CIDEr, S∗

m and Sm, with relative
improvements of 2.49%, 3.86%, 4.86%, 5.52%, 6.63%, 4.74%,
and 4.19%, respectively. This confirms the robustness and uni-
versality of the proposed method on larger and more detailed
datasets, offering strong evidence of its performance in practical
application scenarios.

In summary, compared to the state-of-the-art methods, the
proposed method achieves excellent results on the Sydney-
Captions, UCM-Captions and NWPU-Captions datasets, and
comparable results on the RSICD dataset. This indicates that
the proposed method has greater potential in more detailed
scene applications and also demonstrates good competitiveness
in large datasets. These results validate the universality of the
method we propose.

E. Ablation Study

To validate the impact of each individual component, we
performed ablation experiments by eliminating the FEF module,
the VRoPE module, and both modules on three RSIC datasets.

For each dataset, we conduct experiments on the same split. The
results of these experiments are presented in Tables V–VII.

The outcomes from the experiments on the three datasets show
consistent patterns. When using the FEF module alone, CIDEr
increased by 4.74% on Sydney-Captions, 4.43% on UCM-
Captions, and 6.59% on RSICD-Captions, while Sm increased
by 4.57% on Sydney-Captions, 3.75% on UCM-Captions, and
5.05% on RSICD-Captions. This verifies the effectiveness of
the FEF module. The improvement is due to the FEF module’s
ability to enhance image representations. In particular, the FEF
module enhances the independence of object features and fuses
the global features to obtain more effective input features for
guiding image caption generation.

Similarly, when using the VRoPE module alone, CIDEr
increased by 11.9% on Sydney-Captions, 6.68% on UCM-
Captions, and 6.59% on RSICD-Captions, while Sm increased
by 10.2% on Sydney-Captions, 4.91% on UCM-Captions, and
5.23% on RSICD-Captions, verifying the effectiveness of the
VRoPE module. The enhancement stems from the VRoPE
module leveraging the positional and directional relationships
between object groups to augment the model’s capability to
generate strong related object group captions. Specifically, by
encoding position and direction, the caption weights of closely
related object groups are increased, and the directional relation-
ships are used to guide caption generation.
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TABLE VI
ABLATION STUDIES ON UCM-CAPTIONS

TABLE VII
ABLATION STUDIES ON RSICD

Fig. 5. Example of rotating object extraction and generated caption. The object words in the caption have the same color with the object box in the image.

Using both the VRoPE and FEF modules together further
improves CIDEr and Sm scores. Specifically, CIDEr increased
by 17.2% on Sydney-Captions, 14.26% on UCM-Captions, and
7.76% on RSICD-Captions, while Sm increased by 12.80%
on Sydney-Captions, 10.29% on UCM-Captions, and 6.35%
on RSICD-Captions, which is a significant improvement over
using either module alone. The observation suggests that the
VRoPE module and the FEF module not only have good effects
when used independently but also exhibit a certain degree of
complementary effect. In other words, while the VRoPE module
uses positional and directional relationships between objects to
guide caption generation, it does not incorporate global features.
The FEF module enhances the independence of object features
and integrates global features to compensate for this limitation.
This makes the combined use of the two modules the best in
terms of performance.

In conclusion, both the FEF and VRoPE modules significantly
boost metric accuracy, with their combined use outperforming
individual application.

F. Qualitative Analysis

To intuitively demonstrate the effectiveness of our VRoPE-
Transformer, we provide qualitative comparisons in Fig. 5. We
have conducted a detailed comparison between the outputs of

the VRoPE-Transformer and the baseline model, incorporating
manually annotated GT. This comparison encompasses multiple
dimensions, including object identification, the use of adjectives,
and the overall naturalness of the captions, providing a clear
demonstration of the proposed method’s capabilities. In addi-
tion, to evaluate the individual contributions of each component,
we present a visual analysis contrasting the baseline results with
those obtained from the FEF module and the VRoPE module
when used in isolation.

Visually, the captions generated by VRoPE-Transformer are
noticeably more precise and detailed than those produced by
the baseline model. For example, in the fourth image of Fig. 6,
the baseline lacks the important object “sand” and fails to
describe its location. In the sixth image, it does not describe
the more closely related “buildings” and “roads,” instead de-
scribing the less closely related “lawn.” In the fifth image, it
even misidentifies the number of “tennis courts” and lacks ad-
jectives like “arranged neatly.” Conversely, the proposed method
accurately describes high-relevance objects and provides precise
captions for scenes and quantities. It also includes advanced
semantic words, indicating a better ability to describe relevant
objects and higher contextual match.

Examining each module separately, the FEF module
successfully captures the adjective “small” in the first image but
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Fig. 6. Example of rotated object extraction and caption generation. The object words in the caption correspond to the color of the target box in the image.

overlooks the closely related object “plants.” In the third image,
it captures the correct number of objects but describes “some
plants” instead of the closely related object “road” In the seventh
image, it distinguishes between “basketball courts” and “tennis
courts” but overlooks surrounding elements. This demonstrates
that the FEF module can extract advanced semantic information
by combining global features, and the enhanced object features
allow it to describe the correct number and distinguish similar
objects. In contrast, the VRoPE module generally identifies
correctly related objects, though it occasionally groups objects
in ways that defy intuition. For example, in the last image, it
judges “trees” rather than “road” as being more relevant, which
may be due to the closer spatial geometric relationship of the
“trees.” Moreover, due to the lack of global feature guidance
and enhanced input, it sometimes fails to capture adjectives, gets
the number of objects wrong, and cannot distinguish between
similar objects. This demonstrates the complementary nature of
the two modules, as their combined use yields the most accurate
and rich results, with more reasonable object descriptions.

We visualize the attention states for each word generated in the
captions, highlight the regions that significantly contribute to the
word generation. Unlike models that can easily extract attention
maps with the entire image as input, the proposed method
uses rotated regions as input, which requires us to analyze the
contribution of different areas to the results. We mark the most
attended regions. As shown in Fig. 7, in the result of baseline, the
attended regions are more singular and the patterns and priorities
are not obvious. The baseline model tends to focus on the most
prominent areas during target detection. The PKG-Transformer
can focus on more precise and diverse areas. It placing attention
on parts related to the scene, such as “houses” and “lawn.”
Instead, our proposed method pays more attention to groups of
objects with strong correlations, so it describes the “road” and
elucidates its spatial relationship with the “residential area.”

In summary, the qualitative results clearly show that the
VRoPE-Transformer surpasses the baseline in accuracy and
comprehensiveness, aligning better with human cognitive pat-
terns in description generation.
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Fig. 7. Visualization of attention states for Baseline, PKG-Transformer and VRoPE-Transformer. We show the attended image regions, outlining the region in
high definition.

TABLE VIII
COMPARISON BETWEEN THE BASELINE, PKG-TRANSFORMER, AND THE

PROPOSED VROPE-TRANSFORMER ON THE NUMBER OF PARAMETERS AND

FLOPS

G. Complexity Analysis

This section provides a brief analysis of the computational
complexity of the proposed VRoPE-Transformer. Table VIII
details the number of model parameters and floating-point oper-
ations (FLOPs). VRoPE-Transformer* refers to the model with-
out the FEF module. The FEF module introduces a negligible

increase in the number of parameters and computational com-
plexity, yet it confers a notable enhancement in performance.
Although the VRoPE module modestly elevates the number of
parameters and computational complexity, it markedly improves
performance. Compared to the PKG-Transformer, the pro-
posed VRoPE-Transformer achieves comparable results while
consuming fewer resources.

V. CONCLUSION

The VRoPE-Transformer method introduced in this article
represents a significant advancement in the RSIC domain. It
adeptly extracts rotation-invariant features and incorporates
dedicated modules—the FEF and VRoPE—to tackle the nu-
anced challenges of RSIC. By leveraging self-attention mech-
anisms, the FEF module effectively fuses multiscale features,
augmenting their relevance and distinctiveness. Concurrently,
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the VRoPE module captures positional and directional rela-
tionships among objects, integrating this information into the
Transformer’s attention mechanism. This synergy facilitates
the generation of precise captions for objects with intricate
interrelationships. Experimental outcomes across four datasets
underscore the method’s superior performance, affirming its
efficacy. Moreover, we introduce a dataset comprising 10 500
256 × 256 RSIs, each with corresponding rotated object an-
notations. This dataset paves the way for a seamless fusion of
object-level image caption and remote sensing object detec-
tion, thus broadening the scope of application and enhancing
the depth of understanding in RSI. The VRoPE-Transformer
ushers in a novel paradigm for comprehending RSIs, promising
extensive utility in various domains. It offers a fresh viewpoint
and a robust solution that advances the state of the art in RSI
processing. Future research can explore more intricate modeling
of object relationships to encapsulate even richer detail, and
the application of this method within multimodal, large-scale
models holds potential for extracting even more comprehensive
information.
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