
Received 22 August 2024, accepted 24 September 2024, date of publication 17 October 2024, date of current version 11 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3482988

FedITD: A Federated Parameter-Efficient Tuning
With Pre-Trained Large Language Models and
Transfer Learning Framework for Insider Threat
Detection
ZHI QIANG WANG 1, (Member, IEEE), HAOPENG WANG 1, (Member, IEEE),
AND ABDULMOTALEB EL SADDIK 1,2, (Fellow, IEEE)
1Multimedia Communications Research Laboratory (MCRLab), School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N
6N5, Canada
2Department of Computer Vision, MBZUAI, Abu Dhabi, United Arab Emirates

Corresponding author: Zhi Qiang Wang (zwang315@uottawa.ca)

ABSTRACT Insider threats cause greater losses than external attacks, prompting organizations to invest in
detection systems. However, there exist challenges: 1) Security and privacy concerns prevent data sharing,
making it difficult to train robust models and identify new attacks. 2) The diversity and uniqueness of orga-
nizations require localized models, as a universal solution could be more effective. 3) High resource costs,
delays, and data security concerns complicate building effective detection systems. This paper introduces
FedITD, a flexible, hierarchy, and federated framework with local real-time detection systems, combining
Large Language Models (LLM), Federated Learning (FL), Parameter Efficient Tuning (PETuning), and
Transfer Learning (TF) for insider threat detection. FedITD uses FL to protect privacy while indirect
integrating client information and employs PETuning methods (Adapter, BitFit, LoRA) with LLMs (BERT,
RoBERTa, XLNet, DistilBERT) to reduce resource use and time delay. FedITD customizes client models
and optimizes performance via transfer learning without central data transfer, further enhancing the detection
of new attacks. FedITD outperforms other federated learning methods and its performance is very close
to the best centrally trained method. Extensive experiment results show FedITD’s superior performance,
adaptability to varied data, and reduction of resource costs, achieving an optimal balance in detection
capabilities across source data, unlabeled local data, and global data. Alternative PETuning implementations
are also explored in this paper.

INDEX TERMS Cybersecurity, insider threat, deep learning, transformer, BERT, RoBERTa, XLNet,
DistilBERT, GPT, data augmentation, artificial intelligence, machine learning, pre-trained LLM, PETuning,
adapter, LoRA, BitFit, LLM, NLP.

I. INTRODUCTION
According to Gartner’s definition, ‘‘an Insider Threat is a
malicious, careless or negligent threat to an organization that
comes from people within the organization, such as employ-
ees, former employees, contractors or business associates,
who have inside information concerning the organization’s
security practices, data, and computer systems.’’ [1]

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

When it comes to malicious actions by insiders, insider
threats can be categorized into three main groups:

1. Fraud involves unauthorized actions such as inserting,
deleting, or altering an organization’s data.

2. Data theft encompasses unauthorized access to and
exfiltration of data, such as intellectual property
embezzlement from the organization.

3. System sabotage involves the direct use of information
technology to disrupt or harm an organization’s system,

160396

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-6547-6076
https://orcid.org/0000-0002-2876-5625
https://orcid.org/0000-0002-7690-8547

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

such as actions that compromise data integrity or dis-
rupt service availability.

In contrast, External Intrusion refers to unauthorized
access or attempts to access a computer system, network,
or data from outside an organization’s perimeter. Examples
of external intrusion encompass a hacker using malware to
infiltrate a company’s network, phishing attacks aimed at
stealing login credentials, or Distributed Denial of Service
(DDoS) attacks to disrupt services.

Insider Threat Detection Systems (ITDS) and Intru-
sion/Extrusion Detection Systems (IDS/EDS) focus on dif-
ferent types of threats and use distinct approaches:

• Source of Threats: ITDS detects threats from insiders
with legitimate access, while IDS/EDS targets external
threats like hackers and malware.

• Detection Method: ITDS often uses deep learning and
user behavior analytics to identify subtle deviations in
insider activity, whereas IDS/EDS focuses on known
attack signatures or unusual network traffic or system
patterns to detect external threats.

• Data Sources and Monitoring: ITDS monitors a wide
range of user activities and logs within the organization,
while IDS/EDS primarily analyzes network traffic and
system logs for external intrusion signs.

• Response and Prevention: ITDS involves detailed
investigations, automated responses, and preventive
measures like user education and access controls.
IDS/EDS emphasizes immediate alerts, system patch-
ing, and securing systems against exploitation.

Due to the rising prevalence of networks and the swift
evolution of modern hacker tactics, an escalating number
of organizations are encountering cybersecurity risks stem-
ming from insiders rather than external hackers. Insider
users often have legal privileges in accessing an organiza-
tion’s system and thus it often causes huge losses compared
with external attacks. Preventing insider threats requires a
multifaceted approach combining technical, procedural, and
cultural measures. Key strategies include 1) Implementing
strict access controls, such as the Principle of Least Priv-
ilege and Role-Based Access Control; 2) Monitoring user
activities with software tools to detect anomaly behavior;
3) Security awareness training and clear communication
of internal policies help educate employees;4)Background
checks and Employee Assistance Programs (EAPs) address
psychological and behavioral risks; 5) A well-defined inci-
dent response plan; 6) Regular audits of access controls
and security measures are essential for early detection and
response to potential threats. This paper focuses on insider
threat detection. However, how to timely and efficiently
detect insider threats faces the following challenges:

1. Poor Detection Performance: Compared with exter-
nal intrusions, insider threats are often much harder to
detect. Insiders often have legitimate privileges within
an organization’s system, making it easier for them to
bypass security measures. Thus malicious activities are

hidden within a large number of normal user behav-
iors and might appear legitimate or routine. Insider
threat models have to identify subtle anomalies that are
small deviations from normal user behavior rather than
obvious anomalies which are often unusual patterns
in network traffic or system behavior suggesting an
external attack.

2. Inefficient Detection Model: Insider threat detec-
tion often requires a deeper understanding of internal
users’ and entities’ behaviors and related correlations.
It requires considering the context of user actions, such
as time of access, action temporal patterns, and relation
to other users and entities. These patterns and correla-
tions are so complex, deep, and hidden that it requires
more powerful models to handle them. For example,
most existing modeling methods focus on behavior
category features such as various frequencies or sim-
ple sequences but ignore temporal patterns. Although
somemodels attempt to capture temporal relationships,
they are unable to handle long temporal sequences.
The remaining models often incorporate multiple
deep learning models, leading to excessively complex,
resource-intensive, and time-consuming training.

3. Highly Imbalanced Datasets: due to isolated data
islands and concerns about security and privacy, orga-
nizations are more reluctant to share insider threat data,
resulting in a lack of anomaly data to effectively train
robust insider threat detection models. Clients often
have a large number of records of normal user behav-
iors but few available anomalous data instances. This
leads to a biased model with notably lower sensitivity
and a high false positive rate. Additionally, it is difficult
for them to detect new or unknown threats because
these threats never happen locally.

4. Lack of Personalized Model: the existing intrusion
detection systems lack the capability of personaliza-
tion. Most methods rely on a global model for nearly
all clients. Once enough client data is gathered to train
a satisfactory global model, it is for all clients to detect
intrusion. However, various organizations may have
different user daily behavior patterns and face different
security threats. They are also concerned about their
data privacy and security. Therefore, a global model is
not practical and custom models should be considered
for insider threats.

5. Long Latency and High Bandwidth Usage: tradi-
tional intrusion detection methods often involve aggre-
gating data in a central location for analysis, leading to
long latency and high bandwidth usage. However, cus-
tomers increasingly demand local real-time detection
systems with locally trained models and prompt alert
generation for insider threats.

Addressing the existing problems that insider threat detec-
tion faces requires a combination of multiple advanced
technologies: To improve poor detection performance and

VOLUME 12, 2024 160397

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

accurately identify anomalies, we adopt pre-trained Large
Language Models (LLMs). To address the inefficient model,
we use federated Parameter-Efficient Tuning (PETuning)
methods to tune models. To break the barriers between
isolated data islands and detect unknown attacks, we uti-
lize Federated Learning (FL) and transfer learning to learn
from other clients. To overcome highly imbalanced dataset
issues, Natural Language Processing (NLP) data augmenta-
tion methods are applied to upsample minorities. To handle
lacking personalized models and labeled data, we incorporate
the Transfer Learning (TL) unsupervised domain adaption
method. To solve long latency and high resource costs,
we design a flexible, hierarchical, and federated framework
with local real-time detection systems, locally trained mod-
els, and federated PETuning methods. Therefore, we propose
a novel system called FedITD combining pre-trained LLMs,
PETuning, federated learning, and transfer learning.

To overcome this obstacle of data integration, FL has
surfaced as a privacy-conscious technique. FL aims to collec-
tively train models without the need to transmit substantial
client data to a centralized location. In FL, decentralized
clients only simply compute and send a small part of model
information, like parameters or gradients, to a server at inter-
vals, where they are then aggregated to generate a global
model. It disrupts data islands by enabling learning across
distributed data sources. It accelerates training and reduces
communication requirements compared to centralized learn-
ing methods. Additionally, it facilitates collaboration without
compromising the security of each participant by maintaining
data locally. Thus, FL is chosen as our system’s foundation.

Pre-trained LLMs like BERT [2], RoBERTa [3],
XLNet [4], and DistllBert [5] have showcased remarkable
performance across various natural language processing
(NLP) tasks, such as GLUE [6]. Wang et al. [7] demonstrated
exceptional insider threat detection performance by centrally
fine full tuning the pPe-trained LLMs on the CERT dataset.
Therefore, we adopt Pre-trained LLMs as the backbone mod-
els of our FL system. However, LLMs introduce challenges
such as significant communication overhead, storage cost,
and high costs associated with adapting local models after
FL and security concerns.

PETuning methods, including Adapter [8], LoRA [9], and
BitFit [10], typically involve locking most of the parameters
in Pre-trained LLMs and only tuning a small subset of extra
parameters or a small portion of the initial model parameters
for downstream jobs. These methods were originally trained
centrally. We introduce them to FL to effectively reduce
communication costs and resource usage while maintaining
satisfactory performance. It also can significantly improve
security e.g., counter gradient inversion attacks, which can
result in an average reduction of 40.7% in the accuracy of
recovered words compared to Federated Parameter Full Tun-
ing [11].
However, the global model may not be a good fit for a

specific client due to local data heterogeneity and diversity.
Using TL, this study can rapidly develop a custom local

model tailored to specific organizations or cases, leverag-
ing insights gained from previous experiences shared by
other organizations. The central concept is to minimize
the distribution divergence between various organizations.
It significantly enhances adaptability because this approach
could offer multiple variations of the same global models
customized for different organizations or use cases with
their limited local data, thus yielding superior local results.
We combine federated PETuing and TL to address the afore-
mentioned challenges and further improve unknown attack
detection.

To sum up, this paper contributes in the following ways:

1) Novel Framework: To the best of our knowledge,
FedITD is the first framework to leverage the FL
of transformer variant models, PETuning, and TF for
insider threat detection. This paper proposed a flexi-
ble, hierarchical, and federated framework with local
real-time detection systems, locally trainedmodels, and
federated PETuningmethods, effectively leading to low
latency and prompt alerts. We also explored alternative
PETuning implementations like Adapter and LoRA.

2) Excellent Detection Performance: FedITD outper-
forms other federated learning methods and almost all
central training-based insider threat detection methods.
It closely matches the best centrally trained method,
DistilledTrans. Additionaly, it demonstrated FedITD’s
strong adaptability to both highly and slightly hetero-
geneous data and effectiveness in detecting new or
unknown attacks by indirect learning from other clients
without compromising privacy.

3) High Resource Efficiency: Demonstrated signifi-
cant reductions in communication, memory, and stor-
age costs using Federated PETuning compared to
full-tuned original LLMs.

4) Optimal Equilibrium: Explored the system config-
uration to attain the optimal TL performance across
source data domain, unlabeled local data domain, and
global data, which other methods lack.

II. RELATED WORK
Initially, researchers employed rule-basedmethods combined
with signature matching to identify insider threats [12], [13],
[14]. However, these approaches required extensive domain
knowledge to perform thorough analysis and recognize threat
signatures. The response to insider risks was relatively slow,
as these methods were often reactive, addressing issues only
after damage had occurred. With the rapid emergence of new
insider threats, even minor variations of known threats could
go undetected if their signatures were not pre-identified.

Over the past decade, similar to the work of Sandikkaya
et al. [15] on the use of machine learning models in cloud
web application security, many researchers have explored the
application of machine learning models for detecting insider
threats. Maxion and Townsend [16] utilized naive classifica-
tion to assign posterior probabilities to test commands based

160398 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

on historical user data. Salem and Stolfo [17], [18] introduced
a one-class Support Vector Machine (SVM) trained to detect
anomalous command sequences by analyzing frequency pat-
terns. Kudłacik et al. [19] presented a solution for building
a fuzzy user profile based on the frequency vector of a
user command. Song et al. [20] experimented with Gaus-
sian Mixture Models (GMM), SVMs, and Kernel Density
Estimation (KDE), ultimately finding that GMM performed
best. Gamachchi et al. [21] used a bipartite graph approach to
model user interactions with host-based data from logs, file
systems, and psychological surveys, employing an Isolation
Forest (IF) to identify malicious users. After performing
complex feature engineering to create many enhanced fea-
tures, such as frequencies under different time frames that
the original dataset does not have, Le et al. [22] employed
machine learning algorithms including Logistic Regression,
Neural Network, Random Forest, and XGBoost to detect
insider threat. Random Forest performs best at a detection
rate of 62%, precision of 5.96%, and F1 score of 10.10% on
the CERT r6.2 dataset. They also could not detect scenario
5. Al-Shehari and Alsowail [23] applied various sampling
techniques, including under-sampling, over-sampling, and
hybrid sampling, to address class imbalance in the CERT
r4.2 dataset, then trained several machine learning mod-
els, such as Extreme Gradient Boosting (XGB), Decision
Trees (DT), Random Forest (RF), and K-Nearest Neighbors
(KNN), to detect insider data leakage. Brdiczka et al. [24]
utilized Structural Anomaly Detection (SAD) to identify
anomalies in social networks, combining user connections
and psychological features to generate an anomaly score for
each user.

However, these machine learning-based model structures
are too shallow to capture complex, hidden, and nonlinear
internal user behavior patterns, resulting in high false positive
rates and low detection accuracy. They also rely heavily on
manual feature engineering, which is time-consuming and
demands specialized expertise. As a result, there has been a
growing shift towards deep learning models for addressing
insider threats. Deep learningmodels offer several advantages
over traditional machine learning approaches. They are adept
at identifying deep and significant nonlinear correlations,
making them well-suited for understanding complex user
behaviors and accurately identifying anomalous activities.
Additionally, deep learning models can seamlessly integrate
heterogeneous data sources frommultiple domains. They also
reduce the need for extensive feature engineering, requiring
less prior knowledge and human efforts. Furthermore, some
unsupervised deep learning methods possess strong learning
capabilities without the need for labeled data.

Deep learning has been introduced in various applications,
i.e., flight control [25], virtual decision-making [26], etc.,
for many years. Lin et al. [27] proposed an unsupervised
hybrid Deep Belief Network (DBN) model for detecting
insider threats. This approach involved stacking multilayer
Restricted Boltzmann Machines (RBMs) and feeding the
resulting output into a One-Class Support Vector Machine

(OCSVM) for threat detection. Liu et al. [28] utilized four
autoencoders, each designed to detect anomalies in different
datasets. The outputs were then combined into an ensem-
ble model to identify the top N malicious insiders. These
feedforward neural network (FNN) approaches can enhance
accuracy and reduce false alarms. However, most features
used in these models are simple aggregated counts of activ-
ities, focusing on frequency, which limits their ability to
capture temporal patterns. Moreover, late data fusion misses
the opportunity to model correlations across different data
domains early.

Recurrent Neural Networks (RNNs) often struggle with
long-term temporal dependencies, but Long Short-Term
Memory networks (LSTMs) [29], [30], [31], [32], [33] and
Gated Recurrent Units (GRUs) provide solutions to this prob-
lem by maintaining information over extended sequences.
These models use user activity sequences as input to generate
anomaly scores for prediction. While LSTMs and GRUs
can effectively capture temporal dependencies, their com-
plex architectures and lack of parallel processing capabilities
result in slower training compared to traditional RNNs.
Although these models can identify suspicious behaviors,
they cannot always guarantee that the behaviors represent true
threats.

Saaudi et al. [34] proposed a combined solution using
Convolutional Neural Networks (CNNs) and LSTMs, where
CNNs extract features and LSTMs model temporal patterns.
Their experimental results demonstrated that the CNN-LSTM
model outperformed standalone CNN and LSTM models,
effectively capturing temporal patterns in data. Additionally,
this approach does not require manual feature engineering,
allowing for automatic and faster feature processing and
learning. However, the CNN-based model can sometimes
miss valuable information due to the pooling layer and typi-
cally requires a large labeled dataset for training.

Graph Convolutional Networks (GCNs) [35], [36] offer
another approach by using a graph structure to model the
relationships between users and their attributes. The graph,
along with other contextual data, is input into a CNN to
predict anomalous users and their communities. While this
method can model complex correlations between users and
their behaviors, it is challenging to implement, requiring sub-
stantial expert knowledge and effort to construct the graph.

Transformers and their derived models have garnered sig-
nificant interest in recent times due to their effectiveness and
versatility. A transformer model, a deep learning architecture
rooted in the multi-head attention mechanism and developed
by Google, was introduced in 2017 [37]. It employs self-
attention to dynamically calculate a weighted sum of all
input values, enabling it to capture the global context of
each word in a sequence. Unlike traditional deep learning
models, the transformer does not employ recursive or con-
volutional mechanisms, resulting in shorter paths between
input and output positions within the network. This char-
acteristic facilitates learning long-term temporal patterns
without encountering the issue of gradient disappearance.

VOLUME 12, 2024 160399

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

Additionally, the combination of multi-head attention and
positional embedding enables parallel processing of all
inputs, enhancing both training and inference efficiency and
significantly reducing training time. Moreover, the trans-
former model requires fewer assumptions about the data’s
schema information, making it a versatile architecture for
processing diverse input data types. Tokenization further
contributes to the widespread adoption of transformers for
processing heterogeneous input data.

Transformer models can undergo pre-training on exten-
sive datasets and then be fine-tuned for various downstream
tasks. Wang et al [7] integrate Digital Twin technology
and self-attention mechanisms to analyze user behavior and
entities in 2023, utilizing advanced data augmentation tech-
niques such as contextual word embedding using the BERT
model and contextual sentence embedding using the GPT-
2 model to address data imbalances. The paper proposes
DistilledTrans, a simplified transformer model, and evalu-
ates its performance alongside other transformer models and
hybrid models, including BERT, RoBERTa, BERT+ CNN,
RoBERTa+ CNN, BERT+ LSTM, and RoBERTa+ LSTM
networks. Experimental results demonstrate the superior per-
formance of DistilledTrans on sporadic datasets CERT r6.2.
In contrast, pre-trained models like BERT and RoBERTa
exhibit high performance on dense datasets CERT r4.2, sug-
gesting that complex hybrid methods combining transformer
and other deep learningmodels are not necessary. Overall, the
proposed framework demonstrates significant advancements
in insider threat detection with improved accuracy, efficiency,
and interpretability compared to existing models. However,
that solution is based on centralized learning and does not
involve FL, PETuning, or TL.

In 2016, Google pioneered the introduction of Federated
Learning (FL) [38] to facilitate efficient learning across mul-
tiple participants while ensuring data privacy and security
during data exchange. Over the past few years, FL has experi-
enced rapid growth across various industries and applications.
In FL, each participant conducts local training using private
data and subsequently uploads the gradient or weight update
to the server. These updates from all users are then aggregated
to refine the global model, which is subsequently distributed
back to all clients for the next iteration. FL effectively solves
isolated data island issues to construct a robust global model
while safeguarding personal data privacy and information
security. However, FL encounters challenges such as high
communication costs and diverse client data distributions.
FedSGD is introduced alongside the FL concept. It entails
the computation of a weighted average of the local gradi-
ent. While Stochastic Gradient Descent (SGD) serves as a
commonly employed optimization function in Neural Net-
works (NNs), the process of aggregating gradients at each
epoch results in considerable costs concerning bandwidth
consumption and computing power. To tackle this challenge,
FedAvg is proposed to aggregate model parameters rather
than gradients, thereby permitting each client to train the

model locally and share updates after several epochs. Our
study adopts this approach.

In the realm of insider threat detection, Amiri-Zarandi et al.
[39] introduce a federated learning system that employs the
AutoEncoder model to improve privacy and Shapley value
to enhance explainability. However, it lacks implementation
details and in-depth analysis. It neglects the requirements
for localizing models meanwhile maintaining global perfor-
mance, reducing communication cost and storage overhead,
overcoming data imbalance, and detecting new or unknown
attacks. The solution is not an end-to-end solution but needs
human efforts to investigate at least 20% of the data. The
performance is not objective as it relies on the threshold
set by humans. Additionally, it does not involve any data
processing, powerful Pre-trained LLMs, PETuning methods,
and effective TL. Moreover, the performance metrics are
incomplete and the published performance cannot compete
with transformer models [7]. Furthermore, the Shapley value
is not suitable for temporal sequence data that are often the
input data of learning models capturing temporal patterns.

Qu et al. [40] are pioneers in applying Transformers to FL,
demonstrating that Transformers exhibit greater effectiveness
and robustness in handling client heterogeneity when com-
pared to conventional architectures like Convolutional Neural
Networks (CNNs). Weller et al. [41] provide experimental
evidence demonstrating that Pre-trained LLMs can mitigate
adverse effects from non-IID and diminish the gap in accu-
racy between them and centralized learning. Nevertheless,
the substantial communication cost in FL systems results in
slow and impractical FL for real jobs. Moreover, LLMs may
present challenges for local clients with constrained hardware
abilities for computation, memory, and storage.

The PETuning method aims to retain the majority
of parameters in LLMs frozen while fine-tuning only
lightweight extra parameters or a small subset of the param-
eters for specific downstream tasks. This approach allows
Pre-trained LLMs to leverage existing knowledge, mini-
mize resource requirements (computation, memory, storage,
etc.), and alleviate communication overhead in FL, which
is predominantly influenced by the size of model update
parameters. Houlsby et al. [8] developed a down-up projec-
tion module named Adapter within each transformer layer for
BERT in 2019. Another approach involving fine-tuning the
backbone of the pre-trained model is Bitfit [10] that focuses
solely on adapting the bias term of the network. Hu et al. [9]
demonstrate the feasibility of training large glossary language
models while maintaining accuracy and privacy through the
introduction of low-rank adaptation (LoRA) in 2021. Nev-
ertheless, it’s worth noting that all of these methods were
trained centrally on the server without taking into account
user privacy concerns, under the assumption of having access
to the source data.

Sun et al. [42] introduced the FedPEFT framework in
2022, which incorporates three PETuning methods (Bias,
Adapter, Prompt) from pre-trained visual models into FL.

160400 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

Their findings indicate that employing featherweight PETun-
ing methods in FL can notably alleviate the communica-
tion burden while preserving performance, showing supe-
rior performance across various FL settings. Additionally,
Chen et al. [43] expanded PETuning techniques to visual
language models within FL in 2022, demonstrating that
PETuning can accelerate convergence rates. Through exten-
sive experiments, they examine three fine-tuning methods
(prompt, Adapter, and Bitfit) across two types of pre-trained
models (vision-language models and vision models) for FL.
Key findings from their experiments include: Fine-tuning the
bias term of the backbone performs optimally when utilizing
a robust pre-trained model; vision-language models (e.g.,
CLIP) surpass pure vision models (e.g., ViT) and exhibit
greater resilience in few-shot settings; FL with pre-trained
models achieves higher accuracy compared to pure local
training, as it mitigates overfitting issues. However, these
studies overlook the significant issue of privacy attacks in FL.
Zhang et al. [11] address the critical issue of privacy attacks
inherent in FL. They introduced FedPETuning to evaluate the
effectiveness of Pre-trained LLMs in natural language under-
standing, focusing on the GLUE datasets and using RoBERTa
as the base model. FedPETuning maintains satisfactory per-
formance, achieving over 95% of FedFT’s performance,
while significantly reducing communication overhead. This
approach effectively defends against data reconstruction
attacks, which aim to recover text from gradients or weight
updates uploaded by clients. Since FedPETuning only com-
municates a small part of the entire model parameters with
the server during FL, it becomes impractical for attackers
to reconstruct the original text from such lightweight model
parameters. However, it is apparent that the samples stored
on the server exhibit significantly varied probability distri-
butions compared to the data generated by each client. As a
result, the global model fails to achieve localization on each
client’s site. However, these studies overlook the critical issue
of how to build the custommodel for each client after FL. Fur-
thermore, none of these studies examine the impact of PETun-
ing methods using various foundation models in FL that are
crucial for deploying pre-trained models in FL scenarios.

Evenwhen utilizing the globalmodel trained by the FL sys-
tem directly, it often performs inadequately on specific client
data. This discrepancy arises from the distribution disparity
between the client and the globally trained data. Continuing
full-tuning or PETuning on client data fails to yield satis-
factory results. Instead of involving more parameters of the
model in training, transfer learning emerges as a solution.
Transfer learning facilitates the transfer of knowledge from
existing domains to a new domain without necessitating
model reconstruction. It effectively addresses the challenge
of training models when data is limited, such as in the case
of small data islands. Chen et al. introduce FedHealth [44],
the pioneering federated transfer learning framework for
wearable healthcare, aimed at classifying human activities.
Moreover, IoTDefender [45] employs deep domain adap-
tation to develop personalized Intrusion Detection System

(IDS) models for attack detection in 5G IoT networks. This
approach tackles distribution differences between traditional
networks and IoT environments. However, these papers do
not involve any PETuning method of LLMs in the FL envi-
ronment and how to apply it in insider threat detection.

Sun et al. [46] introduced an easy and effective method for
unsupervised domain adaptation called CORrelation ALign-
ment (CORAL) in 2016. The CORAL method aligns the
second-order statistics of the target and source’s data dis-
tributions through a linear transformation without requiring
any label in the target domain. Extensive testing on standard
benchmark datasets showcases CORAL’s exceptional perfor-
mance. However, it is worth noting that CORAL relies on a
linear transformation and thus it is not end-to-end. It involves
a multi-step process wherein features are initially extracted,
followed by the transformation, and subsequently training a
machine learning model. Sun et al. [47] extended CORAL in
2016 by incorporating it directly into deep neural networks by
introducing a new differentiable loss function namedCORAL
loss. This loss function minimizes the disparity between
the learned feature covariance of the target and source
domains. Compared to the original CORAL approach, the
Deep CORAL method learns a more potent non-linear trans-
formation that is much simpler to optimize. Furthermore,
it seamlessly integrates with deep Convolutional Neural Net-
works (CNNs), exhibiting stronger performance on standard
benchmark datasets. However, it has not been integrated into
Pre-trained LLMs and applied to temporal sequences yet.
Additionally, they do not disclose how to get the best perfor-
mance across the source domain, target domain, and global
domain. Moreover, they do not verify its extensive capability
on highly heterogeneous target domain.

III. PROPOSED FRAMEWORK
A. PROBLEM STATEMENT
We have data from K different clients, i.e., organizations,
which is indicated by {C1,C2, . . . ,CK}, and the data col-
lected by each client is symbolized by {D1,D2, . . . ,DK}.
Traditional methods typically train a unified model Mu by
aggregating all the clients’ data, D = D1 ∪ D2 ∪ . . . ∪

DK . However, this method has to share all the clients’ data
and thus compromises clients’ privacy. Denote a customized
client model locally trained based only on the local dataset
Dk k ∈ [1, K] asMc.
In our problem, our objective is to collaboratively use

all clients’ information to train a federated transfer learning
model Mf , while ensuring each client Ck k ∈ [1, K] does
not disclose its data Dk and keeps their privacy. The perfor-
mance of Mc, Mu, and Mf are symbolized as Pc, Pu, and Pf
respectively. Additionally, another goal is to build an effective
framework to enhance Pf to be better than Pc and as close as
possible to Pu. Moreover, this framework should be highly
efficient in tuning Pre-trained LLMs so we can save training
time, communication cost, and resource consumption. Fur-
thermore, Mf is required to be highly adaptable to the Ck ’s

VOLUME 12, 2024 160401

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

local data distribution and possesse the ability to generalize
well to detect unknown attacks.

|Pu − Pf |/Pu < △ (1)

where △ is a very small nonnegative percentage, e.g., 6%.

B. FRAMEWORK OVERVIEW
As Figure 1 shows, the FedITD framework is composed
of three systems: the supervised system, the client security
system, and the federated system.

1) The supervised system encompasses various aspects of
the monitored system, such as PCs, file systems, emails, web
browsing, devices, etc. The collected data can pertain to either
user behavior or user profile. User behavior information is
derived from various real-time logging systems, including
host logs, network logs, VPNs, firewalls, etc. User profile
data, on the other hand, refers to users’ background details
or contextual information such as user identities, positions,
relationships, permitted access, and psychometric attributes.
It’s worth noting that different client’s supervised systems
are separated at various locations and operate independently
without sharing information.

2) The middle layer is the client security system serving
as the core of the framework. It is specifically designed to
accommodate insider threat detection constituents and act as
local access points to federal systems. Consequently, each
client security system is empowered to gather data from the
respective supervised systems for training the client models
and detecting potential attacks. This layer encompasses the
entire workflow of insider threat detection, including data
processing, model training, pre-trained model tuning, detec-
tion, analysis, mitigation, and alert generation. It is assumed
that this subsystem possesses sufficient computing power
and network bandwidth to preprocess data, execute federated
learning, perform transfer learning, and conduct real-time
anomaly detection using deep learning models. Meanwhile,
it can centrally train its client model based on locally col-
lected data.

3) The federal system is situated on the top and facili-
tates collaborating federated learning, particularly in terms of
parameter aggregation and distribution. This study employs a
centralized architecture within this system. This architecture
comprises a central server located either on the cloud or
on-premise, responsible for aggregating updated parameters
from agents and training the global model. Additionally,
it encompasses agents, which act as sub-servers facilitat-
ing the transmission of updated parameters from clients or
optional training segmented models tailored to client groups
based on their performance or characteristics. These agents
also serve as access gateways to the central server for clients.

This system can also be implemented using a decentral-
ized architecture. This involves establishing an agent peer-
to-peer network, wherein clients collaboratively train deep
learning models with high performance, using consensus and
incentive mechanisms embedded in the blockchain [48].

Security Interface: Homomorphic encryption is
employed to aggregate the update parameters without the
server knowing the generated model. The Paillier cryptosys-
tem [49] supports addition and can disseminate the resulting
aggregate back to the clients. Subsequently, each client
can decrypt the updated parameters by dividing biases and
weights by the number of participants to obtain the averaged
values.

The main learning process is as follows:
(1) Initially, the global model residing on the central server

undergoes training using public datasets or existing collected
data. The initial model is then distributed to all clients.

(2) Subsequently, Clients assemble the global model using
downloaded lightweight trainable parameters W 0

t and the
backbone Pre-trained LLM’s frozen parametersW k,0

f , k ∈ [1,
K]. Perform transfer learning to overcome the difference in
data distribution between server data and client data.

(3) Following this, clients train the assembled model with
their respective private local data Dk , PETuning methods are
employed to streamline parameter communication, exchang-
ing only lightweight trainable parameters instead of all the
cumbersome Pre-trained LLM parameters.

(4) Post local training, clients transmit their updated effi-
cient parameters, e.g., the k-th client’s W k,1

t , to the central
server for federated aggregation.

(5) The server conducts federated aggregation based on
the gathered parameters from clients and sends the updated
parameter values, e.g.,W 2

t back to the clients.
(6) Each client trains their client model again on their local

dataset for a certain number of local epochs to get a better
client model.

Repeat 3), 4), 5), and 6) until convergence of the global
model or the maximum number of global training rounds R
is reached.

(7) Clients Perform transfer learning to overcome the dif-
ference in data distribution between server data and client
data

Importantly, it’s worth noting that FL serves the purpose of
knowledge sharing among all agents through model param-
eter aggregation. Therefore, all parameter-sharing processes
are conducted without risks of user data or sensitive infor-
mation leakage. This is achieved through techniques such as
homomorphic encryption, Parameter Efficient Tuning, local
model updates, federated averaging, and Federated Transfer
Learning, ensuring the confidentiality and privacy of user
data throughout the entire system.

Figure 2 illustrates the workflow of insider threat detection
running in the FedITD framework. Data stream/data store,
data processing, detection, analysis, execution, actuator, and
knowledge form a complete feedback loop. Knowledge is
shared among all steps and plays a central role in this
workflow. Deep learning models, defined rules, and experts’
expertise play the role of knowledge. The client security
system’s data input is from the supervised system and external
data sources (open dataset, shared data from partners, etc.).
Supervised system collects data from either real-time data

160402 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

FIGURE 1. FedITD framework and the learning process.

streams from sensors and devices or data stores (database,
data warehouse, or distributed file system, etc.) persisting
various hosts, devices, network, and system logs. Collected
data are preprocessed in data processing and then fed into
the rule engine or trigger the deep learning model inference
pipeline running fine-tuned models for detection. If there is
an abnormal user or activity, the security systemwill create an
incident, raise an alert, and send all related information to the
security analyst for analysis. Next, after in-depth analysis, the
security analyst can label it as normal behavior or launch an
automatic remediation workflow to take action. For instance,
he can block the user so that it does not have access to the
system or revert the damages done by the user’s malicious
actions. The actuator executes remediation actions and thus
generates new data. So the cycle repeats.

Insider threat mitigation strategies often require detailed
investigation, correlation with contextual data, and automated
responses. They may include:

• Containment: Take immediate steps to contain the
threat, such as revoking access, isolating affected sys-
tems, or restricting network connectivity. Implement
both short-term measures to stop ongoing malicious
activities and long-term strategies to prevent recurrence

• Eradication: Perform root cause analysis to investigate
the incident to determine the root cause and eliminate it.
This might involve removingmalware, cleaning affected
systems, closing vulnerabilities, or addressing policy
violations.

• Recovery: Restore systems to normal operation, ensur-
ing they are free from vulnerabilities or threats. Increase

monitoring of the environment to detect any signs of
remaining threats or new attacks.

• Lessons Learned: Conduct a thorough review of the
incident, including what happened, how it was handled,
and what could be improved. Document all findings,
actions taken, and lessons learned to enhance future
insider risk management. Update policies, procedures,
and training programs based on the insights gained from
the incident.

FIGURE 2. Insider threat detection workflow.

C. PRE-TRAINED LANGUAGE MODELS
We select the following pre-trained language model as
the foundation model: The BERT model [2], developed
by Google, is a pre-trained transformer-based model. It is

VOLUME 12, 2024 160403

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

trained on a huge amount of unlabeled data, including the
Books Corpus which has 800 million words, and English
Wikipedia which has 2,500 million words. BERT undergoes
pre-training on tasks such as masked language prediction
and next-sentence forecasting. We chose the BERT-based
model as one of the foundational models. This model consists
of 12 encoders with approximately 110 million parameters.
Each block contains 12 bidirectional self-attention heads and
768 hidden layers.

By relying on corrupting the input with masks, BERT over-
looks the reliance between the masked positions, resulting
in a divergence between the pre-trained model and the fine-
tuned model. To address these shortcomings, XLNent [4]
was proposed as a generalized autoregressive pre-training
method. XLNet has two key mechanisms: (1) Bidirectional
Context Learning: XLNet maximizes the expected probabil-
ity over all permutations of the factoring order, enabling it to
learn bidirectional contexts. It employs a permutation-based
approach named Permutation Language Modeling, allow-
ing the model to learn from all possible combinations of input
tokens rather than a fixed order. This is achieved by training
the model to predict the probability of a token given all other
tokens in the input sequence, irrespective of their position. (2)
Long-Term Dependency: XLNet overcomes BERT’s short-
comings by using its autoregressive attribute. It integrates
ideas from Transformer-XL [50], an advanced autoregres-
sive model, into pre-training to get long-term reliance in the
input sequence. This is accomplished through a segment-level
recurrence mechanism, enabling the model to preserve the
memory of the previous segment while handling the cur-
rent segment. Under equivalent experimental settings, XLNet
consistently beats BERT across a range of 20 tasks, achieving
notably superior results. These tasks encompass text clas-
sification, question answering, natural language inference,
sentiment analysis, and document ranking.

The Robustly Optimized BERT Approach (RoBERTa) [3],
developed by Facebook AI, shares similarities with the BERT
model but introduces several modifications. Like BERT,
RoBERTa learns contextualized word embeddings using a
self-attention structure. However, it eliminates the Next Sen-
tence Prediction (NSP) objective. RoBERTa is trained on a
larger dataset (160GB), including the CC-NEWS, OPEN-
WEBTEXT, and STORIES datasets. Additionally, RoBERTa
increases the batch size, sequence length, and learning rates.
It also employs dynamic masking strategies during training
to enhance the robustness and generality of word embed-
dings. Furthermore, RoBERTa adopts byte-level Byte Paired
Encoding (BPE) with a vocabulary of 50K sub-word units as
a tokenizer, replacing the character-level BPE with a vocab-
ulary of 30K sub-word units used by BERT.

The above-mentioned models are too large, slow, and
heavy to fit edge applications. DistilBERT [5] was proposed
to pre-train a small, fast, and light general-purpose language
representation model. On the other hand, this model can
then be fine-tuned to achieve strong performance across
a wide array of tasks, akin to its larger equivalents. The

TABLE 1. The comparison of four foundation models.

knowledge of distillation is applied to simply the model
during the pre-training phase. The concept suggests that
once a large language model has undergone training, it’s
possible to approximate its full output distributions using a
smaller network. The experiments demonstrated the potential
of reducing the size of a BERT model by 40%, computing
60% quicker while keeping 97% of its language understand-
ing abilities. To harness the inductive biases learned by
larger models during pre-training, a triple loss integrating
language modeling, distillation, and cosine-distance losses
is introduced. It is more cost-effective to be pre-trained, and
suited for edge device computations or resource-constrained
environments.

Table 1 compares the size, training time, claimed perfor-
mance, pre-training data, and methodologies of four models.
To sum up, the BERT model is the de facto baseline of
Pre-trained LLM in deep learning research. The RoBERTa
model is well-known for its prediction performance. The
XLNet model’s structure is more complex. It removes the
limitation of input and its permutation-based training can
learn long-term dependencies well, and thus might work well
in classification. The RoBERTamodel has a simpler structure
and a faster inference. These are the reasons that this study
chooses the four models as foundation models of insider
threat detection.

D. FEDERATED PETUNING
This paper denotes a client as k and K clients are assumed in
the Federated Learning system. Each client can only access
their private datasetDk :={(xi, yi)}. (xi, yi) is the i-th example
where xi and yi represent the i-th model input and its related
label. nk is the number of examples in Dk while n is the
number of examples of all clients’ datasets. The client’s
model parameters are composed of two components: the fixed
pre-trained backbone with parameterWf and the lightweight
trainable component with parameter Wt . Therefore, the clas-
sification loss of the prediction on example (xi, yi) can be
represented as L(xi, yi;Wt ,Wf). The cross-entropy loss is
adopted in this study to train client models in FL. The average

160404 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

loss value of client k can be computed as the below:

Lk (Wt ,Wf) =
1
nk

∑nk

i=1
L(xi, yi;Wt ,Wf) (2)

Hence, the overarching objective of the FL system can be
articulated as minimizing the weighted average loss of all

participated clients’ insider threat detection:

argmin
Wt ,Wf

L(Wt ,Wf) =
∑K

k=1

nk
n
Lk (Wt ,Wf) (3)

Our research focuses on a classic FL system, which involves
a central server tasked with coordinating participating clients
for their local training and disseminating shared model
parameters. Rather than transmitting all bulky Pre-trained
LLM parameters, this paper adopts Parameter Efficient
Tuning Methods to interchange only lightweight trainable
parameters. Before the training begins, our system initializes
the backbone of the Pre-trained LLM with frozen parameter
Wf and the Parameter Efficient Tuning module named Delta
model with trainable parameters Wt. Subsequently, each par-
ticipant client’s local tuning and then the global aggregation
on the central server are executed in succession:

Client Local Tuning: upon receiving the trainable param-
eters from the central server, the participant clients build
a complete client model using both lightweight trainable
parameters Wt and local Pre-trained LLM’s frozen parame-
tersWf. Subsequently, these client models are trained on their
local data Dk. When local training is completed, each client k
∈ [1, K] sends its modified trainable parameters W k,r

t to the
central server for federated accumulation after dropout.

Server Global Aggregation: The central server dissem-
inates the trainable parameter Wt to the selected K clients.
When clients’ local tunings are completed, the central server
will receive updated trainable parameters W k,r

t from clients.
Subsequently, the server executes federated aggregation of
these received clients’ updated trainable parameters, updating
the W r

t by incorporating these updates:

W r
t =

∑K

k=1

|Dk |∑K
k=1 |Dk |

W k,r
t (4)

where |Dk | is the size of the client k’s local dataset and r
is the global epoch number. After that, the server returns the
updated trainable parameters W r

t to the clients. Apart from
FedAvg, FedITD is also open to other fusion algorithms, such
as Adaptive Federated Averaging [51], Shuffle Iterative Aver-
age [52], etc., against data inversion attacks or data poisoning.

The training process outlined above iterates until a spe-
cific criterion is satisfied, such as meeting the convergence
condition or reaching the maximum number of global com-
munication rounds R. Homomorphic encryption is applied in
data exchange to avoid any sensitive or privacy information
leakage. This entire process is outlined in Algorithm 1 by
using pseudo code.

E. PETUNING METHODS OF PRE-TRAINED LLMS
1) Addition-based approaches introduce additional train-
able neural modules or parameters that are not present in

the original model or process into the Pre-trained LLM. This
study chooses the adapter-based tuning method as the rep-
resentation of addition-based approaches in our experiment.
Houlsby et al. [8] proposed inserting small modules, known
as adapters, between transformer layers in 2019. Typically,
the adapter layer employs a down-projection with Wd ∈

Rdm to map the input h ∈ Rd into a smaller-dimensional
space identified by a bottleneck dimension m. Following this,
a nonlinear activation function f(·), and an up-projection with
Wu ∈ Rmd map it back to the input size d. As Figure 3 illus-
trates, these adapters are enveloped by a residual connection,
resulting in the final formula:

h = f (hWd)Wu + h (5)

Typically, two adapters are inserted in sequence: one behind
the multi-head attention while the other one after the Feed
Forward Network (FFN) sub-layer. During fine-tuning, only
adapter layers Wt = {Wu,Wd }, the normalization layer’s
parameters, and the final classification layer’s parameters are
trainable, constituting around 0.5% to 8% of the parameters
of the complete model in the tuning process, meanwhile
retaining the parameters of the Pre-trained LLM frozen.

Algorithm 1 Training Procedure of Federated Parameter
Efficient Tuning
Input: Client set C ; Global epoch number R; Local epoch
number E ; Pre-trained LLM’s original parameters Wf ;
Local trainable and efficient parametersWt ; The K clients
are indexed by k and the local dataset Dk belongs to the
k-th client; Local PETuning Method T .
Output:a fine-tuned global modelWR+1
Before Training: InitializeW 0

t andWf on the central server
and every client in C .
Server Global Aggregation:
For each global round r = 1 to R do
The global modelW r−1

t is shared with each client.
For each client k ∈ C t in parallel do
W k,r
t ← Client Local Tuning (k,W r−1

t)
End

Get local updated parametersW k,r
t

Conduct global aggregationW r
t =

∑K
k=1

|Dk |∑K
k=1 |Dk |

W k,r
t

End
ReturnWR

Client Local Tuning (k,W r
t):

W r
← Load and assembleW r

t and Wf
For each epoch e= 1 to E do
W k,r+1
t ← T(Dk ,W r

t)
End
TransmitW k,r+1

t to the server

As per the original paper [9] (Figure 4), we inserted two
adapters sequentially into the foundation model: one follow-
ing the multi-head attention while the other after the FFN
sub-layer. The experiment results show that Macro Average
F1 is 0.9286 and accuracy is 99.17%. As Figure5. Shows,

VOLUME 12, 2024 160405

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

this study also explored another alternative method: only one
adapter is added after the FFN ‘‘add & layer norm’’

2) Specification-based methods entail designating a
small part of parameters within the original model or pro-
cess as trainable, while the remainder is set to remain
frozen. This paper selects BitFit as the representation of the
specification-based method in our experiment. Zaken et al.
[10] introduced BitFit in 2021 and made the experiment by
freezing all other parameters and solely tuning the bias terms
of the Pre-trained LLM, i.e., Wt = {bl,(·)(·) }, which constitute
only 0.08% and 0.09% of the total number of parameters
in BERT base and BERT large models respectively, while
competitive performance can still be achieved compared to
full-tuning the entire model.

f (X) = f (X)+ B (6)

where f is all functions and B is the bit term. As per the
original paper [10], the bias term is either added or unfreezed
in the following modules: Attention layer encompassing all
positions q, k, and v, along with the output linear layer, FFN,
normalization layer, and Classifier. Figure 6 illustrates how to
implement the Bitfit tuning method on the RoBERTa model.

FIGURE 3. The architecture of the adapter module.

3) Reparameterization-based methods convert current
parameters into a more parameter-efficient form through
reparameterization. This study chooses LoRA as the rep-
resentation of the reparameterization-based method in our
experiment. Hu et al. [9] introduced trainable low-rank matri-
ces alongside multi-head attention (LORA) in 2021, aiming
to convert original parameters into a more parameter-efficient
style. For a pre-trained weight matrix W0 ∈ Rd×k , LoRA
expresses its update using a low-rank decomposition:

h = W0x +△Wx = W0x + sBAx (7)

where s is a tunable scalar hyperparameter that is larger or
equal to 1. As Figure 7 shows, LoRA employs this modifi-
cation to the query and value projection matrices (Wq; Wv)
within the multi-head attention sub-layer. During training,
W0 remains fixed and doesn’t get gradient updates, whereas
A and B encompass trainable parameters. This approach
enables LoRA to enhance training efficiency with less than
1% of trainable parameters Wt ={B, A}, while still achiev-
ing performance comparable to fine-tuning on the GLUE
benchmark. They testify to the efficacy of their approach
across pre-trained language models of different scales and
architectures.

FIGURE 4. The original architecture of XLNet with adapter tuning.

FIGURE 5. The alternative architecture of XLNet model with adapter
tuning. Note: the purple part is the delta parameters inserted into the
backbone model; the blue part is the tunable parameters of the
backbone model.

Initially, this study adopted the original paper’s method [9]:
For example, when the foundation model is DistilBERT,
as Figure 8 shows, q and v matrixes in the attention layer
are changed with LoRA matrixes. However, we found that
revising other linear layers can result in better performance.
As Figure 9 illustrates, FFN’s linear layers, pre_classifier
layer, and classifier layer are modified with LoRA matrixes.
In our implementation, we opted not to substitute the lin-
ear layer of the backbone model with the linear layer from
Loralib. Instead, we introduced a parallel module into the
backbone architecture. In essence, we regard (W0 + sBA)x

160406 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

FIGURE 6. The architecture of roberta model with BitFit tuning. Note: the
purple part is the delta parameters inserted into the backbone model; the
blue part is the tunable parameters of the backbone model.

FIGURE 7. The Architecture of the LoRA module.

as W0x + sBAx, incorporating sBAx as a parallel insertion
module. LoRA modules are then added after every linear
layer. Using the original method, the Macro Average F1 is
0.9390. In comparison, the new method can improve Macro
Average F1 to 0.941 while accuracy is the same. Therefore
this study adopts the new method.

F. FEDERATED TRANSFER LEARNING
When the federated learning is completed, we can get the
global model. However, if we utilize the global model directly
on the client’s local data, it may still exhibit poor performance
for the specific client. The federated learning system operates
well under the assumption that the training and test data are
independent and identically distributed (i.i.d.). However, this
assumption rarely holds in practice due to variations in data
among different clients, over time, and across different loca-

tions. Consequently, the global model trained by the federated
learning system often struggles to effectively handle the dis-
tribution disparity between the training data and the client’s
local data, a phenomenon well-known as domain shift. This
discrepancy happens from the distribution disparity between
the client’s data and training data. The global model hosted on
the central server typically captures only coarse features from
all clients, thus struggling to grasp the nuanced, fine-grained
information specific to individual clients. On the other hand,
the local data from individual clients typically lacks anomaly
samples and thus it is difficult to train a robust model. There-
fore, to achieve excellent customized client models, it is
necessary to apply transfer learning to fill this gap rather than
collecting labeled local data and training a new classifier for
every client. Furthermore, the target domain data is usually
unlabeled, necessitating unsupervised adaptation techniques
rather than supervised adaption techniques to transfer the
learning we have already got.

FIGURE 8. The original architecture of the DistilBERT model with LoRA
tuning.

FIGURE 9. The alternative architecture of the DistilBERT model with LoRA
tuning.

Deep CORAL [47] is an excellent unsupervised adaption
technique to incorporate learning a nonlinear transformation
aimed at minimizing the difference in feature covariances
between source and target domains. We have source-domain
training examples DS ={xi}, xi ∈Rd with labels LS ={yi},

VOLUME 12, 2024 160407

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

i ∈{1,. . . , L}, and unlabeled target data DT ={ui}, ui ∈Rd .
Let nS and nT stand for the number of source and target data,
correspondingly. CS indicates the feature covariance matrix
of the source data while CT represents the feature covariance
matrix of target data.

The differential CORAL loss is designated as the discrep-
ancy between the covariance of the source and target features.

LCORAL =
1

4d2
||CS − CT ||2F (8)

where || · ||2F represents the squared matrix Frobenius norm.
The covariance matrices for the source and target data are
represented respectively as follows:

CS =
1

nS − 1
(DTSDS −

1
nS

(1TDS)T (1TDS)) (9)

CT =
1

nT − 1
(DTTDT −

1
nT

(1TDT)T (1TDT)) (10)

Our goal is that the ultimate deep features must possess both
discriminative powers to effectively train a robust classifier
and constant to differences between the source and target
domains. Solely minimizing the classification loss may result
in overfitting to the source domain, thereby diminishing per-
formance on the target domain. Conversely, only minimizing
the CORAL loss alone could produce deteriorated features
and poor detection performance. Training jointly with mini-
mizing both the classification loss and CORAL loss can result
in learning features that are effective on the target domain.

L = LCLASS +
∑t

i=1
λiLCORAL (11)

Here, t represents the number of CORAL loss layers in a
deep network, and λ is a weight parameter that balances the
adaptation with classification accuracy on the source domain.
In this study, the covariance matrices for the source and target
features are calculated on the temporal sequence feature.
CORAL Loss is then seamlessly integrated into the total loss
of the Pre-trained LLM instead of adding an alignment layer.
The client model is re-trained with the target of minimizing
the total loss L including both the classification loss and
CORAL loss on the client’s local data. By tuning λ, these
two losses compete with each other and finally converge
to an optimal equilibrium during training, resulting in final
features that are anticipated to perform effectively on both
the target domain and source domain. The detailed procedure
is described in Algorithm 2. Besides Deep CORAL, FedITD
offers extensibility by accommodating other transfer learning
algorithms.

IV. EXPERIMENT
Two kinds of experiments are carried out to assess the
effectiveness of the framework FedITD. The first kind of
experiment aims to assess federated PETuning methods
including their fundamental capability of insider threat detec-
tion, resource costs, and privacy preserving. The other one
is to evaluate the effectiveness of transfer learning consisting
of unsupervised domain adaptation’s performance evaluation,

comprehensive ablation analysis of FL and TF’s contribu-
tion, performance evaluation on the highly heterogeneous and
slightly heterogeneous target domain, generalization ability’s
evaluation, and how to attain the optimal equilibrium that
performs well across source domain, target domain (local
test), and global test.

Algorithm 2 Training Procedure of Federated Transfer
Learning
Input: Client set C ; Local epoch number E ; a fine-tuned
global model fS; The K clients are indexed by k and the
local dataset Dk belongs to the k-th client; the global test
data set are original data including all anomaly scenarios;
the source and target validation dataset are the augmented
data that do not join model training in the source and
target domain. λ is a weight parameter to tradeoff between
classification performance and domain adaption.
Output: a well-customized client model fk for client k
Download the well-tuned global model fS from the central
server
Repeat
Tune the value of λ

For each epoch e= 1 to E do
Calculate classification loss by using cross-entropy
Calculate CORAL loss by using (8)
Train client k’s model fk on the private data set

Dkusing (11)
Evaluate the client model fk ’s performance on the source

validation dataset
Evaluate the client model fk ’s performance on target

validation dataset
End
Evaluate the client model fk ’s performance on the global
test dataset
Until Find an optimal λ to achieve optimal equilibrium
that the model performs the best across source validation
dataset, target validation dataset, and global test dataset

A. EXPERIMENT SETTING
This study conducts our experiments utilizing Google Colab,
a virtual environment equipped with an NVIDIA A100-
SXM4-40GB GPU, 83.48GB of RAM, and a disk capacity of
166.77 GB. The PyTorch version is 2.0.0 and Python version
is 3.10.11. Key software packages utilized for model devel-
opment include PyTorch, Pandas, Matplotlib, Transformers,
and Scikit-learn. This study adopts RoBERTa-Base, BERT-
base-cased, XLNet-base-cased, and distilbert-base-cased as
the foundation models using the AutoModelForSequence-
Classification package released by Huggingface V4.39.3.
All parameter-efficient tuning approaches are implemented
based on OpenDelta [53], which is an Open-Source toolkit
for parameter-efficient tuning. The infrastructure of the Fed-
erated Learning system is developed based on FedLab [54],
which is a flexible federated learning framework. Through-

160408 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

out the study, our model was trained with batch sizes of
32. In federated learning, the model is tuned for 1 local
epoch in each client’s site, while the global communication
epoch is 10 rounds. Cross-entropy loss and the Adam opti-
mizer are employed for local training. For each model and
tuning approach, we conduct a hyperparameter sweep. The
best model hyperparameters are chosen based on the metric
performance on the test data set. Specifically, we explore
learning rates from {1e-6, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}.
For the Adapter, we search the bottleneck dimensions from
{16, 64}, and the ranks from {4, 8, 16} are examined for
LoRA.

B. DATASET
Due to security and privacy reasons, it is very hard to find
real insider threat datasets. This study chooses the CERT
r6.2 dataset as the experimental data source because CERT
is the most popular open dataset for insider threat detec-
tion adopted by most research literature. Especially version
r6.2 is more complex, challenging, and perfectly simulates
real scenarios. It comprises synthetic scenarios, malicious
users, and their behavioral data. Developed by the CERT
Division of the Software Engineering Institute at Carnegie
Mellon University, it mimics IT-based activities and personal
profiles within a fabricated organization named DTAA. The
dataset encompasses five log files:

(1) logon.csv: Records all employees’ logon and logoff
activities on PCs

(2) email.csv: Keeps all emails of employees
(3) http.csv: Saves web browsing history records of

employees
(4) file.csv: Collects file-related operations such as open,

write, copy, or delete.
(5) device.csv: Archives the connection information for

removable drives.

Additionally, the CERT dataset offers all employees’ HR data
in LDAP.csv and psychometric grades in psychometric.csv.

CERT r6.2 presents a significantly large corporation with
4000 employees and a vast number of activities totaling
135,117,169.Within this dataset, only five users exhibit mali-
cious behavior, and there are merely 470 related anomalous
activities. Despite the presence of five insider risk scenar-
ios, each scenario involves only one malicious employee.
Notably, both scenario 3 and scenario 5 occur on one day.
Among the five scenarios, one scenario involves data exfil-
tration, another one pertains to system sabotage, and the
remaining three scenarios revolve around embezzling intel-
lectual property. Due to the sporadic nature of CERT r6.2,
it contains fewer instances of malicious users and their
activities, while significantly more instances of normal user
behaviors. Detecting insider threats within such an imbal-
anced dataset is considerably challenging.

The data processing process proceeds as follows:

1. Initial data cleaning is performed to remove erroneous
entries and fill in missing values. Remove or obfuscate

sensitive information before participating in federated
learning. This includes data anonymization and feature
engineering to reduce the exposure of identifiable data.

2. Five domain data files (login, device, file, email, and
HTTP) are loaded into their respective individual data
subsets

3. Useful features are extracted and generated from the
data subsets, including user IDs, activity time, activity
types, etc.

4. User behavior is encoded into numeric tokens, incorpo-
rating activity type, temporal information, and relevant
features.

5. All five data subsets are combined into a unified
dataset, with data grouped first by user and then by day.
Subsequently, each user’s behavior is sorted chronolog-
ically to generate their daily behavior sequence.

6. Incorporate the ‘‘insider.csv’’ dataset to label the user
behavior sequence as normal or anomalous.

7. Text data transformation is performed, converting each
data instance into a word embedding based on a trained
custom vocabulary.

The details of data processing are described in our previous
paper [7]. Additionally, this study addresses highly imbal-
anced data issues throughNLP data augmentation techniques,
such as contextual embedding word insert and substitution
using associate pre-trained LLMs.

C. EVALUATION METRICS
To assess the effectiveness of our model, we employed the
following performance metrics as evaluation criteria:
• Accuracy

Accuracy =
TP+ TN

TP+ TN + NP+ NN
(12)

where TP, TN, FP, and FN denote true positives, true neg-
atives, false positives, and false negatives, correspondingly.
Accuracy represents the percentage of correctly identified
items among all items. In other words, it indicates the pro-
portion of correctly detected instances among all detected
instances.
• Recall

Recall =
TP

TP+ FN
(13)

Recall, also known as sensitivity or true positive rate, is the
proportion of actual positives that are correctly classified
as positive. In other words, it measures the percentage of
positive instances that are correctly identified as positive.
• Precision

Precision =
TP

TP+ FP
(14)

Precision, also known as confidence, is the percentage of
correctly identified positives among all instances predicted
as positive. In other words, it measures the proportion of
predicted positive instances that are truly positive.

VOLUME 12, 2024 160409

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

• F1 Score

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(15)

The F1 Score, also known as the F-score or F-measure, is the
harmonic mean of precision and recall. If precision increases,
there may be a decrease in recall and vice versa. It balances
precision and recall, allowing for a trade-off between the two
metrics.
• The area under ROC curve (AUC)

The ROC curve, the Receiver Operating Characteristic curve,
is derived from the coverage curve through axis normalization
to the range [0, 1]. It illustrates the trade-off between true
positive rate (sensitivity) and false positive rate (1-specificity)
as the discrimination threshold varies. The area under the
ROC curve (AUC) quantifies the ranking accuracy of the
model.

Because the global test dataset contains only a few anomaly
instances and a huge number of normal instances. If themodel
predicts all instances to be normal, it can still achieve high
accuracy. Therefore, accuracy is not a reliable measure metric
in this experiment. The F1 score provides a comprehensive
measure of both precision and recall. However, if increasing
the F1 score of one class, there may be a decrease in the F1
score of the other class. Macro Average F1-score takes the
F1 scores of each class and averages them, treating all classes
equally. Therefore, this study chooses the Macro Average F1-
score as the first measure metric and keeps accuracy as the
second measure metric.
• Communication Cost

The communication cost ‘c’ can be computed using the fol-
lowing formula:

c = rXnXsX2 (16)

where r is the global communication round, n is the count of
the clients, and s is the size of the trainable parameters. The
trainable parameters include tunable parameters in both the
tunable modules and the foundation model.
• Storage Overhead

Storage overhead is measured by the model size. The size of
the model includes the size of the foundation models and the
size of the delta model. The size of the delta model is the size
of a tunable module, e.g., Adapter, or RoLA.
• Memory Usage

Memory usage is the amount of RAM required to run the
model during inference. It is a very important performance
metric and especially useful for deploying models on devices
with limited memory.

V. EVALUATION AND ANALYSIS
A. EVALUATION RESULTS
1) FEDERATED TUNING PERFORMANCE
The experiments are performed in the Cross-silo Setting.
Cross-silo Setting caters to multiple users, typically no more
than 100 clients. Almost all experiments except for evaluating

TABLE 2. The performance of federated and central tuning of LLMS.

the impact of a large number of clients are performed in this
setting. The total number of clients is set to 10. The central
server chooses all clients for training in every communication
round. In the experiment of federated learning, this study
adopts contextual word embedding augmentation methods
using associate LLMs to upsample the anomaly behavior data
because this method is proven tomake themodel perform bet-
ter [7]. In the augmented dataset, the ratio of original normal
user behavior data to augmented anomaly user behavior data
is 55%: 45%. 80% of the whole data is split as the training
dataset, 10% of the whole data is split as the validation
dataset, and the remaining 10% is kept as the test dataset.
The ratio of original normal user behavior data to augmented
anomaly user behavior data is 1:1 in the both training dataset
and the validation dataset. In the test dataset, both normal
and anomaly user behavior data are all original data. Then
the training dataset and validation dataset are divided among
clients as their local data.

As depicted in Table 2, in terms of federated learning with
PETuning methods, the RoBERTa model with LoRA tuning
demonstrates superior performance compared to other meth-
ods, while the XLNet model with BitFit tuning performs the
poorest. Across various base models, RoBERTa consistently
exhibits the highest performance, outperforming DistilBert,
BERT, and XLNet with all PETuning methods. The perfor-
mance ranking is as follows: RoBERTa>DistilBert>BERT
> XLNet. When comparing different PETuning methods,
the performance rankings are as follows: LoRA > Adapter
> BitFit. In terms of federated learning with full tuning
methods, DistilBERT performs best with Macro Average F1
0.9534 and an accuracy of 99.54%. This is consistent with
our past conclusion that the simplified encoder architecture of
the transformer model performs best in insider threat detec-
tion [7]. Only the Macro Average F1 score of XLNet with
BitFit tuning and BERT with BitFit tuning are lower than
0.90. It shows that although the BitFit module is added or
unfreeze bit term in many layers of the foundation model,
but it carries much less weight in classifying insider behavior
sequence.

In terms of central learning with PETuning methods, the
RoBERTa model with adapter tuning and BitFit tuning and

160410 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

TABLE 3. The Relative percentage of macro avg F1 between the federated
and central tuning of PLMS.

TABLE 4. The Relative macro avg F1 between federated PETuning and
federated Full-tuning.

XLNet with LoRA tuning demonstrate superior performance
compared to other methods, while the XLNet model with
BitFit tuning performs the poorest. Across various base mod-
els, RoBERTa consistently exhibits the highest performance,
outperforming DistilBert, BERT, and XLNet in all PETuning
methods. The performance ranking is as follows: RoBERTa
> BERT > DistilBert > XLNet. When comparing different
fine-tuning methods, the performance rankings are the same
as federated learning: LoRA > Adapter > BitFit.

Relative Percentage of Macro Average F1 between feder-
ated learning and central tuning is themacro average F1 of the
federated tuningminus themacro average F1 of central tuning
with the same tuning method and then divided by the macro
average F1 of the central tuning with the same tuningmethod.
As Table 3 shows, XLNet with BitFit tuning performs the
worst as the reduction rate attains 15.10%. Additionally, the
relative percentage of macro average F1 of RoBERTa with
full-tuning is −7.84%. However, all other models with other
tuning methods perform well as their relative macro average
F1 percentage reduction are all less than 6%. Especially Dis-
tlBERT with full-tuning and RoBERTa with LoRA tuning’s
macro average F1 have no changes between federal tuning
and central tuning.

The relative Percentage of Macro Average F1 between fed-
erated PETuning and federated full-tuning is the percentage
of performance gap achieved by federated PETuning rela-
tive to the best federated full-tuning performer DistilBERTin
terms of Macro average F1. As Table 4 shows, XLNet with
BitFit tuning performs the worst as the gap is -24.74%.
Additionally, the relative macro average F1 percentage of
BERTwith BitFit tuning is 6.59%. However, all other models
with other tuning methods perform well as their relative
percentage of macro average F1 are all less than 6%.

From the above results, we can see that the performance
of most PETuning methods downgrades by less than 6%

in federated learning environments compared to correspond-
ing PETuning methods in central learning environments.
Additionally, the performance of most PETuning methods
downgrades less than 6% in federated learning environments
compared to corresponding full-tuning methods in the same
environment. However, FL using Pre-trained LLMs with
most PETuning methods can achieve high Performance in
terms of Macro Average F1 score (>0.90) and accuracy.
RoBERTa demonstrates superior performance compared to
other models and exhibits greater robustness in a federated
learning environment. LoRA emerges as the most effective
PETuning method when leveraging a strong Pre-trained LLM
like RoBERTa or DistilBert. Nevertheless, some combina-
tions of Pre-trained LLM and PETuning methods especially
XLNet with BitFit tuning method have a considerable degen-
eration in both federated learning (−24.74%) and central
learning environment (−15.49%).

Finally, we evaluate the impact of a large number of clients
in Large-scale Cross-device Setting. Large-scale cross-device
setting represents the other federated setting intended for
deployment across a large number of clients. In this scenario,
data held by local clients are more sporadic than in the
former setting. In the experiment, the total number of clients
in the large-scale settings is 100, and the sampling rate is
set as 10%. In each communication round, 10 clients are
randomly sampled from all available clients to participate in
both local training and federated aggregation processes in the
federated learning process. Employing RoBERTa as the base
model and LoRA as the tuning approach, we replicate the
aforementioned training and testing procedures. The findings
indicate that the algorithms’ performance remains robust. The
Macro Average F1 experiences only a minor decrease of
3.34%, while the accuracy decreases by a mere 1.15%. This
suggests that the number of clients has minimal influence on
performance.

2) RESOURCE COST
The resources associated with various PETuning methods
encompass the storage overhead, the communication cost,
and the memory usage.

Table 5 shows the size of trainable parameters and the
trainable ratio which is the ratio of the size of trainable param-
eters to the size of the corresponding models’ all parameters.
Observations reveal that the size of DistilBERT with the
BitFit tuning method is remarkably compact, occupying only
0.04MB, which represents a mere 0.07% of the backbone
model’s size. In contrast, the BERT model with

Adapter tuning exhibits the largest size at 1.74MB,
attributed to the insertion of learnable modules, termed
Adapters, into certain transformer layers. According to
Table 5, in terms of tuning methods, the sizes of their train-
able parameters are ordered as follows: FedFT≫ FedAP >

FedLR > FedBF. Regarding foundation models, the sizes of
their trainable parameters are ordered as RoBERTa > BERT
> XLNet > DistilBERT. The experimental findings reveal
that the size of trainable parameters only accounts for 0.04%

VOLUME 12, 2024 160411

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

TABLE 5. The size of trainable parameters of fine-tuning methods.

TABLE 6. The communication cost.

to 1.64% of the size of all parameters of the models. That
means that PETuning methods can use 62 times to 1955 times
fewer trainable parameters than a full-tuning method to attain
a performance close to the full-tuning method in FL settings.
In addition, by deploying multiple tasks on a local client,
PETuning methods can facilitate different tasks to share one
Pre-trained LLM. The client is allowed to retrain only a small
number of trainable parameters for each task, thereby reduc-
ing storage requirements. Moreover, this reduction in the
size of trainable parameters results in a significant decrease
in communication cost because the amount of data in the
communication significantly reduces. Furthermore, it is very
helpful to preserve client privacy since the client data exposed
to the network is much decreased.

Table 6 illustrates the communication costs for all tuning
methods under FL settings. The communication cost of the
DistilBERT model with the BitFit tuning method is notably
small, occupying just 8MB. Conversely, the communication
cost of the BERT model with Adapter tuning is the largest,
measuring 348MB. As shown in Table 6, in terms of the
PETuning method, the communication costs are ranked as
follows: FedFT ≫ FedAP > FedLR > FedBF. Regarding
foundation models, the communication costs are ranked as
RoBERTa > BERT > XLNet > DistilBert. The experi-
mental findings indicate that the Federal PETuning methods
greatly enhance training efficiency by substantially decreas-
ing communication costs from 98.39% to 99.94% compared
to their FedFT methods on their corresponding models. This
reduction in communication costs also leads to a significant
decrease in training time during both uploading and down-
loading parameters. Consequently, Federal PETuning proves

TABLE 7. The memory of the delta model and the total model.

to be a more practical choice for real-world applications,
especially in networks with communication constraints.

Memory usage is also an important aspect of the perfor-
mance. However, most researchers ignored memory usage.
Table 7 illustrates the memory efficiencies of PETuning
methods and the Full-tune method across various models
in a Federated Setting. RoBERTa model with BitFit tuning
and XLNet with BitFit tuning’s memory are the smallest at
0.25MB while the BERT model with Adapter tuning has the
largest memory usage which is 6.96MB. PETuning methods’
delta model only accounts for 0.05% to 1.61%memory usage
compared to the corresponding original foundation models.
This advantageous feature is particularly beneficial for local
clients in real-world FL systems, especially edge devices.

3) PRIVACY PRESERVING
The experiment of an embedding inversion attack is per-
formed to evaluate the privacy protection capabilities of
FedITD. The embedding inversion attack is to recover
original input from clients’ model weight updates in an
FL environment. After removing encryption and federated
dropout, this study initializes a tensor of random embeddings
and uses a backward optimization process to minimize the
Mean Square Error (SME) loss between recovered embed-
dings and actual embeddings [55]. After optimization, the
closest token indices are identified by the Euclidean distance
and then decoded back to the recovered text. The F1 score
is used to evaluate the performance of the inversion attack.
We randomly selected 120 daily user behavior samples from
the CERT dataset r6.2 after data processing as an attack
dataset and evaluated the performance of the attack using the
RoBERTa model with full tuning and LoRA tuning meth-
ods. The result shows that the F1 score of the former is
0.1803 while the latter is reduced to 0.0602. It demonstrated
that FedITD can more effectively protect clients against
data reconstruction attacks even if encryption and federated
dropout are removed.

4) TRANSFER LEARNING
We performed three experiments to assess the efficacy of
transfer learning in FedITD. The initial experiment involves
assessing the fundamental capability of insider threat detec-
tion through TL, the performance comparison of various

160412 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

tuning methods, and an ablation study. The second experi-
ment aims to verify its capacity for generalization, while the
third one seeks to validate unsupervised domain adaption’s
effectiveness and identify its optimal configurations.

(1)Detection Performance Evaluation
Because XLNet net with BitFit tuning has the worst per-

formance after FL. This study chooses the XLNet model
tuned using the BitFit method in FL as the starting point.
This study compares FedITD’s performancewith that of other
tuning methods: Full-tuning method entails adjusting all
parameters of the downloaded global model from FL using
the client’s local data without explicitly employing transfer
learning techniques, such as minimizing distribution diver-
gence between domains. The PETuning method involves
continuing parameter-efficient tuning on the downloaded
global model obtained from FL using the client’s local data,
without explicitly employing transfer learning techniques as
well. Furthermore, we perform an ablation study to assess the
contributions of the two primary elements: federated learning
and transfer learning. The term ‘‘Only Fed’’ refers to using
the global model trained in FL to apply to client local data
without a personalized transfer learning process. In addition,
‘‘Only TL’’ means that the global model XLNet undergoes
retraining solely using client local data with transfer learning,
without involvement of federated learning anymore.

To perform the experiment of transfer learning, we ran-
domly chose 70% of the training data that participated in
FL training from each client as the source domain’s training
dataset. selecting 70% of data from each client’s validation
dataset that did not participate in FL training as the source
domain’s validation dataset. The ratio of original normal user
behavior data to augmented anomaly user behavior data is
1:1 in the source domain’s data. Test datasets in the feder-
ated tuning experiments are used for the global test. One
client (Client 1) is then chosen from ten clients. Its train-
ing dataset is used as the target domain’s training dataset
while its validation dataset is used as the target domain’s
validation dataset. Because the target domain’s dataset uses
the same data augmentation method as the source domain’s
dataset, data heterogeneity is light. To increase data hetero-
geneity, we also use the dataset augmented by another method
(the contextual sentence embedding method) as the target
domain’s training and local validation dataset. The former is
called the Lightly Heterogeneous (LH) dataset while the latter
is called the Highly Heterogeneous (HH) dataset.

From Table 8, we can see that utilizing the global mode
trained in FL directly on clients (Only Fed) leads to poor per-
formance, primarily due to distribution differences between
the source domain and target client domain data. Global
models trained via FL typically only grasp common and
low-level characteristics from clients, often missing out on
fine-grained, specific features unique to each client. Conse-
quently, it becomes essential for clients to engage in transfer
learning post-obtaining the global model to attain customized
client models. The experiment result also indicates that only
applying transfer learning without FL (Only TL) can effec-

TABLE 8. The performance of transfer learning on LH and HH datasets.

tively handle distribution shifts to significantly enhance the
performance of detection on both LH and HH datasets.
However, FedITD combining FL and deep transfer learning
achieves the best detection performance whether in terms of
Macro Average F1 or accuracy on both LH and HH datasets.
In comparison, although full tuning and PETuning achieve a
good performance in the local test after 20 epochs of tuning,
they still do not attain a satisfactory performance in the global
test. FedITD achieves the highest Macro Average F1 score,
surpassing the Full-tuning method by 2.62% and 27.08% in
the local test and global test on the HH dataset respectively.
Additionally, FedITD also achieves the best classification
accuracy, outperforming the Full-tuning method by 2.64%
and 7.21% in the local test and global test on the HH dataset
respectively. It successfully detects all five anomaly scenarios
in CERT r6.2, whether scenario 2 which has 252 malicious
actions and last for 8 weeks, or scenario 5 that only has
4 malicious actions and last for less than 2 minutes.

Based on the information provided by Table 8, it is evident
that both federated learning and transfer learning play signif-
icant roles in the performance of FedITD. Federated learning
enables the central server to leverage a broader spectrum
of information from multiple clients indirectly, leading to a
more generalized global model. On the other hand, trans-
fer learning empowers clients to further improve the global
model to adapt to the client’s local data, thereby obtaining
a more customized client model. On the contrary, due to the
diversity of datasets, only federated learning models are more
prone to experiencing overfit rising false positive rates or
declining sensitivity. Similarly, only transfer learning models
may struggle to detect unknown attacks that are not present
in the source domain, as it is hard to get knowledge about
these attacks from other clients. FedITD can address these
shortcomings by constructing a custom model for individual
clients using both transfer learning and federated learning.
Each client’s model is refined to capture their unique behavior
traits and detect unknown attacks that do not show up in the
local dataset, leading to a more precise, tailored, and general
model.

(2) Model Generalization Evaluation
To demonstrate the superior generalization ability of Fed-

ITD, we conducted data processing before the experiment

VOLUME 12, 2024 160413

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

described in the previous subsection to validate its capac-
ity to not only detect insider attacks present in a client’s
local dataset but also identify unknown attacks. Initially,
we removed some specific users’ anomaly behavior data
from the client’s local training and local test datasets while
retaining them in the global test set. Specifically, we excluded
user CDE1846’s (scenario 4) and user MBG3183’s (scenario
5) anomaly instances from client 1’s target domain training
and local test datasets while leaving the source domain’s
datasets unaffected and also keeping them in the global
test dataset. Subsequently, we conducted the aforementioned
experiment outlined in the previous subsection. Notably,
since user CDE1846 and user MBG3183 are absent from
client 1’s local dataset, models solely trained on local data
without any federated learning or transfer learning process
struggled to identify user CDE1846 and user MBG3183’s
anomaly behavior, resulting in poor detection performance
in the global test. Conversely, Only TF method, having
access to the source domain dataset, could effectively learn
user CDE1846 and user MBG3183’s anomaly behavior, thus
exhibiting superior performance whose Macro Average F1
is 0.9423 and accuracy attains 99.17% in the global test.
Despite client 1’s limited local data, it successfully detected
user CDE1846’s anomaly behavior, which had not previously
appeared in client 1’s local data. In contrast, as Table 8 shows,
FedITD outperformed OnlyTF in terms of both macro aver-
age F1 (0.9517) and accuracy (99.54%). This improvement is
attributed to FedITD’s excellent ability to facilitate client 1 to
learn the knowledge of user CDE1846 and user MBG3183’s
anomaly behavior from other clients through not only transfer
learning but also federated learning. These robust results
demonstrate the strong generalization ability of FedITD.

(3) Model Localization Analysis
Let’s dive into transfer learning using the deep CORAL

method: As shown in Figure 10, compared with the TL
training and local test performance without CORALL loss,
it’s evident that incorporating the CORAL loss significantly
enhances the performance in the target domain while pre-
serving robust classification accuracy in the source domain.
Fine-tuning without domain adaptation may lead to overfit-
ting the model to the source domain, potentially diminishing
its performance in the target domain. Integrating the CORAL
loss into the system’s loss mitigates the dissimilarities of data
distribution between the source and target domains during the
fine-tuning process. It helps maintain a balance, ensuring the
model performs effectively in both source and target domains.

In Figure 11, both the classification loss and the CORAL
loss are depicted for training with the CORAL loss when λ

is equal to 0.75 and the learning rate is 0.01. Initially, the
CORAL loss is minimal, contrasting with the considerable
classification loss. However, after 20 epochs of training, these
two losses converge to a similar magnitude.

Next, this study will explore how to set lambda values to
optimize the performance on both local test and global test.
When the target dataset is the LH dataset, as Figure 12 shows,
in the local test, with the increasing of λ value, the macro

FIGURE 10. Training and Local Test Accuracy for Training w/ vs w/o
CORAL Loss on HH Datasets.

average F1 score increases till it attains the maximum value at
0.9640 and the accuracy also rises till it achieves the top value
at 96.43% when λ is equal to 0.75. After that, both macro
average F1 score and accuracy decline with the increase of λ.
The global test shows the same tendency: with the increase of

FIGURE 11. Classification Loss vs CORAL Loss on HH Datasets.

λ value, the macro average F1 score increases till it attains
the maximum value at 0.9517 and the accuracy also rises till
it achieves the top value at 99.54% when λ is equal to 0.75.

When the target domain data is the HH dataset, the case
becomes different. As Figure 13 shows, when λ is equal to
0.75, the macro average F1 attains the maximum value at
0.9954 and accuracy achieves the top value at 99.54% as well
in the local test. However, in the global test, when λ is 0.5, the
macro average F1 attains the maximum value at 0.9240 and
accuracy achieves the top value at 98.90%.

B. COMPARATIVE STUDY
XLNet with BitFit tuning method that performed the worst
in the federated learning and then is improved by transfer
learning is selected as the representative of FedITD to com-
pare with other methods of insider threat detection. Only one
insider threat detection solution based on federated learning is
found to compare. This solution usesAutoEncoder to perform
the detection [39]. This study also compares FedITD with
insider threat detection methods based on central training on
the CERT R6.2 dataset. These methods include traditional
machine learning algorithms, such as Isolation Forest [56]
and one-class SVM [27], and recent deep learning models,

160414 VOLUME 12, 2024

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

FIGURE 12. TL Performance with different λ on LH Target Dataset.

FIGURE 13. TL Performance with different λ on HH Target Dataset.

TABLE 9. The Performance comparison of insider threat methods.

such as DistilledTrans [7], LSTM-RNN [57], DeepMIT [58],
DD-GCN [36], multistate LSTM + CNN [59], Hierarchical
LSTMs [32], simultaneous neural learning [60], unsuper-
vised ensembles [61], log2vec [62], log2vec++ [62], and
peering group metadata-informed LSTM Ensembles [63].
The comparative study results show that FedITD not only

outperforms Federated AutoEncoder but also defeats all
insider threat detection methods based on central training
except DistilledTrans [7]. However, the gap between FedITD
and DistilledTrans is very narrow: only 1.82% lower in AUC
and 1.38% lower in F1 but 4.48% higher in recall.

Our proposed FedITD can indirectly combine data from
other clients and reduce the discrepancy of data distribution
between source and target domain, therefore the anomaly
detection rate is even higher than DistiledTrans which utilizes
an optimized transformer model and possesses the advan-
tage of centrally accessing all data samples. Compared to
almost all other detection methods whether central trained
or federated learned, our method has a great improvement
on all performance metrics. It is worth noting that other
methods often filter or manipulate the dataset or the model
setting to achieve satisfying results. For instance, Unsuper-
vised Ensemble [61] and Federated AutoEncoder [39] require
human efforts to examine the highest-ranked data to verify if
the detection is true positive. The security analysts have to
investigate 20% of data instances post-training to get their
claimed performance. Additionally, different thresholds set
by humans can generate different performance results. For
example, log2vec [61] achieves an AUC of 0.93 by evalu-
ating only 6 potential malicious users and 12 normal users
from the CERT R6.2 dataset. In comparison, our proposed
method is a complete end-to-end solution without any human
intervention or manipulation. Additionally, FedITD has no
such limitations on the number of users. Our higher AUC is
achieved by training and testing using the complete dataset.
One benefit of FedITD is the capability to add new clients
automatically, eliminating the need for rebuilding the model
and incremental algorithms. In the meantime, FedITD has
strong detection performance on client local data that other
methods do not have. In brief, FedITD proves its effectiveness
in identifying insider anomalies.

VI. CONCLUSION
In this paper, we present FedITD, a pioneering framework
for insider threat detection that combines FL, PETuning with
Pre-trained LLMs, and transfer learning. FedITD enables
indirect integration of information across clients through
FL. To reduce resource costs, minimize time delays, and
protect privacy, this study explores three representative
PETuning methods—Adapter, BitFit, and LoRA—applied to
four pre-trained large language models: BERT, RoBERTa,
XLNet, and DistilBERT. The results show that Federated
PETuning methods maintain satisfactory performance while
effectively lowering resource usage and protecting against
privacy breaches. Subsequently, we construct custom client
models through transfer learning unsupervised domain adap-
tation. Experimental results reveal that FedITD addresses
the existing issues effectively: 1) Detection Performance:
FedITD’s detection performance surpasses that of other fed-
erated methods and performs better than nearly all centrally
trained methods, closely approaching the best central train-
ing method DistilledTrans. 2) Efficiency: It significantly
reduces communication costs, storage overhead, memory
usage, and time delays. 3) Adaptability and Generaliza-
tion: It demonstrates excellent adaptability to both slightly
and highly heterogeneous data and has a strong ability to
generalize, detecting unknown attacks that have not appeared

VOLUME 12, 2024 160415

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

in the client’s local data. 4) Optimal Equilibrium: By
tuning system parameters, FedITD can achieve an optimal
balance in TL performance across source domain data, target
domain data (unlabeled local data), and global testing. In the
future, incorporating differential privacy will further enhance
the system’s privacy and security protections. Additionally,
leveraging our system to train data online can further improve
the system by allowing continuous adaptation and learning
from new data.

ACKNOWLEDGMENT
The author would like to thank his supervisor Prof. Abdul-
motaleb El Saddik for his guidance, encouragement, valuable
comments, and support during his studies. He also like to
thank all MCRLab mates for the good times he had worked
in such a friendly environment.

REFERENCES
[1] (2020). Market Guide for Insider Risk Management Solutions, Jonathan

Care, Brent Predovich, Paul Furtadoh, USA. Accessed: Mar. 5, 2022.
[Online]. Available: https://www.gartner.com/document/3994931?ref=
solrAll&refval=363319695

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[4] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le,
‘‘XLNet: Generalized autoregressive pretraining for language understand-
ing,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019.

[5] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[6] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
‘‘GLUE: A multi-task benchmark and analysis platform for natural lan-
guage understanding,’’ 2018, arXiv:1804.07461.

[7] Z. Q. Wang and A. E. Saddik, ‘‘DTITD: An intelligent insider threat
detection framework based on digital twin and self-attention based deep
learning models,’’ IEEE Access, vol. 11, pp. 114013–114030, 2023.

[8] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, ‘‘Parameter-efficient transfer
learning for NLP,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 2790–2799.

[9] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, ‘‘LoRA: Low-rank adaptation of large language models,’’ 2021,
arXiv:2106.09685.

[10] E. B. Zaken, S. Ravfogel, and Y. Goldberg, ‘‘BitFit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models,’’
2021, arXiv:2106.10199.

[11] Z. Zhang, Y. Yang, Y. Dai, Q. Wang, Y. Yu, L. Qu, and Z. Xu, ‘‘Fed-
PETuning: When federated learning meets the parameter-efficient tuning
methods of pre-trained language models,’’ in Proc. Findings Assoc. Com-
put. Linguistics. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2023, pp. 9963–9977.

[12] N. Nguyen, P. Reiher, and G. H. Kuenning, ‘‘Detecting insider threats
by monitoring system call activity,’’ in Proc. IEEE Syst., Man Cybern.
SocietyInf. Assurance Workshop,, vol. 6, Jun. 2003, pp. 45–52.

[13] M. Hanley and J. Montelibano, ‘‘Insider threat control: Using central-
ized logging to detect data exfiltration near insider termination,’’ DTIC,
Fort Belvoir, VA, USA, Tech. Rep. 24, 2011.

[14] M. A. Maloof and G. D. Stephens, ‘‘ELICIT: A system for detecting siders
who violate need-to-know,’’ in Proc. Int. Workshop Recent Adv. Intrusion
Detect., 2007, pp. 146–166.

[15] M. T. Sandıkkaya, Y. Yaslan, and C. D. Özdemir, ‘‘DeMETER in clouds:
Detection of malicious external thread execution in runtime with machine
learning in PaaS clouds,’’ Cluster Comput., vol. 23, no. 4, pp. 2565–2578,
Dec. 2020.

[16] R. A. Maxion and T. N. Townsend, ‘‘Masquerade detection using trun-
cated command lines,’’ in Proc. Int. Conf. Dependable Syst. Netw., 2002,
pp. 219–228.

[17] M. B. Salem and S. J. Stolfo, ‘‘Detecting masqueraders: A comparison
of one-class bag-of-words user behavior modeling techniques,’’ J. Wire-
less Mobile Netw. Ubiquitous Comput. Dependable Appl., vol. 1, no. 1,
pp. 3–13, 2010.

[18] M. B. Salem and S. J. Stolfo, ‘‘A comparison of one-class bag-of-words
user behavior modeling techniques for masquerade detection,’’ Secur.
Commun. Netw., vol. 5, no. 8, pp. 863–872, Aug. 2012.

[19] P. Kudłacik, P. Porwik, and T. Wesołowski, ‘‘Fuzzy approach for intru-
sion detection based on user’s commands,’’ Soft Comput., vol. 20, no. 7,
pp. 2705–2719, Jul. 2016.

[20] Y. Song, M. B. Salem, S. Hershkop, and S. J. Stolfo, ‘‘System level user
behavior biometrics using Fisher features and Gaussian mixture models,’’
in Proc. IEEE Secur. Privacy Workshops, May 2013, pp. 52–59.

[21] A. Gamachchi, L. Sun, and S. Boztas, ‘‘Graph based framework for licious
insider threat detection,’’ in Proc. 50th Hawaii Int. Conf. St. Sci., 2017,
pp. 2638–2647.

[22] D. C. Le, N. Zincir-Heywood, and M. I. Heywood, ‘‘Analyzing data
granularity levels for insider threat detection using machine learning,’’
IEEE Trans. Netw. Service Manage., vol. 17, no. 1, pp. 30–44, Mar. 2020.

[23] T. Al-Shehari and R. A. Alsowail, ‘‘Random resampling algorithms for
addressing the imbalanced dataset classes in insider threat detection,’’ Int.
J. Inf. Secur., vol. 22, no. 3, pp. 611–629, Jun. 2023.

[24] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and
N. Ducheneaut, ‘‘Proactive insider threat detection through graph learning
and psychological context,’’ in Proc. IEEE Symp. Secur. Privacy Work-
shops, May 2012, pp. 142–149.

[25] P. Zhang, X. Yang, and Z. Chen, ‘‘Neural network gain scheduling design
for large envelope curve flight control law,’’ J. Beijing Univ. Aeronaut.
Astronaut., vol. 31, no. 6, pp. 604–608, 2005.

[26] Y. Xinying, G. Guanghong, T. Yuan, and Y. Xiaoxia, ‘‘Generalized optimal
game theory in virtual decision-makings,’’ in Proc. Chin. Control Decis.
Conf., vol. 2001, Jul. 2008, pp. 1960–1964.

[27] L. Lin, S. Zhong, C. Jia, and K. Chen, ‘‘Insider threat detection based
on deep belief network feature representation,’’ in Proc. Int. Conf. Green
Informat. (ICGI), Aug. 2017, pp. 54–59, doi: 10.1109/ICGI.2017.37.

[28] L. Liu, O. De Vel, C. Chen, J. Zhang, and Y. Xiang, ‘‘Anomaly-based
insider threat detection using deep autoencoders,’’ in Proc. IEEE Int.
Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp. 39–48, doi:
10.1109/ICDMW.2018.00014.

[29] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, ‘‘Deep
learning for unsupervised insider threat detection in structured cybersecu-
rity data streams,’’ in Proc. AI Cyber Secur. Workshop (AAAI), 2017.

[30] J. Lu and R. K. Wong, ‘‘Insider threat detection with long short-term
memory,’’ in Proc. Australas. Comput. Sci. Week Multiconf., Jan. 2019,
pp. 1–10, doi: 10.1145/3290688.3290692.

[31] F. Yuan, Y. Cao, Y. Shang, Y. Liu, J. Tan, and B. Fang, ‘‘Insider threat
detection with deep neural network,’’ in Proc. 18th Int. Conf. Comput. Sci.
(ICCS), in Lecture Notes in Computer Science, Y. Shi, H. Fu, Y. Tian,
V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot, Eds.
Cham, Switzerland: Springer, 2018, pp. 43–54.

[32] S. Yuan, P. Zheng, X. Wu, and Q. Li, ‘‘Insider threat detection via hierar-
chical neural temporal point processes,’’ in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2019, pp. 1343–1350.

[33] M. Singh, B. M. Mehtre, S. Sangeetha, and V. Govindaraju, ‘‘User
behaviour based insider threat detection using a hybrid learning approach,’’
J. Ambient Intell. Humanized Comput., vol. 14, no. 4, pp. 4573–4593,
Apr. 2023.

[34] A. Saaudi, Z. Al-Ibadi, Y. Tong, and C. Farkas, ‘‘Insider threats detection
using CNN-LSTMmodel,’’ inProc. Int. Conf. Comput. Sci. Comput. Intell.
(CSCI), Dec. 2018, pp. 94–99, doi: 10.1109/CSCI46756.2018.00025.

[35] J. Jiang, J. Chen, T. Gu, K. R. Choo, C. Liu, M. Yu, W. Huang,
and P. Mohapatra, ‘‘Anomaly detection with graph convolutional net-
works for insider threat and fraud detection,’’ in Proc. IEEE Mil.
Commun. Conf. (MILCOM), Nov. 2019, pp. 109–114, doi: 10.1109/MIL-
COM47813.2019.9020760.

[36] X. Li, X. Li, J. Jia, L. Li, J. Yuan, Y. Gao, and S. Yu, ‘‘A high accuracy and
adaptive anomaly detection model with dual-domain graph convolutional
network for insider threat detection,’’ IEEE Trans. Inf. Forensics Security,
vol. 18, pp. 1638–1652, 2023.

160416 VOLUME 12, 2024

http://dx.doi.org/10.1109/ICGI.2017.37
http://dx.doi.org/10.1109/ICDMW.2018.00014
http://dx.doi.org/10.1145/3290688.3290692
http://dx.doi.org/10.1109/CSCI46756.2018.00025
http://dx.doi.org/10.1109/MILCOM47813.2019.9020760
http://dx.doi.org/10.1109/MILCOM47813.2019.9020760

Z. Q. Wang et al.: FedITD: A Federated PETuning With Pre-Trained LLM and TF Framework

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017.

[38] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentral-
ized data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, 2017,
pp. 1273–1282.

[39] M. Amiri-Zarandi, H. Karimipour, and R. A. Dara, ‘‘A federated and
explainable approach for insider threat detection in IoT,’’ Internet Things,
vol. 24, Dec. 2023, Art. no. 100965.

[40] L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, L. Fei-Fei, and
D. Rubin, ‘‘Rethinking architecture design for tackling data heterogeneity
in federated learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 10051–10061.

[41] O. Weller, M. Marone, V. Braverman, D. Lawrie, and B. Van Durme,
‘‘Pretrained models for multilingual federated learning,’’ 2022,
arXiv:2206.02291.

[42] G. Sun, M. Mendieta, T. Yang, and C. Chen, ‘‘Exploring parameter-
efficient fine-tuning for improving communication efficiency in federated
learning,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2022.

[43] J. Chen,W.Xu, S. Guo, J.Wang, J. Zhang, andH.Wang, ‘‘FedTune: A deep
dive into efficient federated fine-tuning with pre-trained transformers,’’
2022, arXiv:2211.08025.

[44] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, ‘‘FedHealth: A federated
transfer learning framework for wearable healthcare,’’ IEEE Intell. Syst.,
vol. 35, no. 4, pp. 83–93, Jul. 2020.

[45] Y. Fan, Y. Li, M. Zhan, H. Cui, and Y. Zhang, ‘‘IoTDefender: A federated
transfer learning intrusion detection framework for 5G IoT,’’ in Proc. IEEE
14th Int. Conf. Big Data Sci. Eng. (BigDataSE), Dec. 2020, pp. 88–95.

[46] B. Sun, J. Feng, and K. Saenko, ‘‘Return of frustratingly easy domain
adaptation,’’ in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1.

[47] B. Sun and K. Saenko, ‘‘Deep CORAL: Correlation alignment for deep
domain adaptation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops,
Amsterdam, The Netherlands. Cham, Switzerland: Springer, Oct. 2016,
pp. 443–450.

[48] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang,
‘‘Blockchain and federated learning for collaborative intrusion detection
in vehicular edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp. 6073–6084, Jun. 2021.

[49] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ inProc. Int. Conf. Theory Appl. Cryptograph. Techn.Berlin,
Germany: Springer, 1999, pp. 223–238.

[50] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
‘‘Transformer-XL: Attentive language models beyond a fixed-length con-
text,’’ 2019, arXiv:1901.02860.

[51] L. Muñoz-González, K. T. Co, and E. C. Lupu, ‘‘Byzantine-robust
federated machine learning through adaptive model averaging,’’ 2019,
arXiv:1909.05125.

[52] P.-C. Cheng, K. Eykholt, Z. Gu, H. Jamjoom, K. R. Jayaram, E. Valdez, and
A. Verma, ‘‘Separation of powers in federated learning (poster paper),’’ in
Proc. 1st Workshop Syst. Challenges Reliable Secure Federated Learn.,
vol. 13, Oct. 2021, pp. 16–18.

[53] OpenDelta. Accessed: Apr. 25, 2024. [Online]. Available: https://github.
com/thunlp/OpenDelta

[54] FedLab. Accessed: Apr. 25, 2024. [Online]. Available: https://github.com/
SMILELab-FL/FedLab

[55] L. Zhu, Z. Liu, and S. Han, ‘‘Deep leakage from gradients,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019.

[56] B. Lv, D. Wang, Y. Wang, Q. Lv, and D. Lu, ‘‘A hybrid model based on
multi-dimensional features for insider threat detection,’’ in Proc. Wireless
Algorithms, Syst., Appl., vol. 13. Tianjin, China: Springer, Jun. 2018,
pp. 333–344.

[57] F. Meng, F. Lou, Y. Fu, and Z. Tian, ‘‘Deep learning based attribute
classification insider threat detection for data security,’’ in Proc. IEEE 3rd
Int. Conf. Data Sci. Cyberspace (DSC), Jun. 2018, pp. 576–581.

[58] D. Sun, M. Liu, M. Li, Z. Shi, P. Liu, and X. Wang, ‘‘DeepMIT: A novel
malicious insider threat detection framework based on recurrent neural
network,’’ in Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat.
Work Design (CSCWD), May 2021, pp. 335–341.

[59] M. Singh, B. M. Mehtre, and S. Sangeetha, ‘‘User behavior profiling using
ensemble approach for insider threat detection,’’ in Proc. IEEE 5th Int.
Conf. Identity, Secur., Behav. Anal. (ISBA), Jan. 2019, pp. 1–8.

[60] L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, ‘‘Insider threat
identification using the simultaneous neural learning ofmulti-source logs,’’
IEEE Access, vol. 7, pp. 183162–183176, 2019.

[61] D. C. Le and N. Zincir-Heywood, ‘‘Anomaly detection for insider threats
using unsupervised ensembles,’’ IEEE Trans. Netw. Service Manage.,
vol. 18, no. 2, pp. 1152–1164, Jun. 2021.

[62] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, ‘‘log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 1777–1794.

[63] J.Matterer andD. LeJeune, ‘‘Peer groupmetadata-informed LSTMensem-
bles for insider threat detection,’’ in Proc. 31st Int. Flairs Conf., 2018,
pp. 1–6.

ZHI QIANG WANG (Member, IEEE) received
the B.C.S. degree from Anhui University of Tech-
nology and the M.C.S. degree from Southeast
University. He is currently pursuing the Ph.D.
degree in computer science with the School of
Electrical and Computer Engineering, University
ofOttawa. He has played important roles inwriting
the book Digital Twin for Healthcare: Design,
Challenges, and Solutions (Elsevier), in 2022. His
research interests include AI, cybersecurity, deep

fraud, natural language processing, digital twins, and AR/VR.

HAOPENG WANG (Member, IEEE) received
the B.Eng. degree in information and electronics
and the M.Eng. degree in electronic and com-
munication engineering from Beijing Institute of
Technology, Beijing, China, in 2015 and 2017,
respectively. He is currently pursuing the Ph.D.
degree in electrical and computer engineering with
the University of Ottawa. His research interests
include AI, computer networks, extended reality,
and multimedia.

ABDULMOTALEB EL SADDIK (Fellow, IEEE)
is currently a Distinguished Professor and the
University ResearchChair with the School of Elec-
trical and Engineering and the Computer Science,
University of Ottawa, and MBZUAI. He is an
ACMDistinguished Scientist. He has authored and
co-authored ten books and more than 600 publi-
cations and chaired more than 50 conferences and
workshops. He received research grants and con-
tracts totaling more than U.S. $20 million. He has

supervised more than 120 researchers and received several international
awards. His research interests include digital twin, AR/VR, and tactile
internet. He is a fellow of the Royal Society of Canada, the Engineering Insti-
tute of Canada, and the Canadian Academy of Engineers. He received the
IEEE I&M Technical Achievement Award, the IEEE Canada C.C. Gotlieb
(Computer) Medal, and the A. G. L. McNaughton Gold Medal for important
contributions to the field of computer engineering and science.

VOLUME 12, 2024 160417

