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Hierarchical Sampling Representation Detector for
Ship Detection in SAR Images
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Abstract—Ship detection achieves great significance in remote
sensing of synthetic aperture radar (SAR) and many efforts have
been done in recent years. However, distinguishing ship targets
precisely from the interference of multiplicative non-Gaussian
coherent speckle is still a challenging task due to the discrete-
ness, variability, and nonlinearity of ship scattering features. A
detection framework based on hierarchical sampling represen-
tation is introduced to alleviate the phenomenon in this article.
First, ships in SAR images exhibit multiplicative non-Gaussian
coherent speckle, which introduces nonlinear characteristics under
the imaging mechanism of SAR. Therefore, a statistical feature
learning module is proposed with a learnable design to describe the
nonlinear representations and expand the feature space. Second,
our method designs a convex-hull representation to fit the irregular
contours of ships represented by strong scattering points. Third, in
order to supervise and optimize the regression of convex-hull rep-
resentation, a sparse low-rank reassignment module is employed
to evaluate the positive samples with SAR mechanism and reassign
ones of high quality, which produces better results. Furthermore,
experimental results on three authoritative SAR-oriented datasets
for ship detection application present the comprehensive perfor-
mance of our method.

Index Terms—Convex-hull, ship detection, sparse and low-rank,
statistical feature learning, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) serves as an active re-
mote sensing technique that presents all-day observation

with stability under all-weather circumstances. Typical target
detection in SAR images has become a hot topic due to the rapid
growth of high-quality data [1], [2], [3], [4], [5]. Ship detection
reflects significance in the practical application of SAR remote
sensing [6], [7], [8], [9], due to its key role in harbor management
and maritime security.

Different from continuous linear texture features exhibited
in optical remote sensing images, ship targets and backgrounds
both exhibit multiplicative non-Gaussian coherent speckle with
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extremely low signal-to-noise ratio [10], which represents non-
linear characteristics under the unique imaging mechanism
of SAR [11], causing two major problems in ship detection.
First, in complex scenes, interference in the background may
have similar backscatter intensity to ships [12], which leads
to poor discrimination between ships and background utilizing
first-order linear features such as grayscale intensity. Second,
ship targets composed with speckles represent strong scattering
points with irregular contours [13], indicating the presence of
boundary uncertainty.

Taking the nonlinear characteristic of interference into ac-
count, researchers compensate for the first-order linear fea-
tures such as grayscale intensity by learning differences in the
statistical distribution of targets and backgrounds, which can
be roughly divided into pixel-level statistical feature learning
method and feature-level statistical feature learning method.
Pixel-level statistical feature learning method [14], [15], [16]
classifies pixels by estimating the local statistical distribution,
which is guided through a constant false alarm rate (CFAR)
on the decision criterion [17]. The paradigm performs sensi-
tively to heuristic parameters of the statistical model, resulting
in relatively low robustness. Feature-level statistical feature
learning methods treat ship targets as one or more connected
high-dimensional feature points to provide deeper statistical
and structural information, among which the most representa-
tive one is superpixel segmentation [18], [19], [20], [21], [22],
[23], [24]. The feature accuracy of these methods depends on
the heuristic design of high-dimensional feature map genera-
tion procedure and decision vector. More recently, techniques
based on convolutional neural network (CNN) have significantly
boosted the state-of-the-art (SOTA) approaches for SAR object
detection [25], [26], [27]. CNN-based methods cascade deep
networks with conventional statistical feature learning methods
at the feature or decision level to supplement nonlinear statistical
feature descriptions [28], [29], [30]. However, the learning pro-
cedure of SAR image statistical characteristics by deep networks
still relies on a simple cascade of heuristic designed statistical
feature inputs. The network learning process adopts a large
number of first-order linear transformations to extract multiple
first-order moment features, which are performed to implicitly fit
higher-order statistical features. As a result, it remains difficult
to fit the nonlinear statistical features introduced by speckle
phenomena, and the interpretability of the learning process is
poor.

To ease the burden of boundary uncertainty and prediction
for irregular contours, studies have focused on innovating SAR
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mechanism and developing mechanism detection models, which
decompose SAR images or its feature maps into a pair of
matrix components that represent ships with sparse character-
istic and background with low-rank property. In other words,
ship detection performs equivalently to application of sparse
signal recovery [31]. These methods [32], [33], [34] can achieve
strong stability and robustness with accurate prior knowledge
such as sea clutter distribution prior, low-dimensional feature
subspace vector prior, etc. CNN-based methods rely on the
strong adaptability to implicit mechanisms through hierarchi-
cal learning without heuristic priors. A part of these methods
introduces strong scattering points as the target sampling rep-
resentation [13], [35], and explicitly supervises deep network
learning using rectangular boxes composed of regression strong
scattering point sets [36]. Another part implicitly guides feature
learning direction through attention modules to optimize the
accuracy of high-dimensional semantic features [37], [38], [39],
[40]. Despite the fact that the above CNN-based methods achieve
promising performance in SAR ship detection, fixed rectangular
prediction boxes are still adopted to represent ship targets. The
characterization for the mechanism of irregular target scattering
points is not accurate, which makes it difficult to fit the feature of
target scattering points. Besides, the above CNN-based methods
rely on feature extraction and enhancement modules based on
optical continuous texture to implicitly learn the mechanism of
SAR ship targets, while ignoring the sparse low-rank mechanism
unique to SAR targets and backgrounds.

In order to address the adverse effects of the absence of explicit
statistics, mechanism learning, and fuzzy ship representation, a
hierarchical ship detector is proposed in this article to fit SAR
ship targets with statistical characteristics and unique mecha-
nism, which is briefly presented in Fig. 1. Three modules are
introduced to couple SAR characteristics and unique mechanism
with CNN at three basic levels of detection network. First, for
the level of feature extraction, a nonlinear description module
with learnable ability is developed for the nonlinear features
introduced by the multiplicative non-Gaussian speckle. The
module is introduced to explicitly describe and fit the nonlinear
statistical features introduced by the speckle effect through the
network, which outputs statistical feature maps as the basis of
the following procedure of representation regression. Second,
for the level of representation regression, we introduce a fine-
grained convex-hull representation learning module that fits the
virtual contour of the space spanned by the internal texture
through statistical features, to fit irregular scattering points of
ships. Third, for the level of supervision, a reassignment module
is introduced to supervise and optimize the above representation
regression with explicitly modeling the sparse low-rank mech-
anism.

The contributions of this article can be summarized as follows.
1) A feature description module for point statistical learning

named quadratic statistical learning module (QSLM) is
designed for explicitly describing the nonlinear statistical
features introduced by fitting the speckle effect, and ex-
panding the feature space to compensate for the lack of
nonlinear statistical feature learning with the convolution
module.

Fig. 1. Illustration of sampling representation in our method and comparisons
of traditional representations. (a) Denotes the common sampling representations
in object detection tasks, respectively. (b) Presents sampling representation in our
framework. A precise representation explicitly fitted by statistical features and
mechanism is proposed to optimize the representations designed for objects in
optical images, which alleviates the lack of description for nonlinear features and
the presence of boundary uncertainty caused by coherent speckle. (a) Traditional
sampling representation. (b) Hierarchical sampling representation.

2) A convex-hull generation module (CGM) with sparse
low-rank convex-hull reassignment (SLCR) is proposed to
optimize the fuzzy representation for rectangular areas of
ship targets. By introducing a sparse low-rank mechanism
between target sampling points and background, accurate
regression of polygonal representation is supervised and
optimized.

3) A hierarchical sampling representation framework is de-
veloped to adapt to the application of SAR ship detection.
According to the SAR statistical characteristics and imag-
ing mechanism, this framework describes the nonlinear
statistical features introduced by the speckle effect and
extracts the polygonal representation of ship targets with
sparse low-rank mechanism learning.

The rest of this article is organized as follows. Related
works are introduced in Section II, and overall architecture
with model details in our method is described in Section III.
The following results of experiments and ablation analysis are
presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

In this section, previous methods of SAR ship detection and
related object detection in natural images are summarized. The
descriptions of CNN-based statistic learning methods, sparse
low-rank mechanism learning methods, and CNN-based object
detection methods with convex-hull representation, are provided
below, respectively.
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A. Statistical Feature Learning of CNN-Based Object
Detectors

CNN-based object detection methods remain challenging
applied to SAR scenes on account of the domain mismatch
from natural scene, which present unique characteristics and
mechanism. One of the most representative characteristics of
SAR image is the nonlinear statistical features introduced by
fitting the speckle effect.

Recently, researchers have introduced various methods to
couple the CNN framework with traditional statistical feature
learning. Kang et al. [29] introduced the region proposed net-
work in Faster R-CNN to the prediction of protected window of
sea clutter statistics in CFAR ship detection. Khesali et al. [28]
presented heuristic extraction of texture features as input to
CNN detector. Guo et al. [30] performed GMM modeling to
fit the distribution of strong scattering point areas extracted
from scattering information with clustering and introduce en-
hanced strong scattering point area as a single channel input
to CNN. Liu et al. [41] designed a single-layer network to
learn statistical feature as input to ordinary CNN. However,
the lack of effective strategy to integrate statistical character-
istics and CNNs remains in the above methods. The learning
procedure of statistical characteristics by deep networks relies
on a simple cascade of heuristic designed statistical feature
inputs with relatively poor interpretability. Therefore, a learn-
able nonlinear description CNN module is involved in this
article.

B. Sparse Low-Rank Mechanism Learning

SAR ship detection task can be regarded as a process pf sparse
signal recovery, in which ships present sparse characteristic
with its pixels sparsely distributed, while sea clutter can be
represented as low-rank feature matrix due to the random variety
of its pixel values. Specifically, ship detectors based on sparse
low-rank mechanism can be classified to global inference and
partial window under the decision criterion whether a window
sliding strategy is adopted in background clutter dictionary.

As for global inference research, Song et al. [31] developed the
theoretical basis that ship detection can be equivalent to decom-
position of SAR images into a matrix component that represents
ship and another that represents background by introducing a
probabilistic model. Zhang et al. [42] decomposed a circular
SAR image sequence as low-rank static clutter component and
sparse target component to detect moving targets. Li et al. [34]
intercorporated the low-rank property and sparsity constrains
into the SAR image reconstruction model with the goal of SAR
image reconstruction and target extraction from undersampled
data. As for partial window methods, Wang et al. [33] developed
a superpixel detector for SAR ships, in which the Fisher vector
of each superpixel is extracted to represent the feature of it,
and judge the superpixel through the criteria that the linear
combination of the dictionary for background feature vectors
can formulate feature vector of any background superpixel. Al-
though the above methods based on mechanism learning perform
relatively acceptable in ship detection tasks of homogeneous

background, they suffer the burden of numerous hyperparame-
ters for background clutter modeling and sparse decomposition
design to fit the practical changing scene. Therefore, a SLCR
module is added to CNN framework for adaptively learning ship
mechanism with high robustness.

C. Convex-Hull Representation

Orientation representation is introduced to classical object
detectors to model the varying-oriented targets in optical scenes.
Ding et al. [43] optimized the learning process of orientation
representation through introducing an improved rotated RoI
module, and R3Det [44], ReDet [45], and Oriented RCNN [46]
constantly improve the representation of oriented bounding box
to achieve SOTA, subsequently. However, the representation is
designed to fit the CNN feature grids that are axis-aligned, as
a result of which it partly fails to adapt objects with complex
geometric structure in dense scenes. To solve the problem,
Guo et al. [47] introduced convex-hull representation composed
of adaptive point set to dense object detection, which avoids
feature aliasing via learnable feature adaption. Li et al. [48]
optimized the learning process for adaptive points of convex-hull
representation with an improved samples assignment strategy.
There still remains gap of semantic representation between ship
with speckle noise, which exhibits strong scattering point set
with irregular layouts, and features on regular grids extracted
by the existing rotation-robust detection methods. We model an
adaptive ship representation to alleviate the fuzzy localization
with SLCR strategy.

III. METHODS

The overall framework of our method is illustrated by Fig. 2,
and three-level modules are introduced in the proposed method:
the point statistical learning module for extracting nonlinear
statistic features, the CGM for generating ship representations,
the convex-hull reassignment module to supervise the optimiza-
tion process with sparse low-rank model.

The proposed method adopts a two-stage architecture. In fea-
ture extraction part, ResNet-50 backbone is introduced to extract
convolution feature maps. Additionally, QSLM is incorporated
to learn nonlinear statistical feature maps, which combine convo-
lution feature maps to output features of feature extraction part.
In the representation regression part, we introduce convex-hull
generation module (CGM) to learn fine-grained convex-hull
representation of ship targets, utilizing output features of feature
extraction part. The fitting procedure of convex-hull representa-
tion adopts a two-stage regression of adaptive feature points to
optimize the accuracy of localization. Finally, in the supervision
part only applied in the training procedure, the sparse low-
rank convex-hull reassignment (SLCR) module is introduced
to reassign the positive samples of convex-hulls generated by
representation regression part with SAR mechanism, which
directs the learning of network to fit SAR characteristics and
mechanisms. The proposed hierarchical modules are detailed in
the following.
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Fig. 2. Overall architecture of our method. The convex-hull representation is learned through an anchor-free framework, and the convolution feature map is
attained through a backbone with FPN. The reassignment scheme of convex-hull samples is only applied to the proposed framework in the training phase.

A. Point Statistical Learning Module

Architecture of fully convolution in CNN-based object detec-
tion methods presents powerful capability of feature extraction
and achieves stability in varying application scenes. However,
the application of a large number of first-order linear transforma-
tions (convolution) supplemented by nonlinear dimensionality
reduction (pooling) and quantitative highlighting (activation)
to extract multiple first-order moment features, which are per-
formed to implicitly fit higher order statistical features, remains
difficult to fit the nonlinear statistical features introduced by
speckle phenomena, and the interpretability of the learning
process is poor.

Instead, in this article, we employ QSLM to mitigate this
problem. Additionally, the module is essentially a nonlinear
description module aimed at explicitly describing the nonlinear
statistical features introduced by the fitting speckle effect, which
compensates for the loss of linearly indivisible features.

As an active remote sensing radar, SAR antenna transmits
electromagnetic waves and receives echo signals to produce
SAR images [49]. The backscattering signals can be represented
as the coherent sum of the large number of elementary scatterers
within a resolution cell. Based on the above physical process,
inherent variation arises as a result of interference among co-
herent echoes, which is called speckle [50]. The expression of

SAR backscattering signal is formulated as follows:

Sbs =

N∑
k=1

Ake
jϕk (1)

where Sbs denotes the SAR backscattering signal. N denotes
the number of scatters located within the resolution cell, Ak

and ϕk indicate amplitude and phase of the kth backscattering
echoes, respectively. Speckle presents as fluctuations at pixel
level among adjacent resolution cells inSbs, causing the intrinsic
randomness of SAR signals [49].

Although speckle is suppressed as noise to approximate the
paradigm of optical image interpretation in some circumstances,
characterization of the speckle statistics becomes a principal
research domain in SAR interpretation to extract variation in-
formation [50], [51], [52], [53]. The construction of a specific
mathematical model of the statistical analysis is extensively car-
ried out in SAR domain as for the intrinsic randomness of SAR
signals with speckle effect [54]. Numerous statistic distributions
are introduced to approximate scattering environments [49],
[55], [56], [57], [58], [59], as are presented in Fig. 3. Estimating
parameters of statistical model is a significant method to define
it, one of which is commonly used is the method of moments
(MoM). MoM estimations of typical statistical models are pre-
sented in Table I.
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Fig. 3. Model and relationship of statistical distribution for SAR images.

TABLE I
MOM ESTIMATION OF TYPICAL DISTRIBUTIONS

m1, m2
1, and m2 denote the first-order moment, the square of

first-order moment and the second-order moment, respectively.
L denotes the number of looks and Γ(·) denotes Gamma func-
tion, namely, Γ(x) =

∫ +∞
0 tx−1e−tdt. As is shown in Table I,

moment estimation is basically composed of the first-order
moment with its square and the second-order moment as its
elementary components. In other words, the statistical feature
of SAR data can be described by fitting the above three compo-
nents.

Considering the input feature map which can be denoted by
a three-order tensor X ∈ RH× W× C, as H and W indicate height
and width in spatial dimension of it, respectively, whileC reflects
the channelwise number of feature maps, the vectorized form for
a given channel can be represented as xi = [x1, x2, . . . , xm]T ,
where m = H × W and i = 1, . . . ,C. These moment values of
xi are formulated as follows:

m1 =
1

m

m∑
j=1

xj (2)

m2 =
1

m

m∑
j=1

x2
j (3)

where m1 and m2 characterize the statistic distribution as first-
and second-order moments, respectively.

As above, m1 serves as an exceptional case of convolution
operation with its kernel weights set to 1

m . However, m2 and
m1

2 cannot be achieved through convolution operations because
of its quadratic terms x2

j and cross terms xjxk, As a result of
which CNN detectors cannot fit the nonlinear statistical feature
explicitly. QSLM is inspired by quadratic form in linear algebra
theory, which is introduced to fit m2 and m2

1. Above quadratic
terms and cross terms can be expressed by a quadratic polyno-
mial with quadratic primitive introduced to CNN in this article,
which can be formulated as

Q1(x1, x2, . . . , xm) = q11x
2
1 + q12x1x2 + . . .+

q1mx1xm + q21x2x1 + q22x
2
2 + . . .+

q2mx2xm + . . .+ qm1xmx1 + qm2xmx2 + qmmx2
m

=

m∑
j=1

qjjx
2
j + 2

m−1∑
k=1

m∑
l=k+1

qklxkxl

= ωT
QVec(xix

T
i ) (4)

where Q1(x1, x2, . . . , xm) denotes the output feature map of
quadratic primitive, qjj and qkl indicate the weights of quadratic
and cross terms, both of which are introduced to fit m2 and m2

1.
Vector expression above in (4) is abstracted to simplify the pro-
posed quadratic primitive, where ωQ = (q11, q12, . . . , qmm)T ,
which can be learned by deep network as matrix of kernel weight
equivalent to quadratic and cross weights, and Vec(·) denotes the
vectorization operation.

In contrast, convolution primitive in CNNs can be formulated
as

Q2(x1, x2, . . . , xm) = a1x1 + a2x2 + . . .+ amxm

=
m∑
j=1

ajxj = ωT
Cxi (5)

where Q2(x1, x2, . . . , xm) denotes the output feature map of
convolution primitive in CNNs and ωC = (a1, a1, . . . , am)T

denotes the learnable weights of convolution kernel.
To avoid discarding the learning of first-order linear feature,

both output feature maps of convolution primitive and proposed
quadratic primitive are combined in QSLM with elementwise
addition followed by activation in backbone to characterize
the distribution of features. The visualization of the calculation
process for a 2×2 sliding window is shown in Fig. 4. Therefore,
operation of QSLM can be formulated as

Q(x1, x2, . . . , xm) = ωT
Cxi + ωT

QVec(xix
T
i ) (6)

where Q(x1, x2, . . . , xm) denotes the output feature map of
QSLM in this article.

In details, the kernel of primitive in QSLM is designed to size
of 3× 3. Inspired by the convolution primitive, local feature map
with equal size of above kernel is dimensionality reduced to 1-D
feature vector, which performs autocorrelation subsequently to
generate quadratic feature map xixi

T in (6).
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Fig. 4. Architecture of the proposed QSLM. Here, visualization of the calcu-
lation process for a 2×2 sliding window is shown, where the learnable quadratic
weights and convolution weights are vectorized as ωQ and ωC , respectively.
Besides, output of QSLM maintains consistency in spatial dimension with input.

To further analyze the statistical learning of feature maps
generated by cascade convolutions in CNN, we denote input
SAR image with N0 pixels as X0. The i0th pixel of N0 can be
represented as x0

i0
. Then, the i1th pixel of output feature map

X1 generated by the first convolution can be formulated as
follows:

x1
i1

=

N1∑
i0=1

a1i0x
0
i0

(7)

where N1 denotes the number of cells in the convolution kernel,
and a1i0 indicates the learning coefficient of convolution kernel
at i0th pixel. Analogously, the imth pixel of output feature map
Xm generated by the mth convolution can be formulated as
follows:

xm
im

=

Nm∑
im−1=1

amim−1
xm−1
im−1

(8)

where Nm denotes the number of cells in the mth convolution
kernel, and amim−1

indicates the learning coefficient of mth con-
volution kernel at im−1th pixel of (m− 1)th feature map. Taking
Xm as input of quadratic primitive, the im+1th pixel pm+1

im+1
of

output feature map Qm+1 generated by the quadratic primitive
can be calculated as follows:

pm+1
im+1

=

Nm+1∑
im=1

qimim(xm
im
)2

+2

Nm+1−1∑
km=1

Nm+1∑
lm=km+1

qkmlmxm
km

xm
lm

(9)

where Nm+1 denotes the number of cells in the (m+ 1)th
quadratic kernel. qimim and qkmlm indicate the learning coef-
ficients of quadratic and cross terms.

We can find out the fact that the module learns permutation and
combination among multilayer coefficients for the cross terms
of pixels within original images, when the above formula is ex-
panded. The phenomenon theoretically represents the statistical
feature learning of the module among neighborhoods of pixel
spaces in the original image, which corresponds to the theory
of feature-level statistical feature learning methods, especially
superpixel ones, that are mentioned in Section I. In summary,
QSLM fits deeper statistical and structural features through

Fig. 5. Architecture of the CGM. The opaque dots reflect the adaptive repre-
sentation points of the current stage, while the transparent dots represent ones
of the previous stage. The transparent dashed lines reflect the 2-D directions of
offsets. Besides, Conv and DCN denote convolution and deformable convolu-
tion, respectively. Lloc, LIOU, and Lcls represent loss of localization, IOU, and
classification, respectively.

high-level feature maps that reflect statistical distribution among
neighborhoods of pixel spaces in SAR images.

B. Convex-Hull Generation Module

Most ships exhibit discrete set of strong scattering points
composed of speckle noise in SAR images due to the physical
property that the metal shells of ships possess strong scattering
properties of electromagnetic, as a result of which boundary
uncertainty of ship targets exists. Existing CNN-based methods
still use fixed rectangular prediction boxes for ship representa-
tion to fit axis-aligned CNN feature grids, which is difficult to
adapt features to cluster of strong scattering points with irregular
layouts in SAR images.

Convex-hulls are introduced to represent contours of ships in
the proposed method, each of which consists of learnable adap-
tive points to characterize the distribution of strong scattering
points in SAR ship. The CGM is proposed to optimize the fuzzy
representation of rectangular areas of ship targets and learn to
delimit the contour of ship through adaptive feature points in
this article.

Inspired by [47], the convex-hull representation of ship targets
is defined as

Ri = {(xk
i , y

k
i )}

k=1,2,...,9

i (10)

whereRi presents convex-hull representation for the ith location
(xk

i , y
k
i ) on the feature maps X ∈ RH×W×C consisting of 9

representative points, which are located as 3 × 3 grids at the
initialization phase.

As shown in Fig. 5, proposed CGM consists of two stages
following RepPoints [60] framework. At initialization stage, the
backbone feature map is input to localization and classification
subnets. Three 3 × 3 convolution layers followed by a 2-D
offsets prediction head are introduced to the localization subnet.
The initialized representative point sets are generated by object
center point hypothesis (feature map bins) at the initialization
stage, which is equivalent to predict an offset (Δxk

i ,Δyki ) for
each representative point from the center point with convolution
operation. The classification subnet applies the same structure
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with offsets prediction part of localization one, with a 3 × 3
deformable convolution layer followed.

At the refinement stage, a 3 × 3 deformable convolution layer
is introduced to predict the refine offsets and updates the accurate
set of representative points by refining from the first point set
in the localization subnet. The Jarvis March algorithm [61] is
introduced to generate a minimal convex-hull of ship targets on
the refined point set above. Since the algorithm will determine
whether each representation point serves as the outer contour of
the minimum convex-hull, the number of representation points
that compose the outer contour is less than or equal to 9.

In details, GIOU [62] is introduced to construct positive candi-
dates between predictions and labels. Classification is conducted
only on the first stage of CGM and for both stages, only positive
convex-hull are assigned with localization targets in training.

To further elucidate the advantage of CGM representation, the
elaborations of [60] and [47] are introduced in this part. [60] ap-
plies an initialization followed by refinement learning procedure
for adaptive points to compose a representation of horizontal
bounding box, which is designed for targets in fixed orientations
of natural images. Guo et al. [47] reserved the learning procedure
and improved the representation as convex to fit the targets in
arbitrary orientations of optical remote sensing images. Mean-
while, an optimized module is introduced to refinement stage to
fit densely packed objects.

In CGM, we innovatively introduce the convex-hull repre-
sentation to fit the irregular contour of SAR ship granularly.
However, the edge of the SAR ship target presents as virtual
contour that serves as equivalent to space spanned by internal
texture of target, as a result of which it fails to be learned by
edge fitting. To optimize the domain gap mentioned above, as
for feature extraction, statistical feature maps are introduced to
learn convex representation in order to implicitly fit the internal
texture of target, which is different from fitting procedure for
representation of the above methods that are rooted in learning
linear grayscale variation of object edge in optical images. As
for the optimization, a reassignment module based on SAR
mechanism is introduced to the refinement stage to explicitly
supervise the fitting procedure of the virtual contour, which
differs from the above methods in the supervision of refinement
stage, as the natural fitting procedure of CNNs can already
satisfy the representation of target edges in natural or optical
remote sensing images.

C. SLCR Module

Although the proposed convex-hull representation facilitates
localizing ships with arbitrary layouts, learning high-quality
convex-hull points coincident with the mechanism of ship targets
and background is essential to capture features with the unique
SAR mechanism adaptively for ship localization. To this end,
we proposed an assignment scheme to measure how the learned
representation accords with sparse low-rank mechanism and
optimize feature expression of positive samples at the training
stage.

Similar to [48], a quality measure score S is defined to ap-
praise the learned representative points of convex-hull represen-
tation, which is formulated according to three aspects, including

ability of localization, classification, and adaptability to sparse
low-rank mechanism. Thus, S can be denoted as follows:

S = λ1Sloc + λ2Scls + λ3SSR (11)

where Sloc, Scls, and SSR indicate localization score, classifica-
tion score, and sparse low-rank score, respectively. λ1, λ2, and
λ3 are the weighting factors for these scores, respectively.

As for the localization score Sloc and classification score Scls

of a convex-hull point set, we utilize the localization loss Lloc

and classification loss Lcls corresponding to its classification
confidence as evaluation of localization and classification ability,
which does not incur extra computational load. Therefore, Sloc

and Scls can be defined as follows:

Sloc(Ri, gj) = Lloc(R
loc
i , gloc

j ) (12)

Scls(Ri, gj) = Lcls(R
cls
i , gcls

j ) (13)

where gloc
j and gcls

j are points position and class label with the
ground-truth gj , Rcls

i and Rloc
i indicate the classification confi-

dence and localization of convex-hull point set Ri, respectively.
We expect compatibility of feature and position of the points as-
sessed by the scores. Although the above scores measure spatial
location distance and feature similarity between convex-hulls
and labels, the compatibility of distribution with sparse low-rank
mechanism is not evaluated as mentioned earlier.

SAR ship detection task can be regarded as a process pf sparse
signal recovery, in which ships present sparse characteristic with
its pixels sparsely distributed. Meanwhile, the feature vectors
of sea clutter maintain relatively high correlation with each
other and the statistical distribution of background clutter can
be decomposed into low-dimensional subspaces composed of a
few effective bases, which is called low-rank mechanism. The
feature vectors of background can be represented as the linear
combination of effective bases in background clutter dictionary
(BCD). In contrast, the corresponding feature vectors of ship
sample points can not be represented as it, which means low sim-
ilarity between the feature vectors of ship and background. The
representation of sparse and low-rank characteristic is shown in
Fig. 6.

Based on the above concept, the sparse low-rank score SSR is
proposed to measure compatibility of sample points distribution
with sparse low-rank mechanism. Specifically, metrics of cosine
similarity is introduced to calculate the mechanism between the
feature vectors of representative points. Considering vi,j as the
corresponding feature vector with the jth point of the ith set of
convex-hull points, proposed SSR of the ith convex-hull can be
denoted as follows:

SSR = 1− 1

9

∑
j

v∗i,j · v∗i∥∥v∗i,j∥∥× ‖v∗i ‖
(14)

where v∗i,j denotes normalized embedding feature vector for the
jth point of the ith set of convex-hull points and v∗i represents
the mean of normalized embedding feature vectors from the ith
convex-hull set.

As for the reassignment scheme, we model the proposed qual-
ity score of convex-hulls corresponding to certain annotation as
a likelihood maximization for a probability distribution inspired
by [63], as a result of which the probability of label assignment
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Fig. 6. Sketch of the representation for sparse and low-rank characteristic.
Feature visualization of sparsely distributed target pixels from different parts,
speckle clutter and background clutter dictionary are shown in the drawing in
the right, respectively.

Fig. 7. Reassignment scheme of SLCR to separate samples using their proba-
bilities. The decision criteria for assignment is abstracted to the division of two
distributions from Gaussian mixture model.

can be calculated to reassign the convex-hull samples. Then, the
Gaussian mixture model (GMM) of two modalities is introduced
to fit the above samples with expectation-maximization (EM)
algorithm applied to optimize. After EM estimation, the positive
samples of reassignment can be determined with a heuristics sep-
aration boundary based on convex-hull probabilities, as shown
in Fig. 7.

Noting that positive samples exhibit inadequate for modeling
a GMM of two modalities in certain extreme situations of a
small number of samples, dynamic k label assignment proposed
by [48] is introduced to reassign the convex-hull samples to
avoid training interruptions.

IV. EXPERIMENTS

A. Dataset and Settings

Three ship datasets containing public SAR images and expert
rotated annotations are introduced to construct the experiments:
SAR ship detection dataset (SSDD+ [64]), the high-resolution
SAR image dataset (HRSID [65]), and rotated ship detection
dataset (RSDD [66]). Based on the following considerations,
above datasets are chosen from existing public SAR ship datasets
to perform the experiments. First, due to the fact that ship targets

exhibit special characteristics with large aspect ratio, rotated
annotation introduces less background noise and accurately
characterizes the features of independent samples in locally
dense scenes such as ports, etc., compared to vertical annota-
tion. Second, the images in the above datasets cover complex
scenarios with different sizes, which is appropriate for evaluating
robustness and reflecting performance.

1) SSDD+: 1160 SAR images with 2540 rotated instances
in various scenes compose the SSDD+, whose source varies
in RadarSat-2, TerraSAR-X, and Sentinel-1. The images of
SSDD+ possess a wide range of spatial resolutions, which vary
from 1 to 15 m, and all polarization modes are included. SSDD+
is randomly reconfigured to a combination of training set and
test set at 0.8 training rate, specifically 928 images in the former
and the remaining 232 images in the latter.

2) HRSID: HRSID consists of 5604 images from Sentinel-
1B, TerraSAR-X, and TanDEM-X with 16 951 expert annotation
instances. The images with 800 × 800 pixels in HRSID covers
various resolutions between 1 and 5 m corresponding to diverse
scenes, which originate from 136 high-resolution SAR images.
The official publisher of HRSID reconstruct it as a training
part involving 1962 images coupled with a test part with 1962
images. We follow the division in the following experiments.

3) RSDD: RSDD includes 7000 SAR images originated
from sources of GF-3 and TerraSAR-X satellites, which are
cropped from 127 panoramic SAR images. It consists of
10 263 ship instances with multiple imaging modes, polarization
modes, and resolutions, which are efficiently annotated through
intelligent annotation with expert revision. Notably, the founders
of RSDD assign 5000 images to training set and 2000 remaining
images to test set. We follow the division in the following
experiments.

B. Implementation Details

1) Data Preprocessing: For training, SSDD+ and RSDD
images are resized to 512 × 512 in pixel dimension as the input
of the network, while HRSID ones are processed to 800 × 800
pixels. Bilinear interpolation algorithm is applied as a resizing
operation. Images are randomly filliped horizontal, vertical and
diagonal with a 25% probability for data augmentation. Besides,
SAR images with single channel in experimental datasets are
expanded to three channels through self-replication.

2) Optimization: The stochastic gradient descent (SGD) al-
gorithm [76] is introduced to instruct gradient descent in network
training with its momentum set to 0.9 and a 0.0001 weight decay.
Heuristic training parameters over a Nvidia TitanXP GPU are
determined as 40 epochs with the learning rate initialized to
0.008 in which 0.1 step strategy adopted at 24, 32, and 38
nodes. The ResNet50 [77] backbone in detectors of experiments
is pretrained on ImageNet dataset, and models in this article are
trained based on the pretrained weight.

3) Inference: In the test stage, images are processed to the
same size as trained ones for the input of the network. The
NMS [71] is introduced to the inference results to remove
duplicate bounding boxes.
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C. Evaluation Metrics

We adopt four widely used and authoritative metric to quanti-
tatively assess the detection performance, which are defined as
follows.

For every predicted rotated bounding box Rpre, IoU is calcu-
lated with its corresponding annotation Rgt, which is calculated
as follows:

IoU =
area(Rpre ∩Rgt)

area(Rpre ∪Rgt)
. (15)

Additionally, precision and recall can be calculated as funda-
mental norms in estimate of the detection performance based on
the concept of IoU, which can be formulated as follows:

P =
Ntp

Ntp +Nfp
(16)

R =
Ntp

Ntp +Nfn
(17)

where Ntp represents the number of true positives (TP). In SAR
ship detection task, TP is defined as a detection result associ-
ated with certain annotation, where IoU exceeds the heuristic
threshold. Instead, Nfp denotes the number of false positives
(FP) and FP serves as a detection result with IoU below the
same threshold. Otherwise, Nfn represents the number of false
negatives (FN), which denotes the ground-truth whose IoU
between itself and any detection results is below the threshold.

Besides, we leverage F1 to balance the reflection on detection
performance of the above two metrics in order to evaluate models
in a comprehensive manner, which is calculated as follows:

F1 =
2× P ×R

P +R
. (18)

The precision-recall (PR) curve serves as a function fitted
by pairs of precision and recall calculated in an equally spaced
sequence of confidence threshold. Additionally, AP presents the
comprehensive capacity of algorithms, which is calculated due
to the area under the PR curve. Given the IoU of 0.5, according
to [78], AP is formulated as

AP =

∫ 1

0

P (R) dR. (19)

It is noticeable that mean average precision (mAP) serves
equivalent to AP in this article, considering that ship detection
task has single-class detection attributes.

D. Ablation Experiments

Multiple ablation experiments are implemented to analyze
and evaluate the influence of each proposed component. In
this section, the baseline network is coupled with the QSLM
and SLCR for comparison under the same experiment settings,
respectively. Taking oriented RepPoints as the base framework,
mAP metric is selected to evaluate the module ablation in
Table III.

1) Effect of QSLM: As shown in Table III, backbone with
QSLM module gains 0.4% on mAP with SSDD+, 2.0% with
HRSID and 1.0% with RSDD, which validates that the proposed

component achieves comparable performance. Ship targets and
backgrounds both exhibit multiplicative non-Gaussian coher-
ent speckle with extremely low signal-to-noise ratio, which
represents nonlinear characteristics under the unique imaging
mechanism of SAR. Therefore, this module explicitly describes
the nonlinear statistical features introduced by the speckle effect
to enhance the learning ability of linearly indivisible features in
SAR images. In conclusion, the proposed QSLM enhanced the
feature extraction ability through learning of statistical features,
and detectors with it prove gains on performance of mAP metric.
Additionally, the proposed QSLM is a learnable primitives of
feature extraction without extra supervision introduced to net-
work.

To further analyze the impact of QSLM on feature extraction,
experiments of QSLM located in various parts of the detection
framework on HRSID are devised. As shown in Table IV,
base framework of convex-hull representation without tricks
is introduced as B0 with backbone of Resnet50 to eliminate
interference influence. Among M01 to M05, B0 with QSLM
located in different part are constructed. We choose three stages
in backbone and two locations in detection head as comparative
experiments. One can see that the network with QSLM located
in stage4 achieves the highest performance. We assume that the
statistical features extracted by shallow layers such as stage1
is diluted by subsequent linear feature extraction causing the
decline detection performance, and the feature maps extracted by
deep layers such as stage5 lose significant statistical information.
Thus, Resnet50 with QSLM located in stage4 is used in our
detectors.

In addition, a convolution control trial is devised to elimi-
nate the impact of deepening the network, which is shown in
Table V. B1 represents the baseline Oriented RepPoints, while
M12 indicates the baseline with QSLM combined in stage4 of
its backbone, and C12 represents B1 with a pair of convolution
module combined to the same position of its backbone. One
can see that the parallel convolution module added to the same
location as QSLM has a slight impact on feature extraction,
which demonstrate the effectiveness of proposed module.

Feature heatmaps of various scenes in Fig. 8 are introduced
to intuitively visualize the effect of statistical feature learning in
feature extraction, which are generated by the stage 4 of back-
bone networks. As shown in Fig. 8(b), the feature extracted by
traditional convolutional backbone cannot represent semantics
of ships precisely under the shape variety caused by coherent
speckle. In contrast, Fig. 8(c) presents more integrated heatmaps
of same ships, which reflects more precise feature attention.
Meanwhile, as displayed in Fig. 8(b) and (c), due to the absence
of statistical learning, features extracted by baseline model
suffers low discrimination between targets and background, as
a result of which false alarms appear in inshore scenes. There-
fore, the supplement to linear features and promotion to feature
extraction of statistical feature learning are demonstrated.

Besides, as displayed in Fig. 8, the proposed QSLM in the
first row presents relatively less effective on suppression of
background features in comparison to those in the subsequent
rows (second, third, and fourth), which reflects potential clar-
ity constraints in the efficacy of the module. To address this
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TABLE II
COMPARISON OF DIFFERENT ORIENTED CNN-BASED METHODS ON THREE DATASETS

TABLE III
ABLATION STUDY OF THE PROPOSED METHOD (MAP)

phenomenon, RaRes (radiometric resolution) is introduced to
evaluate the quality of background clarity to describe optimal
range of applicability for the module, which is calculated as
follows:

RaRes = 10 lg

(
σ

μ
+ 1

)
(20)

where σ and μ denotes the standard deviation and mean of SAR
image, respectively. RaRes serves as an indicator for measuring
the grayscale clarity of SAR images, which distinguishes the
backscattering coefficient of targets by describing the radiation
quality of each pixel.

After analyzing above metric, we find out that features of
foreground ships can be reinforced explicitly and background
features be suppressed under the conditions where RaRes > 2.5.

TABLE IV
INFLUENCE OF DIFFERENT QSLM POSITIONS

On the contrary, although features of foreground ships can be
refined by statistical features introduced by QSLM, the suppres-
sion of background features suffers relatively decline under the
conditions where RaRes ≤ 2.5. We assume that the discrimi-
native features of background are difficult to fit in scenes with
extremely low quality of clarity, as the statistical distributions
of background is disturbed by the imaging quality.

2) Effect of SLCR: As displayed in Table III, the introduction
of SLCR module in training phase raises promotion to mAP
metric with 0.8 % on SSDD+, 0.7% on HRSID, and 0.4%
on RSDD, respectively, which indicates the necessity of reas-
signment scheme. As mentioned in Section III-C, ship targets
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Fig. 8. Visualization of extracted ship features. (a) Original SAR images. (b) Heatmaps of features extracted by baseline. (c) Heatmaps of features extracted by
baseline with QSLM.

TABLE V
PERFORMANCE OF CONVOLUTION CONTROL EXPERIMENT

composed with speckle noise represents strong scattering points
with irregular contours, indicating the presence of more positive
sample points with low quality compared to optical images.
As the sparse low-rank mechanism can model the distribution
of strong scattering points in ships, this model can evaluate
the quality of positive sample points learned by the network
precisely and suppress sample points with low quality, which
may result in false alarms and vague localization.
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TABLE VI
INFLUENCE OF EACH QUALITY SCORE IN SLCR (MAP)

TABLE VII
EFFECT OF DIFFERENT WEIGHTING FACTORS OF QSR

Each component of the quality measure is introduced to the
reassignment scheme term-by-term in order to analyze perfor-
mance. Base framework of convex-hull representation with-
out reassignment module is introduced as baseline. Table VI
presents that reassignment scheme with modeling quality score
of classification and localization suffers a decline on detection
performance, which proves the fact that traditional estimation
parameters cannot represents the statistical distribution of SAR
ships completely. The sparse low-rank mechanism is proved to
be effective in evaluation of samples for SAR ships due to the
fact that the comprehensive quality score reaches top in detection
performance. Yet notably, the sparse low-rank scoring is a sup-
plement to basic sample assignment schemes with classification
and localization in detection framework on SAR images, which
can explain the phenomenon of huge decline on AP with only
sparse low-rank score introduced to model the positive samples.

The weighting factors λ3 of sparse low-rank score QSR in
the quality measurement component also played key roles. We
select five different weighting factors for comparative study on
SSDD+. The weighting factor 0.1 reaches top in all metrics in
Table VII. We assume that the quality of localization and classi-
fication mainly dominate the processing of network learning, as
the features extracted by the network mainly consist of first-order
moment features. Thus, an appropriate weighting factor can
be set to balance the influence among scores of localization,
classification, and sparse low-rank mechanism to optimize the
scheme.

E. Performance Analysis of Oriented Object Detectors

Typical oriented object detectors from related domains are
introduced to construct the comparison experiments, which
can be detailed as: 1) recently published methods with ori-
ented object detectors for optical remote sensing images,
including oriented-based RetinaNet [67] (RetinaNet-OBB),

Fig. 9. PR curves of typical methods on SSDD+.

Fig. 10. PR curves of typical methods on HRSID.

CSL [68], S2ANet [69], ReDet [45], R3Det [44], oriented-
based FCOS [70] (FCOS-OBB), Rotated-based RepPoints [60]
(RepPoints-OBB), oriented-based Faster RCNN [71] (Faster
RCNN-OBB), Oriented R-CNN [46], ROI Transformer [43] and
Gliding Vertex [72]; 2) recently published methods with oriented
object detectors for SAR images, including oriented Gaus-
sian function-based BBAVs [73] (O-BBAVs), DCMSNN [74],
DRBOX-v2 [75]; 3) oriented detectors with convex-hull rep-
resentations, including CFA [47] and Oriented RepPoints [48].
All methods of comparison experiments are implemented on
PyTorch framework, except for DRBOX-v2, which is coded with
TensorFlow. Besides, ResNet-50 is introduced as the backbone
of them.

1) Experiments on SSDD+: Table II displays the quantitative
comparison of the above typical detectors and ours on SSDD+,
and the detailed measure curves for the above methods are
introduced in Fig. 9 to provide a comprehensive comparison.
The optimum and suboptimal outcomes for four indexes on three
datasets are marked in bold and italics, respectively. Based on the
results of comparison, our approach achieves optimum results of
both mAP and F1 metric among the detectors, in which the effec-
tiveness of the network with statistical features and mechanism
of SAR combined is verified. Different from the above methods
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Fig. 11. PR curves of typical methods on RSDD.

for optical scenes, the detectors devised for SAR ones, such as
O-BBAVs, DCMSNN, and DRBOX-v2, perform unsatisfactory.
The major cause serves the lack of explicit learning for statistical
features and sample representation of traditional anchors, which
is not fit for the characteristics of strong scattering points with
irregular contours. Meanwhile, the proposed detector outper-
forms the detectors with convex-hull representations designed
for optical scenes due to the introduction of sparse and low-rank
mechanisms, which affect sample quality.

2) Experiments on HRSID: Table II displays the quantitative
comparison of the above typical object detectors and ours on
HRSID, and the detailed measure curves for the above methods
are introduced in Fig. 10. Proposed detector achieves the best
performance on both mAP and F1 metrics, as reported in Table II,
while ReDet and Oriented R-CNN achieve the suboptimal mAP
of 83.2%. Notably, the powerful oriented optical-devised de-
tectors reach effective performance relatively. We assume that
the spatial resolution of images under HRSID varies within a
narrow range of 0.5–3 m, the imaging quality of which is much
higher than one under SSDD+. As a result, the contour of the
ship tends to be fixed and regular, while the characterization of
the scattering cluster corresponds in a way to the continuous
texture features extracted by ships on optical images.

3) Experiments on RSDD: The proposed method reaches
suboptimal performance among detectors listed and outperforms
detectors devised for SAR ships and ones with convex-hull
samples in Table II, while ReDet achieves the highest mAP of
90%. Fig. 11 presents the detailed comparison of performance
by PR curves. The F1 index obtained in the proposed prediction
achieves the highest by exceeding RoI-Trans, which represents
the frontier for oriented-based detectors. Thus, the proposed
methods can effectively reach equilibrium in various indictors,
which represents the comprehensive performance of our work
on extracting features of ships in complicated scenes, as the
RSDD possesses a wide variety of actual scenes. It is noticeable
that the introduction of SAR characteristic learning still raises
a 1.3% promotion on mAP compared to baseline and reaches a
relatively acceptable performance within 0.1% mAP behind the
SOTAs of oriented object detectors.

4) Analysis of PRC: Extra PR curves are introduced to fur-
ther analyze the comparison results in Fig. 12 following [79]
and [80], which include AP50 curve, AP75 curve, localization
error curve, and false alarm curve. PR curves with an IoU thresh
of 0.5 and 0.75 are presented as C50 and C75, and the areas under
them denote AP50 and AP75 metrics, respectively. Similarly,
a PR curve with IoU thresh of 0.1 is present as Loc. Loc
curve is introduced to visually display the impact of localization
error, which is defined as misaligned detection boxes with a
substandard overlap (IoU ∈ [0.1, 0.5)) to the ground truth. BG
represents the PR curve with FP removed under IoU thresh of
0.1, and FN curve fits the performance without FP and FN.

As a result, the areas of several colors in Fig. 12 explains
different physical signification. The white area is equivalent to
AP75 metric as mentioned above. The gray area represents the
AP metric on the IoU thresh of (0.5, 0.75). The blue, purple,
and orange areas reflect the decline of detection performance
due to the inferior-quality predictions with fuzzy localization,
false alarms in background, and missing ships, respectively.

The analysis exhibited in Fig. 12 reflects that the proposed
method also achieves optimal performance of resistance to false
alarms and missing detections. As for the effect of Loc, BG,
and FN, corresponding to the blue area of Fig. 12(a), the mAP is
increased by 0.07, which reflects the certain effect of localization
vagueness for predictions. Then, as displayed in the purple area,
the proposed detector suffers slightly from false alarms, as mAP
has a small increase of 0.006 after removing them. The missing
ships also have a slight effect on the detector with a mAP
decrease of 0.01, as presented by the orange area.

5) Visualization Analysis: Visualization of performance in
two typical scenes of ship detection application from SSDD+ test
data is introduced to present qualitative predictions intuitively in
Fig. 13. The detection performance on dense distribution of open
sea region is displayed in Fig. 13(a). ReDet,R3Det, and Oriented
RepPoints suffer a relatively high false alarm rate, while CFA
and O-BBAVs miss some densely distributed ships. Compared
with the above methods, ROI Transformer, Oriented R-CNN,
and DCMSNN can keep a balance between high recall and
relatively few false alarms, while some low localization accuracy
boxes still exist. Obviously, our method gets the highest accuracy
of ship detection with the lowest false alarm rate in the scene.
As for complex scenes, Fig. 13(b) is introduced to reflect anti-
interference capability of detectors in the inshore region. Most
methods, specially R3Det, suffer relatively poor capability to
distinguish ships from inshore facilities with similar backscatter
intensity, while O-BBAVs and CFA miss some inshore ships.
Due to the higher order statistics features and sparse low-rank
mechanism introduced by QSLM and SLCR, respectively, the
proposed method extracts more discriminative features to per-
form adaptable to complex scattering environments in contrast.

In order to qualitatively present the reflection of predictions
on HRSID and further underline the superiority of the proposed
detector, we chose two images with more complex ship de-
tection application scenes from these data, which include the
large-scene inshore region and the inshore region with dense
distribution. The correctly detected ships and detection errors are
displayed in Fig. 14 in the same way as Fig. 13. One can see that
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Fig. 12. Detailed PRC for typical methods on SSDD+. Detailed metrics are represented as legends in various colors calculated by integral between adjacent
curves. (a) Proposed method. (b) Oriented RepPoints. (c) CFA. (d) ROI Transformer. (e) Oriented R-CNN. (f) ReDet. (g) R3Det. (h) DCMSNN. (i) O-BBAVs.

ROI Transformer, Oriented R-CNN, and DCMSNN generate
relatively enormous false alarm object in Fig. 14(a). R3Det,
O-BBAVs, CFA, and Oriented RepPoints keep higher false
alarm rate, and they have the lowest detection rate. Compared
with the above methods, ReDet performs relatively satisfactorily
with few detection errors, while the proposed method presents
preferable detection performance in large-scale inshore scenes.
As for the challenging inshore scene with dense distribution in
Fig. 14(b), our algorithm surpasses others on detection accuracy,
which reflects its high robustness. It is noticeable that missing
tiny targets and false alarms on land still appears, though the
proposed network has a satisfactory detection performance. We
assume that tiny targets with extremely limited pixels lack dis-
criminative features, which confuse feature extractor even with
the support of statistical feature learning. Further improvement
to optimize the predictions for our detectors is required in the
future.

6) Computational Complexity Analysis: To comprehen-
sively evaluate performance across multiple dimensions, ex-
periments related to computational complexity are conducted

TABLE VIII
COMPARISION OF TYPICAL METHODS ON COMPUTATIONAL COMPLEXITY

on SSDD+ in this section as supplements to accuracy metrics.
The experimental results of typical methods are detailed in
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Fig. 13. Visualization for detection performance of typical methods in different scenes of SSDD+. The green boxes, red boxes, and blue circles indicate the
correctly detected ships, false alarms, and the missing ships, respectively. (a) Results on dense distribution. (b) Results on inshore region.

Table VIII. Metric memory is defined as GPU memory con-
sumption during inference, which is introduced to evaluate the
memory consumption of methods. Inference efficiency repre-
sents the number of images inferenced within a second, which is
introduced to reflect computational efficiency. Floating point op-
erations (FLOPs) is defined as the total number of floating-point
operations in the model, which reflects the model complexity.

As is shown in Table VIII, O-BBAVs possesses the lowest
model complexity owing to its single-stage anchor-free frame-
work, while the calculations of gaussian heatmaps burden the
memory consumption and inference efficiency. The two-stage
anchor-free methods, such as Rotated RepPoints, CFA, and so
on, carry the same memory consumption and model complexity,
as they share the same model structure including backbone, neck,
and two-stage heads. The inference efficiency reflects the differ-
ences in representation learning and sample judgment of them.
Although the proposed method achieves progress on accuracy,
the applications of statistical feature learning and mechanism
supervision suffer a relatively acceptable decline in inference
efficiency compared to other methods based on convex-hull
representation. Meanwhile, extra memory consumption is in-
troduced by the statistical learning module as the statistical
feature maps are conducted and calculated on the GPU. Yet it
is worth noting that the proposed method still possesses higher
inference efficiency and lower model complexity compared to
the state-of-arts with two-stage anchor-based framework, which
reflects certain practicality and scalability. Moreover, we will

continuously optimize limitations such as memory consumption
and strive to strike a balance between efficiency and performance
to expand model scalability and practicality in the future work.

F. Discussion

Although our method presents relatively progressive per-
formance on three datasets of SAR ship detection, potential
constraints still exist in extreme application scenes. First, slight
missing tiny targets exit though the proposed network has a
satisfactory detection performance on various scenes. We as-
sume that the extreme lack of discriminative features leads
to the confusing feature extraction even with the support of
statistical learning. Second, the quality of SAR image clarity
partly affects the accuracy of background feature fitting. The
main reason may lie in the fact that the statistical distributions of
background are severely disturbed by the imaging quality. Third,
the computational complexity, especially memory consumption,
increases in the proposed method, which approaches those of
two-stage anchor-based methods. We assume that the calculation
of statistical feature map with spatial-scale matrix multiplication
operation on GPU mainly causes the increment in memory
consumption. This partly limits the model’s practicality and
scalability.

In future research, we will focus on collecting and analyzing
missing targets and false alarms in the above extreme scenes
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Fig. 14. Visualization for detection performance of typical methods in different scenes of HRSID. (a) Results on large-scene inshore region. (b) Results on
inshore region with dense distribution.

to explore an optimized manner of coupling the SAR charac-
teristics and mechanism with CNN. Besides, we will continue
to develop optimization strategies of computational complexity
to pursue a balance between detection accuracy and efficiency,
which will expand practicality and scalability of our method.

V. CONCLUSION

In this article, a hierarchical framework of SAR ship de-
tector coupled with sparse low-rank mechanism and statistical
characteristics is proposed. First, the proposed method extracts
statistical features from SAR images with a point statistical
learning module in the bottom level. Second, CGM is designed to
effectively represent the characteristics of SAR ship to optimize
the location reflection in the middle level. Third, the SLCR
module is designed to improve the quality of convex-hull rep-
resentations with sparse and low-rank mechanism introduced to
rank the positive samples in the top level. Finally, comprehensive
experiments with qualitative and quantitative evaluations on the

SSDD+, HRSID, and RSDD confirm the performance superior-
ity in various scenes. For the future work, the mechanism and
characteristics of SAR will be studied continuously on architec-
ture that effectively couples with deep networks. Besides, we
will focus on complicated application scenes such as tiny ships
with dense distribution to further improve our ship detector.
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