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Small Object Segmentation Using Dilated
Convolutions With Increasing-Decreasing Dilation

Ryuhei Hamaguchi

Abstract—This article presents a novel convolutional neural net-
work (CNN) architecture for segmenting significantly small and
crowded objects in remote sensing imagery. Although such small
objects are characteristic in the remote sensing domain, the previ-
ous works mostly follow the state-of-the-art CNN models designed
for ground-based images and have yet to fully explore the method
for segmenting the small objects. To this end, we propose a network
with no downsampling layers by utilizing dilated convolutions.
We find that naive use of dilated convolutions with “increasing”
dilation rates fails to capture local relationships among neighboring
features, resulting in grid-like noise in the prediction. To alleviate
this problem, we propose a novel scheme of ““increasing-decreasing”
dilation rates. Specifically, we propose a network module with
decreasing dilation rates and attach it to the dilated backbone
to reconnect the neighboring pixels of the backbone features. In
the experiments, we evaluated the proposed model on six remote
sensing datasets, where the model showed remarkably high perfor-
mance, especially for small objects.

Index Terms—Convolutional neural networks (CNNs), image
analysis, semantic segmentation.

I. INTRODUCTION

ECOGNITION of small objects is a fundamental problem

for remote sensing (RS) image analysis. Many important
targets in RS, such as buildings, cars, or roads, occupy only a tiny
region in an image. For example, in a 50 cm resolution satellite
imagery, buildings and cars have only 6-20 pixels on a side, and
the width of roads is mostly less than 20 pixels. In this article, we
define small objects as individual objects that occupy fewer than
400 pixels in the RS image (i.e., XS and S size in Fig. 2). Fig. 1
compares typical segmentation tasks in natural scenes and RS
imagery. We see two difficulties in the RS image segmentation
task: 1) Small and crowded objects and 2) cluttered background.
Although convolutional neural networks (CNNs) have shown
impressive performance on RS segmentation tasks, they are
mainly based on architectures designed for natural scenes and
thus still have difficulties with small objects.

As an example, Fig. 2 shows the performance of segmen-
tation models for each building size in DeepGlobe Building
Detection dataset [1]. Although many small buildings exist in
the dataset, such as small housings or sheds, the state-of-the-art
segmentation models perform poorly on the small buildings.
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Fig. 1. Comparison of typical segmentation tasks in RS imagery (top) and

ground-based images (bottom). The objects are significantly smaller and denser
in RS imagery. Note that the image size is the same for both cases.
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Fig.2. Distribution of building size in DeepGlobe dataset and the performance
of segmentation models for each size. While previous models perform well for
large buildings, they perform poorly for small and medium size buildings. Our
proposed method successfully enhances the accuracy for small buildings at the
little expense of large buildings. (“Ours” shows the result of ResNet-D-LFE.)

This motivates us to explore a dedicated architecture to enhance
the accuracy for these small objects, as achieved in the red plots
in the figure.

The biggest obstacle for small object segmentation in RS
imagery is downsampling. Downsampling layers such as max-
pooling or strided convolutions are widely used for natural
scenes to enlarge the receptive field (RF) of a CNN model.
However, downsampling layers discard the detailed spatial in-
formation, leading to degraded performance for small objects.
Recent RS image segmentation models try to recover the lost
spatial information by reusing low-level features through skip
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connections [2], [3], [4], [5], [6], [7], [8]. However, the low-level
features tend to be noisy because of the cluttered background,
and the improvement for small objects is limited. A naive ap-
proach of removing downsampling layers is ineffective because
a CNN model with a small RF cannot distinguish small objects
from cluttered backgrounds [9]. Since small objects do not
contain rich spatial information inside themselves, contextual
cues around them are necessary for recognition.

One promising solution for the problem is the dilated convo-
lutions [10], [11]. The dilated convolutions aggressively expand
the RF by applying a dilated kernel. The kernel size is enlarged
in the dilated kernel by setting an interval between the kernel
weights. Unlike downsampling, the dilated convolutions can
aggregate a wide range of information without losing resolution.

Nevertheless, we highlight that a naive application of dilated
convolutions does not necessarily improve performance. Com-
monly, dilated convolutions are used by “increasing” dilation
rates through layers. However, we find that such a design fails to
capture the detailed structure of small objects due to increased
intervals of the kernel weights. Whereas increasing dilation
rates is essential in terms of resolution and context, it can be
detrimental to small objects, which is especially undesirable in
RS applications.

In this article, we solve this problem by a simple but effective
design: “increasing-decreasing” dilation rates. We show that
decreasing dilation rates afterward promotes feature sharing
between nearby pixels, which helps refine fine details of small
objects missed by the sparse dilated kernel. Specifically, we
propose a local feature extraction (LFE) module that consists of
several convolutional layers with decreasing dilation rates. The
LFE module can be attached to any conventional architecture
with increasing dilation rates to boost performance for small
objects.

We have conducted comprehensive evaluations on six RS
datasets. On most of the datasets, the proposed model out-
performs state-of-the-art semantic segmentation models. We
observe that the performance gain is especially high for small
objects. We further analyze the problem of “increasing” dilation
rates by visualizing the effective receptive field (ERF) [12],
where we find undesirable grid-like patterns in the ERF when
we use “increasing” dilation rates.

The contributions of the article are summarized as follows.

1) A dedicated architecture for extracting small objects from
RS imagery is proposed. Unlike previous methods, the
proposed architecture has no downsampling layers and can
extract full-resolution features with large RFs by dilated
convolutions;

2) We reveal the problems of the conventional dilated back-
bone and find a solution, i.e., “increasing-decreasing”
dilation rates, based on an in-depth analysis of the network
connectivity;

3) The proposed model outperforms the state-of-the-art
models on instance-level metrics in multiple benchmark
datasets. Despite its simplicity, it significantly improves
the accuracy for small objects.

The rest of this article is organized as follows. Section II

provides related works in RS and computer vision literature.
Section III presents the proposed method in detail. In this section,
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we explain the problem of the naive application of dilated
convolutions, i.e., the “increasing” dilation rate, and explain
why the proposed “increasing-decreasing” dilation rate solves
the problem. Section IV introduces instance-level evaluation
metrics for RS object segmentation tasks and analyzes their
importance compared to the conventional pixel-level metrics.
Section V evaluates the proposed method against baselines
and state-of-the-art segmentation models and reports the results
of ablation studies. Section VI gives the interpretation of the
experimental results and the limitation of the proposed method.
Finally, Section VII concludes this article.

This article is an extended version of our prior work [13]
accepted by WACV. The improvements from the conference
version are as follows.

1) Proposal and evaluation of the alternative solution for the
problem of dilated convolutions: We proposed an incrementally
dilated (ID) backbone as an alternative solution for the problem
of dilated convolutions in Section III-C. We compare the back-
bone to the LFE module in Section V-C5, where we find the
LFE module is a better approach for addressing the problem of
dilated convolutions.

2) Improved accuracy with modern CNN architectures: The
proposed method is applied to the more recent CNN archi-
tectures, ResNet [14], and ConvNeXt [15], bringing signifi-
cant performance improvement. The experiment also verifies
the generalizability of the proposed method for different CNN
architectures.

II. RELATED WORKS

Inrecent years, deep neural networks have achieved great suc-
cess in the semantic segmentation of natural scene images [16],
[171, [18], [19], [20], [21]. Also in RS, some techniques for
natural scenes have been successfully applied to the RS imagery,
such as multiscale feature fusion [2], [3], [4], [5], [6], [7], [8],
[22], context aggregation [6], [23], [24], [25], and attention-
based methods [26], [27], [28]. However, the accuracy for small
objects (e.g., XS and S size objects in Fig. 2) is still insufficient
due to the lost spatial information by downsampling layers.
Our paper’s novelty lies in its no-downsampling architecture to
overcome this limitation, based on the dilated convolutions with
novel “increasing-decreasing” dilation rates. Below, we first
introduce the semantic segmentation methods in natural scenes
in Section II-A. We then introduce the segmentation methods
in RS and discuss the difference to our method in Section II-B.
Finally, we introduce other related techniques to enhance the
accuracy for small objects in Section II-C.

A. Semantic Segmentation of Natural Scene Images

Semantic segmentation is a task that assigns each pixel in
an input image a semantic category. The pioneering work of
Long et al. [16] first extended well-studied classification CNN
architecture onto the semantic segmentation task. Since then,
extensive studies have been made on developing CNNs for the
task. A primary focus of the previous works is the utilization
of higher resolution feature maps. Commonly, the resolution of
feature maps in a CNN is gradually lost through layers due to
subsampling operations. The resulting coarse-resolution feature
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maps do not contain sufficient spatial information for accurate
segmentation. To remedy this, Long et al. [16] proposed to
fuse multiresolution predictions that are extracted from different
stages of a network. In [29], a multipath refinement method
is proposed to recover spatial fine details by fusing low-level
encoder features. A line of works [17], [30], [31], [32] introduced
decoder architecture in which resolution of feature maps was
gradually recovered by employing inverse operation of pooling
layer [30], [31] or skipping and fusing high-resolution feature
maps from an encoder part [17], [32], [33]. The other line of
works [11], [34], [35] maintained feature resolution through
layers by utilizing dilated convolutions [10], [11] instead of sub-
sampling operations. The works in [34] and [35] also proposed
decreasing dilation rates to remedy grid noise in the predictions.
Although the methods share a similar concept to our work, the
target of the methods is natural scene images, and they still rely
on subsampling operations. On the other hand, our method has
no subsampling operations and is more suitable for handling
small objects in RS imagery. Another focus of the previous
works is the utilization of contextual information. The works
of [18] and [32] constructed a multiscale feature pyramid to
aggregate contextual information. More recent works [21], [36],
[371, [38], [39] proposed an adaptive feature aggregation method
based on feature relation. For instance, in OCNet [21], contextual
features were aggregated through a self-attention mechanism.

B. Semantic Segmentation in RS

In the RS domain, semantic segmentation CNNs have been
applied to various tasks, such as building detection, vehicle
detection, or road extraction. The improvements in computer
vision were also found to be effective for RS, e.g., FCN ar-
chitecture [40], [41], multiscale feature fusion [42], and an
encoder-decoder architecture [2].

Multiscale feature fusion: The most famous architecture for
multiscale feature fusion is an encoder-decoder architecture. In
the architecture, the encoder first extracts downsampled features
with high-level semantics, and the decoder recovers the fine de-
tails by fusing encoder features in a coarse-to-fine manner. Many
previous works tried to improve the architecture [2], [3], [4], [5],
[6], [ 7], [8], [22], [43]. Several works improved skip connection
by enhancing skipped features by attention mechanism [4], [5],
[6], [22], [43]. In [43], a feature alignment method is proposed
to align the decoder feature to the skipped feature using feature
association. In [22], the feature fusion strategy is improved by
utilizing intermediate building and edge predictions as super-
vised spatial attention maps. Other works improved encoder
and decoder architecture by introducing residual learning [3],
[7] and multiscale feature fusion [8]. In [3], DenseNet [44]
was combined with an encoder-decoder architecture to improve
building detection performance. In [8], a standard bottleneck
layer in ResNet [14] was enhanced by a Res2Net module that
extracts and fuses multiscale features.

HRNet [20] is also a widely used architecture in RS. Unlike
the encoder-decoder, it extracts multiscale features in parallel
and fuses them at intermediate stages. The architecture can
better extract the spatial details in the high-resolution branch,
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resulting in better segmentation accuracy, especially around
edges. HRNet has been improved for RS tasks, e.g., by employ-
ing a channel/spatial attention [45], [46] and a spatial pyramid
module [47].

Recently, several methods proposed to use multiple convolu-
tion kernels, such as inception architecture to extract multiscale
features [48], [49], [50]. In [49], the inception-like module and
channel attention module are utilized to enhance multiscale
features. Wang et al. [50] proposed a spatial pyramid block for
multiscale feature extraction. In the block, multiscale features
are extracted by multiple parallel depthwise separable convo-
lutions with different dilation rates, and the features are then
fused by a pointwise convolution and a scale-attention operation.
Since the concept of the dilated spatial pyramid (DSP) can be
an alternative solution to the problem of dilated convolutions,
we conducted comparative experiments in Section V-C5.

Context aggregation: Contextual information is also bene-
ficial for RS imagery. In [6] and [23] the multiscale feature
pyramid module such as ASPP [32] was utilized for context
aggregation. Zhou et al. [24] improved the pyramid module by
applying self-attention between the multiscale features. Chen
et al. [25] utilized vision transformers [51] for enlarging RF
size, where they applied spatial and channel attention on the
sparsely sampled tokens.

Attention-based methods: Recent methods utilize attention-
based architectures such as Vision Transformers [51] as they
perform better than CNNs in many cases. In [26], dual spatial
attention was proposed that incorporates global context and local
details by applying global self-attention with downsampling and
local attention with efficient stripe convolution. Zhang et al. [27]
proposed a shunted dual skip connection that enhances multi-
scale information inside the ViT backbone and skips encoder
attention maps to the decoder to better exploit the similarity
information inside the encoder. In [28], a ViT backbone is
enhanced by complementing the local fine detail with a con-
volutional branch.

The most crucial difference between the works above and ours
is that the previous works rely on downsampling operation at the
encoder stage, which loses detailed spatial information of small
objects. Although the multiscale feature fusion methods such as
UNet [17] and HRNet [20] can partially alleviate the issue, fus-
ing low-level features often introduces noisy information into the
feature maps, which deteriorates the accuracy for small objects.
On the other hand, our method does not use downsampling. It
maintains full resolution throughout the network, enabling the
model to extract deep features with high resolution and large
RFs. Most related to our work is the work of Sherrah [52],
which utilized dilated convolutions for the encoder. However,
they used maxpooling layers with a stride of 1 after each dilated
convolution layer, which decreases the actual resolution of the
extracted feature maps.

C. Other Related Techniques

We summarize the other related techniques for addressing
small objects in RS imagery. Note that the methods below are
orthogonal to our work.
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Fig. 3.

Overview of the proposed network architecture. The network consists of a dilated backbone, a LFE module, and a head module. The dilated backbone

consists of dilated convolutions with “increasing” dilation rates and has no downsampling layers. The LFE module also consists of dilated convolutions but with
“decreasing” dilation rates. The dilated kernels are depicted below each block, where the blue cells in the grid represent the sampling location of the dilated kernel.

Boundary awareness: To accurately segment crowded small
objects, several works performed boundary refinement by using
boundary aware loss functions [8], [53], [54] or directly learning
boundaries in multitask learning [46], [55]. In [55], semantic
boundary extraction was simultaneously learned in a multitask
manner to enhance vehicle segmentation. Also, Yan et al. [46]
incorporated boundary information by introducing a bound-
ary refinement module and fusing boundary-aware features for
building detection. In [53], the network was trained to predict
the distance from each pixel to the nearest object boundaries.
The distance gives richer supervision about object boundaries
than binary object masks, which results in precise localization
of object boundaries.

Postprocessing: Postprocessing with conditional random
fields [56] was also found to be effective for RS [57]. In [58],
guided filter [59] was used as postprocessing to acquire enhanced
predictions.

Super resolution: Enhancing the resolution of input images
by super-resolution was found to be effective for small object
detection, such as buildings [60], vehicles [61], and general
objects [62]. Rabbi et al. [63] further proposed an edge-enhanced
super-resolution method dedicated to small object detection.

III. PROPOSED METHOD

To detect small objects, we should pay attention to both RF
size and the resolution of feature maps. High-level semantic
features with large RFs are necessary even for small objects [9]
because contextual information around them provides a crucial
clue for recognition. When only given low-level local features,
models will fail to distinguish features of small objects from
other irrelevant features and produce many false alarms. A
higher spatial resolution is also crucial. With a coarse-resolution
feature map, a model will miss small objects or over-segment
them together with adjacent objects.

The proposed model is designed to satisfy both demands.
Fig. 3 illustrates a schematic of the model consisting of three
parts: a dilated backbone, a LFE module, and a segmentation
head. The dilated backbone extracts a high-resolution feature
map with a large RF by utilizing dilated convolutions with
increasing dilation rates (see Section III-A). As we will show in

Section III-B, the dilated backbone with conventional “increas-
ing” dilation rates fails to capture the local relationships between
nearby features. To solve the problem, the LFE module with
decreasing dilation rates is attached after the dilated backbone,
which results in a novel scheme of “increasing-decreasing” dila-
tion rates. Finally, the refined feature map from the LFE module
is fed into the segmentation head that outputs a probability map
of the target objects.

A. Dilated Backbone

As apreliminary, we first explain the dilated convolutions [11]
in more detail. A standard k x k convolution computes the
output by applying kernel weight w on the small k£ x k re-
gion sampled from the input. Let a grid R = & x ) be the
set of sampling positions centered at (0,0), that is, X',) €
{—E51,...,0,..., 52} The convolution at position p can then
be represented as follows:

S
z(p) = > w(d)-z(p+9).

SER

ey

In a dilated convolution with a dilation rate r, the sampling
positions are strided by a factor of r as follows:

z(p) =Y _w(6)-x(p+rd).

SER

@)

As aresult, the kernel size is enlarged from k x kto (r(k — 1) +
1) x (r(k — 1) 4+ 1). Thanks to the strided sampling position
and the large kernel size, the dilated convolution can enlarge the
RF size without losing the resolution of the feature map.

The dilated backbone is acquired by applying dilated con-
volutions on the existing CNN backbones, such as VGG [64]
and ResNet [14]. The role of the module is 1) extracting high-
resolution feature maps and 2) aggregating a wide range of
contextual information. To satisfy both of them, we remove all
the downsampling layers from the module and use dilated con-
volutions instead. Accordingly, their dilation rates are increased
by a factor of 2 at every removed pooling layer, resulting in
“increasing” dilation rates. Note that the spatial resolution is
kept throughout the module since the dilated kernels are densely
applied to their input feature maps.
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Fig. 4.

(a) and (b) Describe the problems of the “increasing” scheme of dilation rates. (c¢) and (d) Describe how the problems are solved by the “increasing-

decreasing” scheme with the LFE module. (a) Problem on spatial inconsistency: Focusing on the adjacent output units A and B, they share only the input features
shown by dark color and share no intermediate features, which causes inconsistency between them. (c¢) Solution: Intermediate features are shared thanks to the LFE
module, which ensures consistent output. (b) Problem on local structure extraction: Focusing adjacent intermediate features A and B, no units in higher layers
receive the information from both A and B simultaneously, i.e., unaware of the local structure between A and B. (d) Solution: By adding the LFE module, features
A and B are shared at the top layer (shown by dark color units), giving a chance to recognize the local structure between A and B.

B. LFE Module

Although the dilated backbone extracts high-resolution fea-
ture maps with a large REF, it fails to capture local relationships
between nearby features due to its architecture with “increasing”
dilation rates. Specifically, such an architecture causes two prob-
lems: 1) Spatial consistency between nearby features becomes
weak, and 2) local structure cannot be extracted in higher layers.
In this section, we first describe the problems in detail. We then
introduce the LFE module as a solution for the problems. For
simplicity, the analysis below is conducted for a 1-D convolution
case, yet the results can be straightforwardly extended to a 2-D
case.

1) Problem on Spatial Inconsistency: Fig. 4(a) shows a toy
model with “increasing” dilation rates. The model consists of
four 1-D convolutional layers with a kernel size of 2. The layers
have increasing dilation rates of 1, 2, 4, and 8. In the figure, two
outputs, “A” and “B,” are extracted through the two extraction
paths illustrated by red and blue edges. The problem is that
the two paths only overlap at the input layer, meaning that the
features in the middle layers are not shared at all for calculating
the two adjacent outputs. As a result, the outputs “A” and “B”
tend to have inconsistent values even though they are adjacent.
In our experiments, we observe grid-like noise in the prediction
of the network when we use “increasing” dilation rates.

2) Problem on Local Structure Extraction: Fig. 4(b) illus-
trates the second problem. In the figure, the two adjacent hidden

features, “A” and “B,” are propagated to higher layers through
two propagation paths illustrated by red and blue edges. The
problem is that the two paths do not overlap at all, i.e., units at
higher layers receive information from either “A” and “B,” not
both. As aresult, the network cannot recognize the local structure
between “A” and “B,” even though such information is essential
for accurate boundary prediction in dense pixelwise labeling
tasks. In RS scenarios where objects are small and crowded, the
accuracy around boundaries is critical because crowded objects
are easily over-segmented with inaccurate boundaries.

3) LFE Module: To solve the above two problems, we pro-
pose the LFE module that has decreasing dilation rate. Fig. 4(c)
and (d) show network structures with the LFE module added
on top of the toy models in Fig. 4(a) and (b), respectively.
In the toy example, the LFE module has three convolutional
layers with dilation rates of 4, 2, and 1. With such decreas-
ing dilation rates, the above problems are successfully solved.
The two extraction paths overlap sufficiently in Fig. 4(c), thus
enhancing feature sharing between adjacent outputs. Moreover,
the two propagation paths successfully overlap at the last layer
in Fig. 4(d), giving chance to recognize local structure contained
in the intermediate feature maps.

Below, we describe a more concrete explanation of why de-
creasing dilation rates solve the problem. Fig. 5 shows three con-
volutional networks, Net-d2, Net-d4, and Net-d8. Each network
has a uniform dilation rate of 2, 4, and 8, respectively. Again,
each path with the same color represents individual extraction
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Explains the detailed process on how the extraction and propagation paths become separated along with the increase of dilation rates. The figure shows

three networks: Net-d2/d4/d8 with different dilation rates of 2, 4, and 8. Now, units a; and c¢; share the same path in Net-d2. When we stack Net-d4 on top of
Net-d2, they belong to separate paths in Net-d4. When we further stack Net-d8, they are still on different paths and will not share the same path again as long as the
dilation rate increases. Also, units a2 and e in Net-d4 become apart in Net-d8. In this way, increasing the dilation rate makes extraction paths (and propagation
paths) branch off. In turn, the opposite happens if we stack in decreasing order (i.e., stacking Net-d4 on top of Net-d4 and Net-d2 on top of Net-d4). Although units
3 and y3 in Net-d8 belong to separate paths, they belong to the same path in Net-d4, and thus, their features can be shared in the layers above.
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Fig. 6. Comparison between the dilated backbone and the ID backbone.

paths (propagation paths if seen upside down). As the dilation
rate increases as 2, 4, and 8, the number of paths without overlap
increases as 2, 4, and 8, accordingly. When these networks are
stacked in increasing order, the two computation paths in Net-d2
branch off into four paths in Net-d4. Then, they further branch
off into eight paths in Net-d8. In this way, computation paths
become increasingly separated and never connected again as
long as dilation rates are increased. In turn, if we stack these
layers in decreasing order, the opposite happens: The eight paths
in Net-d8 are connected into four paths in Net-d4 and then into
two paths in Net-d2. Thus, the decreasing architecture gradually
recovers the connection of the extraction/propagation paths.
The connected extraction path promotes feature sharing among
nearby positions and ensures consistent output. The connected
propagation path allows local structures in the middle layers to
be extracted in subsequent layers.

C. Alternative Solution: ID Backbone

Alternatively, we can also solve the problems by using in-
cremental dilation rates. When dilated convolutions are used
to replace downsampling layers, dilation rates are commonly
increased by a factor of 2 at every downsampling layer to keep
the same RF size. For example, let C;, be a conv3x3-ReLU
block with a dilation rate of » and P be a maxpooling layer
with a stride of 2, the architecture of VGG16 until third-stage
can be written as C-C1-P-C1-C1-P-C-C1-C4. Then, the cor-
responding dilated backbone has dilation rates increased by a

i

factor of 2: C1-C-Cy-Cs-Cy-Cy-Cy (see Fig. 6, left). On the
contrary, the ID backbone increases dilation rates one by one.
For instance, we can build the backbone by changing C4 of the
above backbone into C3: C1-C1-Cs-Cy-C'3-Cy-Cy (see Fig. 6,
right).

Fig. 7 illustrates how the incremental design can solve the
problems. The figure shows a 1-D toy architecture with in-
cremental dilation rates of 1-2-3-4. As we can see, the two
problems of the dilated backbone are solved; the extraction paths
of outputs “A” and “B” overlap at the second and the third layer
[see Fig. 7(a)]. Also, the propagation paths of the features “A”
and “B” overlap at the third and the last layer [see Fig. 7(b)].

The key property is to have a dilation rate not divisible by
the previous layer’s dilation rate. To explain this more in-depth,
we illustrate three convolutional networks, Net-d2, Net-d3, and
Net-d4, with incremental dilation rates, 2, 3, and 4, in Fig. 7(c).
When we stack the networks in increasing order, the units a;
and d; are connected to the same path at Net-d3 while they
are on a different path at Net-d2. Similarly, the units as and e;
separated at Net-d3 are connected at Net-d4. This can happen
because the dilation rate of a layer is not divisible by that of the
previous layer. Taking Net-d2 and Net-d3 as an example, units in
each network have repeated structures; every two units share the
same path in Net-d2, and every three units share the same path
in Net-d3. Because three is not divisible by two, the repeated
structure is not aligned between Net-d2 and Net-d3, resulting
in the recovered connection at Net-d3. Obviously, this cannot
happen when the dilation rates are increased by a factor of 2.
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a; b, ¢; d; e,
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(c)

Fig. 7.

Describes how the incremental dilation rate solves (a) problem on spatial inconsistency and (b) problem on local structure extraction. Instead of increasing

dilation rates by a factor of 2 (i.e., 1-2-4), the architecture in the figure increases dilation rates one by one ( i.e., 1-2-3-4). (c) Shows three toy networks with
incremental dilation rates, 2, 3, and 4. The units in the same color share the same extraction/propagation path. As we can see, units a; and dy in Net-d2 are

connected at Net-d3. Also, units a2 and e in Net-d3 are connected at Net-d4.

IV. EVALUATION METRICS

Pixel-level metrics are widely used for evaluation in many
ground object segmentation tasks. However, as we show in this
section, the pixel-level metrics tend to ignore errors on small
objects, which is not desirable for many practical applications.
Instead, we propose utilizing instance-level metrics to evaluate
the ground object segmentation.

Below, we first explain conventional pixel-level metrics
in Section IV-A, demonstrate the problem of the metrics in
Section IV-B, and introduce a method for utilizing instance-level
metrics in Section IV-C.

A. Pixel-Level Evaluation Metrics

Pixel-level metrics such as pixel F1 score or intersection over
union (IoU) are widely used in semantic segmentation tasks.
In RS image analysis, the metrics are also standard for object
segmentation tasks such as building footprint extraction. These
metrics are computed as follows:

IoU __r (3)
(0] =
TP + FP + FN
TP TP 2PR
P= R= 1= 4)
TP + FP TP + FN P+R

where TP is the number of correctly classified foreground object
pixels, FP is the number of background pixels wrongly classified
as foreground objects, and FN is the number of foreground object
pixels wrongly classified as background.

B. Problem on Pixel-Level Metrics

The problem on the pixel-level metrics is twofold: 1) Pixel-
level metrics tend to neglect errors on small objects. Since small
objects occupy few pixels, they have a relatively small impact
on the metrics compared to large objects. Thus, the metrics

prefer models that can correctly detect large objects even if they
miss many small objects. 2) Pixel-level metrics tend to neglect
errors on the boundaries between objects. This is because the
thin boundary region consists of few pixels and has a relatively
small impact on the metrics. As a result, the pixel-level metrics
overlook the failure case where several small objects are detected
as one large object.

Fig. 9 shows an example of the problem. The PRED1 over-
estimates several small buildings into one large mask, and the
PRED?2 better extracts the individual small buildings. However,
the pixel-level metrics assign a higher score for PRED1 because
the shape of the most prominent object on the top is more
accurate in PRED1.

This behavior is not desirable in many practical applications
because 1) the large object size does not necessarily mean
the importance of the object, and 2) the number of objects is
more meaningful than their shape in many cases. For instance,
correctly recognizing and counting small buildings is essential to
estimating the number of households and the population of a city.
For monitoring activities of commercial facilities, the number
of passenger cars is more important than the number of larger
vehicles, such as buses or trucks. For such purposes, the perfor-
mance of a model should be evaluated based on instance-level
metrics.

C. Instance-Level Metrics

In this article, we propose to evaluate the ground object
segmentation task with instance-level metrics, APy, [65] and
AR [44]. To do this, we developed several preprocessing steps
for converting pixel-level output probability maps into instance-
level detection results compatible with the instance-level evalu-
ation pipeline.

Fig. 8 shows the specific steps for the preprocessing. We first
extract binary masks by thresholding the probability maps and
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Fig. 9. Comparison of evaluation metrics (pixel versus instance). The pixel-
level metrics prefer PRED1, which accurately segments the large object, whereas
the instance-level metric prefers PRED2, which accurately segments individual
small objects. PRED1 and PRED2 are acquired from the prediction result of
DeepLabV2 [32] and the proposed VGG-D-LFE on Massachusetts Buildings
Dataset.

detect polygons from the binary masks. We then aggregate the
probabilities of pixels inside each polygon and compute the
confidence score as an average of the probabilities. Once we
get the polygons and their confidence scores, we can compute
instance-level metrics in the same way as instance segmentation.
For completeness, we explain the computation of the metrics
in the following. We define a ground truth polygon as correctly
predicted when the IoU with a predicted polygon is larger than a
threshold 7,,,. Let s,, be the threshold for confidence score that
satisfies 0 = sp < 51 < ... < sy < 1, instance-level precision
and recall can be computed for each threshold s,, as follows:

_ TP(sy) B TP(s,,)
~ TP(s,) +FN(s,)" ~"  TP(s,)+ FP(s,)

where TP(s,,) is the number of correctly detected foreground
object instances, FP(s,,) is the number of predicted instances
wrongly detected as foreground, and FN(s,,) is the number of
foreground object instances missed in prediction. The precision-
recall curve is acquired by plotting the precision and recall for
each score threshold s,,. The average precision is then computed
as the area under the precision-recall curve as follows:

R, ®)

N
1
APTiou = N Z (Rn - Rnfl) P,. (6)

n=1

Finally, the AP, is computed by averaging the AP evaluated on
various IoU thresholds 7, sampled from [0.1,0.9] as follows:

> AP, (7)

Tion €T

1
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4
@ Ug N
(2 4 (o

Polygons Polygons with score

Schematics of the preprocessing for evaluating ground object segmentation results with instance-level metrics such as APyq.

where we set 7 = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.
The average recall can be computed for each score threshold
s, as follows:

! Z R, (Tiou) )

|Tl| Tiw€T’
where we set 7' = {0.5,0.6,0.7,0.8,0.9}. R, (o) is a recall
evaluated at the IoU threshold 7;,, and the score threshold s,,.

In our experiments, we use the average recall at the lowest score
threshold sq as follows:

AR, =

AR = AR,. 9)

V. EXPERIMENTS

In this section, we validate our method on six RS datasets
and across three foreground object segmentation tasks: building
detection, vehicle extraction, and road extraction. Fig. 10 shows
the distribution of object size for four of the six datasets. We
can see that the small objects (i.e., XS and S size) are not minor
in the datasets; XS and S size objects occupy over 20% of the
objects in the datasets, and the proportion reaches 95% in the
Massachusetts Buildings Dataset. In the experiments, we focus
especially on the small objects, showing how previous methods
fail on these objects and how the proposed method can improve
their performance.

As an additional attempt, we apply our method to the road
extraction task. Although roads are not “small objects,” they are
characteristic in their thin structure. For instance, most of the
roads in DeepGlobe Road Extraction datasets have widths of
less than 20 pixels, which requires special care in the feature
resolution and the RF size. Thus, we conduct experiments to
evaluate the effectiveness of our method on such thin targets.

Below, Section V-A introduces datasets used in our experi-
ments, Section V-B explains basic setups for all the experiments,
and Section V-C—V-E describe the results on each of the three
tasks.

A. Datasets

We used four building detection datasets (Toyota City
Dataset, Massachusetts Buildings Dataset [66], DeepGlobe
Building Detection Dataset [1], and Inria Aerial Image La-
beling Dataset [67]), one vehicle detection dataset (Vaihingen
Dataset [68]), and one road extraction dataset (DeepGlobe Road
Extraction Dataset [1]).
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Fig. 10.
[1600,6400], and over 6400 pixels.

Toyota City Dataset: To evaluate the proposed method, we
created the Toyota City Dataset, a dataset for building detection.
The dataset is composed of satellite imagery around Toyota City,
Japan. The images were acquired by Pleiades satellite in 2014.
Training and test data covers roughly 200 km? and 20 km?, each
containing 100 000 and 15 000 buildings. The image resolution
is 50 cm, and we used RGB bands for training and evaluation.
Labels are provided for two classes: building or nonbuilding for
each pixel. From the dataset, we collected 400 K patches for
training. The dataset is our original dataset and is not publicly
available at present.

Massachusetts Buildings Dataset: The dataset comprises 1 m
spatial resolution aerial imagery with RGB bands. The dataset
covers roughly 340 km? with 194 070 buildings for training and
23 km? with 15 261 buildings for testing. We collected training
patches in the same way in [69] and did not conduct data bal-
ancing. From the dataset, we collected 5 M patches for training.

DeepGlobe Building Detection Dataset: The dataset com-
prises 30 cm resolution satellite images of size 640 x 640 and
corresponding building footprints. The images are collected
from four different cities in the world: Vegas, Paris, Shanghai,
and Khartoum. In total, the number of training and validation
images are 10 593 and 3526, respectively. From these images,
we collected about 5 M patches for training.

Inria Aerial Image Labeling Dataset: Inria Aerial Image
Labeling Dataset [67] is a dataset for building detection from
aerial images. The dataset comprises image tiles of 5000 x 5000
pixels and 30 cm spatial resolution. The training set contains
180 images from five cities: Austin, Chicago, Kitsap Country,
Western Tyrol, and Vienna, covering 405 km?. As in [67], we
used the first five image tiles of each city as a validation set.
We collected about 5 M patches for training from the remaining
image tiles.

Vaihingen Vehicle Dataset: For the vehicle detection task, we
used the dataset curated from Vaihingen Dataset [68]. Vaihingen
Dataset is provided by Commission III of the ISPRS [68]. The
dataset is composed of 9 cm spatial resolution aerial imagery.
We used near-infrared, red, and green bands and did not use
a digital surface model. The dataset includes 16 labeled scenes
covering roughly 0.6 km?. Asin previous works [42], [52], [70],
we used five scenes (IDs: 11, 15, 28, 30, 34) for validation and
the remaining 11 scenes for training. Labels are provided for
six classes: impervious surface, building, low vegetation, tree,
car, and clutter/background. We set car class as our target and
used only car labels for training and testing. From the dataset,
we collected 200 K patches for training.

20K 1K

Small targets Small targets

10K 500

Xs S M L XL Xs S M L XL

Distribution of object size for each dataset. The five sizes {XS, S, M, L, XL} represent the object’s area in a range of [0,100], [100,400], [400,1600],

DeepGlobe Road Extraction Dataset: For the road extraction
task, we used the DeepGlobe Road Extraction Dataset [1]. The
dataset contains 6226 satellite imagery in size 1024 x 1024 and
corresponding mask images for road annotations. The imagery
has a 50 cm resolution, captured from satellites over Thailand,
Indonesia, and India. The dataset is divided into 4696 and 1530
images for training and validation sets. We evaluated our method
on the validation set since labels for the testing set are not
publicly available. We collected about 5 M patches for training
from the dataset.

B. Basic Setups

We evaluated the proposed method on three types of base net-
works: VGG16 [64], ResNet18 [14], and ConvNeXt-Tiny [15].
For each base network, we built three types of backbones (plain,
dilated, and ID) and two types of attachment modules (Keep and
LFE). The architecture of the components is shown in Table 1.
Using the components, we built baselines and the proposed
models as below.

Plain baseline (VGG-P/ResNet-P/ConvNeXt-P): To begin
with, we built a plain model without the LFE module and
dilated convolutions. The model consists of a plain backbone
and a segmentation head with three convolution layers. As
shown in Table I, the plain backbone has a similar architecture
to VGG16/ResNet18/ConvNeXt-Tiny. Specifically, we utilized
the architecture until the third stage of the base networks. For
ResNet18 and ConvNeXt-Tiny, we removed the downsampling
at the first convolution layer by changing the stride of the layer
to 1.

Dilated baseline (VGG-D/ResNet-D/ConvNeXt-D): We built
a model with a dilated backbone to evaluate the naive use of
dilated convolution with “increasing” dilation rates. As shown
in Table I, the dilated backbone is acquired by replacing all
the downsampling layers of the plain backbone with the dilated
convolutions.

Proposed model with LFE module (VGG-D-LFE/ResNet-D-
LFE/ConvNeXt-D-LFE): Finally, we attached the LFE module
on the dilated backbone to validate the effect of the proposed
LFE module.

Strong baseline (VGG-D-Keep/ResNet-D-Keep/ConvNeXt-
D-Keep): Because the LFE module increases the parameter size
of the proposed model, we also built a strong baseline with the
same parameter size as the proposed model for a fair compar-
ison. Specifically, we attached the Keep module that has the
same parameter size as the LFE module. The only but essential
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TABLE I
ARCHITECTURES OF THE BACKBONES AND THE ATTACHMENT MODULES USED IN THE EXPERIMENTS

Backbone Attached module
Plain (P) Dilated (D) Incrementally Dilated (ID) Keep LFE
Layer ~ Width  Stride/Dilation | Layer = Width  Stride/Dilation | Layer = Width  Stride/Dilation | Layer = Width  Stride/Dilation | Layer = Width  Stride/Dilation
O C3 64 sl dl oC3 64 s1dl OC3 64 s1dl eC3 256 sl d4 eC3 256 sl d4
OC3 64 sl dl OC3 64 sl dl O C3 64 sl dl ®C3 256 sl d4 ®C3 256 sl d4
@® Max Pooling — — eC3 256 sl d4 ®C3 256 sl d4
oC3 128 sl dl c3 128 sl d2 C3 128 sl d2 eC3 256 sl d4 c3 256 sl d2
VGG 0C3 128 s1.dl Cc3 128 sl d2 C3 128 sl d2 ®C3 256 sl d4 C3 256 sl d2
@ Max Pooling — — e C3 256 sl d4 [o)ex) 256 sl dl
OC3 256 sl dl e C3 256 sl d4 eC3 256 sl d3 eC3 256 sl d4 [e)ex 256 sl dl
OC3 256 sl dl e C3 256 sl d4 e C3 256 sl d4
O C3 256 sl dl ®C3 256 sl d4 e C3 256 sl d4
o C7 64 sl dl oC7 64 s dl OC7 64 sl dl ®R 256 sl d4 ®R 256 sl d4
@® Max Pooling — — ®R 256 sl d4 ®OR 256 sl d4
OR 64 sl dl OR 64 sl dl OR 64 sl dl ®R 256 sl d4 256 sl d2
ResNet @) 64 sl dl OR 64 sl dl OR 64 sl dl ®R 256 sl d4 256 sl d2
®R 128 s2 dl R 128 sl d2 R 128 sl d2 ®R 256 sl d4 OR 256 sl dl
OR 128 sl dl R 128 sl d2 R 128 sl d2 ®R 256 sl d4 OR 256 sl dl
®R 256 s2.dl o R 256 sl d4 ®R 256 sl d3
OR 256 sl dl ®R 256 sl d4 ®R 256 sl d4
O C4 96 sl dl oCc4 96 s1dl oc4 96 s1dl o CX 384 sI d4 X 384 sT d2
O CX 96 sl dl O CX 96 sl dl O CX 96 sl dl ® CX 384 sl d4 CcX 384 sl d2
O CX 96 sl dl O CX 96 sl dl O CX 96 sl dl ® CX 384 sl d4 O CX 384 sl dl
O CX 96 sl dl O CX 96 sl dl O CX 96 sl dl ®CX 384 sl d4 O CX 384 sl dl
o C2 192 s2 dl c2 192 sl d2 c2 192 sl d2
ConvNeXt | O CX 192 sl dl CcX 192 sl d2 CcX 192 sl d2 Ck: k x k Convolutional Block
O CX 192 sl dl CcX 192 sl d2 CcX 192 sl d2 R: Residual Block
O CX 192 sl dl CcX 192 sl d2 o CX 192 sl d3 CX: ConvNeXt Block
e C2 384 52 dl o C2 384 sl d4 o C2 384 sl d3 @ : Downsampling
O CX 384 sl dl ® CX 384 sl d4 ®CX 384 sl d3 O : Layers with normal convolution
O X 384 sl dl ® CX 384 sl d4 ® CX 384 sl d4 ® @ : Layers with dilated convolution
O CX 384 sl dl ® CX 384 sl d4 ® CX 384 sl d4
TABLE I
BATCH SIZE AND THE NUMBER OF TRAINING ITERATIONS FOR THE EXPERIMENTS
VGGI16 ResNet18 ConvNeXt-Tiny
Dataset Batch size  Train iter | Batch size  Train iter | Batch size  Train iter
Toyota City 100 30K - - - -
Massachusetts 50 30K 32 156 K 32 156 K
DeepGlobe Building Detection 50 100 K 32 156 K 32 156 K
Inria Aerial Image Labeling 50 100 K 32 156 K 32 156 K
Vaihingen 50 4K 32 6 K 32 6 K
DeepGlobe Road Extraction 32 156 K 32 156 K 32 156 K

difference is that the Keep module does not have decreasing
dilation rates. Instead, it keeps the same dilation rate throughout
the attached layers.

ID backbone: We also built a model with an ID backbone to
evaluate the effectiveness of the solution. The ID backbone is
acquired by changing the dilation rates of the dilated backbone
so that the rates increase incrementally (see Table I).

DSP backbone: As another possible solution for the problem
of dilated convolution, we built a backbone with DSP convolu-
tions, which is conceptually similar to [50]. Specifically, we split
each convolutional layer of a backbone into multiple parallel
convolutions with different dilation rates and smaller depth, and
then concatenate the outputs of the parallel convolutions at the
output. We changed a convolution layer with dilation rate 2 into
two parallel convolutions with dilation rates { 1,2}, and that with
dilation rate 4 into three parallel convolutions with dilation rates
{1,2,4}.

For all the experiments, the backbones were initialized using
ImageNet pretrained weights. The other modules were randomly
initialized using “xavier” initialization [71]. We used Adam [72]
with the linear learning rate decay. For VGG-based models,
we set the initial learning rate as 1.0 x 10> and multiplied
it by a factor of 10 for the scratch layers. For ResNet- and
ConvNeXt-based models, we set the initial learning rate as
1.0 x 107* and did not use the increased learning rate for
the scratch layers. When comparing with the baseline models

(Tables II1, VII, and IX), we used the learning rate settings of the
VGG-based models also for the ResNet- and ConvNeXt-based
models (i.e., initial learning rate of 1.0 x 107> and increased
learning rate at scratch layers). We set the weight decay coeffi-
cient as 1.0 x 10~*. The batch size and the number of training
iterations are shown in Table II.

The training patches were randomly cropped from source
images and augmented by random rotation. For building detec-
tion, we conducted data balancing by sampling a subset of the
collected patches to balance the number of positive and negative
pixels across the training patches. Specifically, the collected
patches were first divided into five bins according to the ratio of
positive class pixels in the patch. From the bins, an equal number
of patches were collected.

We evaluated the models using both pixel-level metrics (pixel
F1 and IoU) and instance-level metrics (instance F1, AP, and
AR). To evaluate the instance-level performance for each object
size, we evaluated AR for five object sizes: XS, S, M, L, and
XL, each corresponding to the object’s area in arange of [0,100],
[100,400], [400,1600], [1600,6400], and over 6400 pixels.

C. Building Detection

This section describes the experimental results of the building
detection task. As a preliminary experiment, we first confirm
the importance of enlarging the RF for small buildings in
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Fig. 11.  Results of layer elimination/addition and pooling elimination. For each configuration, AR for small buildings (pixel area smaller than 1600 pixels) is

shown. For layer elimination, we removed layers of the VGG-P one by one from top to bottom. For layer addition, we added layers in the 4th stage of the VGG16
one by one on top of the VGG-P. For pooling elimination, we eliminated the 2nd/all pooling layers from the VGG-P. The experiment is conducted on Toyota City

Dataset.

Section V-CI. In Section V-C2, we empirically show the im-
portance of high-resolution feature maps and the effectiveness
of the proposed LFE module. In Section V-C5, we evaluate the
effectiveness of the ID backbone and compare it with the LFE
module. In Section V-C3, we compare the proposed model with
the state-of-the-art segmentation models. In Section V-C6, we
conduct an ablation study to validate the design choice of the
proposed model. In Section V-C7, we visualize an ERF [12] of
the models for further analyzing the effect of the LFE module.

1) Importance of Enlarging RF: In this section, we con-
ducted preliminary experiments to verify the assumption that
a model needs to have a sufficiently large RF to aggregate
contextual information even for small objects. We have analyzed
the impact of the RF size in two ways. First, we changed the
depth of the backbone of VGG-P by eliminating/adding layers
one by one (layer elimination/addition). Second, we eliminated
pooling layers from VGG-P (pooling elimination). Fig. 11 shows
the performance for small buildings (pixel area smaller than
1600 pixels) in Toyota City Dataset. In either experiment, the
performance degrades as the RF size becomes small, showing
the importance of enlarging the RF size for small objects.

2) Effect of the Dilated Backbone and the LFE Module:
Table III shows the results on the four datasets. Below, we
summarize the results.

(Plain versus Dilated): The use of the dilated backbone im-
proves AP, of the plain baseline in many cases (seven out of ten
cases), showing the importance of high-resolution feature maps.
Significantly, the improvement on AP, reaches around 6% on
Massachusetts Buildings Dataset (VGG-P versus VGG-D and
ResNet-P versus ResNet-D).

(Keep versus LFE): The model with the LFE module outper-
forms its counterpart baseline (Keep) in nine of the twelve cases.
The improvements are especially remarkable for small objects,
showing the effectiveness of the LFE module.

We also applied dense-CRF [56] as a postprocessing on the
Toyota City Dataset. The dense-CRF degrades instance-level
performance because it over-segments a group of crowded small

objects into one large mask due to their similar colors and
ambiguous boundaries.

Fig. 12 qualitatively compares the outputs of VGG-D-Keep
and VGG-D-LFE. As we see, grid noise appears in the prediction
of VGG-D-Keep due to the spatial inconsistency problem dis-
cussed in Section ITI-B. On the contrary, the noise is successfully
suppressed by utilizing the LFE module.

3) Comparison to the State-of-the-Art Models: Table IV
compares the proposed models to the state-of-the-art semantic
segmentation models. On instance-level metrics, the proposed
model outperforms previous methods on most of the datasets.
Focusing on the AR for each size, the proposed model performs
remarkably well for small objects (see ARxs and AR g columns).
On the other hand, previous methods such as DeepLab-V3+,
PSPNet, and SwinTransformer show better accuracy for large
objects (see AR, and ARy columns). Accordingly, they also
perform well on pixel-level metrics since the large objects signif-
icantly impact them. This result confirms that pixel-level metrics
are preferred for large objects, while instance-level metrics are
required to evaluate small objects.

4) Balancing Accuracy for Small and Large Objects With
Model Ensembling: The proposed method performs better on
small objects, while the previous methods perform better on
large objects. Combining both methods can bring synergetic
effects, leading to a method that is highly robust to the object
size. Thus, we here evaluate the effectiveness of the combination
by model ensembling. Fig. 13 compares the ensemble of the pro-
posed and previous models (“Ours+PSPNet” and “Ours+Swin’)
with the ensemble of the previous models (“PSPNet+Swin”). As
we see, the combination of previous models does not improve
the accuracy for small buildings well. Conversely, combining the
previous model with the proposed model significantly improves
the accuracy for small buildings while keeping the accuracy for
large buildings competitively well. The result shows that the
proposed method is complementary to the previous methods in
terms of object size, being a key technique to achieve robustness
to object size.
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TABLE III
EFFECT OF THE DILATED BACKBONE AND THE LFE MODULE FOR BUILDING DETECTION TASK

Dataset Model APy, AR | ARxs ARs ARy ARp  ARxp
Toyota City Dataset VGG-P 23.1 18.9 0.7 18.0 332 29.9 33.8
VGG-D 25.3 21.9 0.9 23.5 36.2 29.2 26.5
VGG-D-Keep 27.0 25.4 1.2 27.5 41.8 33.7 40.0
VGG-D-LFE 27.7 25.8 1.5 28.1 42.0 34.5 33.1
VGG-D-Keep-CRF 26.4 239 0.9 259 393 313 2.5
VGG-D-LFE-CRF 26.9 24.3 1.1 26.3 40.0 32.6 28.1
Massachusetts Buildings Dataset VGG-P 43.8 27.1 222 30.2 333 39.0 41.7
VGG-D 49.9 334 21.9 37.9 38.0 41.7 36.2
VGG-D-Keep 49.5 33.8 28.2 37.9 38.5 429 38.7
VGG-D-LFE 50.3 35.0 28.9 39.7 38.2 43.1 42.1
ResNet-P 40.7 23.1 15.0 25.7 30.4 342 31.1
ResNet-D 46.8 32.6 22.2 37.1 31.8 38.0 37.8
ResNet-D-Keep 44.8 30.3 19.9 34.2 34.4 40.7 41.3
ResNet-D-LFE 45.8 30.3 19.9 34.4 32.4 39.5 38.1
ConvNeXt-P 47.0 29.9 19.4 338 354 40.8 38.1
ConvNeXt-D 459 28.5 18.2 322 329 40.7 42.2
ConvNeXt-D-Keep 48.7 32.8 22.1 37.0 36.3 40.1 394
ConvNeXt-D-LFE 48.8 35.0 23.5 40.0 35.9 38.7 41.9
DeepGlobe Building Detection VGG-P 429 338 3.4 16.7 342 41.0 41.9
VGG-D 42.8 349 49 18.9 35.2 41.5 422
VGG-D-Keep 50.8 44.1 6.2 25.9 45.6 52.7 474
VGG-D-LFE 49.8 41.3 6.9 23.9 41.1 49.4 49.8
ResNet-P 473 37.0 3.1 16.8 37.0 46.5 43.6
ResNet-D 46.3 37.4 53 20.2 37.7 44.7 46.4
ResNet-D-Keep 47.4 41.3 5.8 25.0 46.3 475 33.0
ResNet-D-LFE 52.1 43.7 7.4 24.5 43.5 53.0 51.8
ConvNeXt-P 475 379 32 18.0 37.4 46.6 49.6
ConvNeXt-D 483 38.7 4.1 18.4 37.7 479 50.1
ConvNeXt-D-Keep 49.1 41.0 35 19.7 41.0 52.0 45.5
ConvNeXt-D-LFE 49.2 40.2 4.2 21.1 39.4 49.1 51.4
DeepLabV2 48.6 38.7 1.8 10.9 36.3 51.0 59.5
DeepLabV2-Keep 49.6 39.4 1.8 10.7 36.9 52.4 58.4
DeepLabV2-LFE 50.1 40.4 2.2 13.3 38.0 52.8 60.7
Inria Aerial Image Labeling Dataset ~ VGG-P 48.0 39.9 3.4 20.5 38.0 50.9 51.5
VGG-D 49.9 429 5.5 24.1 41.3 52.9 52.5
VGG-D-Keep 56.9 50.2 79 30.2 48.3 60.3 60.7
VGG-D-LFE 56.2 49.2 9.8 30.2 46.5 59.2 59.6
ResNet-P 5I.8 433 3.7 21.5 40.4 548 56.6
ResNet-D 52.6 452 6.9 26.1 43.1 55.3 54.7
ResNet-D-Keep 54.8 489 6.0 28.7 48.0 59.1 533
ResNet-D-LFE 57.1 49.8 8.8 29.6 47.0 60.5 61.4
ConvNeXt-P 533 455 49 25.6 42.7 57.1 56.0
ConvNeXt-D 54.5 46.9 6.6 26.7 43.7 58.1 53.5
ConvNeXt-D-Keep 51.6 44.0 53 28.1 47.3 52.3 27.6
ConvNeXt-D-LFE 56.0 49.0 7.9 28.5 46.2 60.0 56.8
DeepLabV2 51.2 424 1.8 13.0 373 56.7 63.9
DeepLabV2-Keep 524 44.1 2.1 15.3 38.9 58.1 64.8
DeepLabV2-LFE 52.0 43.9 1.9 15.0 38.9 58.1 64.0

For ResNet- and ConvNeXt-based models, we use the same learning rate settings as the VGG-based models (initial learning rate of 1.0 x 10 and increased learning

rate at scratch layers).
The bold values represent the best results.

5) Exploration of Alternative Solutions: Table V evaluates
the effect of the ID backbone and the DSP backbone. In most
cases, the DSP backbone performs worse than the dilated back-
bone. The effect of the ID backbone is inconsistent across
datasets and architectures, showing improvement and degrada-
tion case by case. While the ID backbone performs well in some
cases, the LFE module shows better performance and is, hence, a
better choice for addressing the problem of dilated convolutions.

6) Design Choice of LFE Module: We further investigate
the design choices of the LFE module. The investigations are
conducted in three axes: 1) RF size of the module, 2) depth of
the module, and 3) scheme for decreasing the dilation rate. We
used VGG-D as the dilated backbone for all of the experiments.

First, we fixed the decreasing scheme to “monotonic de-
crease” and explored the RF size and the depth of the LFE mod-
ules. We controlled the RF size independently from the depth
by adjusting the combination of dilation rates. For example, by

changing dilation rates from 4-4-2-1 to 4-2-2-1, we can reduce
the RF size while keeping the depth the same. In this way, we
changed the RF size while keeping the depth the same and vice
versa. Fig. 14 shows the result of the sensitivity analysis. We see
that the performance is highly sensitive to the choice of the RF
size, showing the importance of the parameter. In contrast, the
performance is stable on the choice of the depth.

Next, in Table VI, we investigated several schemes of decreas-
ing dilation rate: monotonic decrease (LFE-Dec), decrease twice
(LFE-Dec-Dec), increase after dropping to 1 (LFE-Inc), and
increase twice (LFE-Inc-Inc). The result shows that the models
except LFE-Inc perform comparably well. The LFE-Inc might
be inadequate because it decreases the dilation rate only at the
beginning and increases the dilation rate in the latter part, which
again causes the same problem stated in Section III-B. On the
other hand, the repeated increasing architecture (LFE-Inc-Inc)
performs well. Overall, we can conclude that any decreasing
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w/o LFE Ground truth Image

w/ LFE

Toyota City Massachusetts

Fig. 12.

DeepGlobe
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Vaihingen

Qualitative comparison of the prediction results with and without the LFE module. The results are shown for the building detection task (the 1st—4th

row) and the vehicle extraction task (the last row). We can see grid-like noise without the LFE module (w/o LFE), but they disappear in the case with the LFE
module (w/ LFE). The predictions of “w/o LFE” and “w/ LFE” are acquired from VGG-D-Keep and VGG-D-LFE.
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Fig. 13.

Results of model ensembling. Each plot shows the performance difference from PSPNet (AAR) for each size of buildings. The red plots show

the combination of the proposed and the previous model (“Ours+PSPNet” and “Ours+Swin”), the blue plot shows the ensemble of the two previous models
(PSPNet+Swin), and the gray plots show the original three models. (a) DeepGlobe Building Detection Dataset. (b) Inria Aerial Image Labeling Dataset.

scheme performs well only if we do not use long-increasing
architecture.

7) Analysis on ERF: To further analyze the effect of the LFE
module, we visualized the ERF [12] of the models. As in [12],
the ERF is acquired by averaging the gradient signals at the input
layer that are back-propagated from the center unit in the output
map. In Fig. 15, we compare the ERF for three models: the
pooling-based model (VGG-P), the dilation-based model with
and without the LFE module (VGG-D-Keep and VGG-D-LFE).
To our surprise, grid patterns appear in the ERF when we use di-
lated convolutions without the LFE module (see VGG-D-Keep).
The grid patterns mean that the units on the output are unaware
of the local structures smaller than the grid size, as explained
in Section III-B. More importantly, the grid patterns disappear

when the LFE module is attached (see VGG-D-LFE), meaning
that the LFE module successfully aggregates local information
missed in the dilated backbone.

D. Vehicle Extraction

This section describes the results on the vehicle extraction
task. Vehicles are one of the major targets for RS image analysis.
It has a wide range of applications such as traffic monitoring and
planning [75], defense, and trade area analysis. For such tasks,
the model requires separately detecting small and often crowded
vehicles on the roads and the parking lots.

Below, Section V-D1 evaluates the effect of the LFE module
compared to the baselines, and Section V-D2 compares the
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TABLE IV
COMPARISON TO THE STATE-OF-THE-ART MODELS ON BUILDING DETECTION TASK

Pixel metrics Instance metrics AR for each size
F1 ToU F1 APy AR AR xs ARg ARpr AR, AR 1,
Toyota City Dataset
Sherrah [52] 62.0 46.8 | 424 21.3 17.0 0.2 15.1 30.8 34.0 325
U-Net [17] 6277 477 | 47.8 24.9 21.6 0.8 21.9 36.8 34.5 27.5
FCN-8s [16] 56.2 383 16.7 9.8 4.2 0.0 2.1 8.4 21.5 17.5
Deeplab-LFOV [10] 61.7 450 | 29.1 15.4 7.3 0.0 4.7 14.4 24.8 24.4
Deeplab-V2 [32] 62.8 44.7 | 33.0 17.7 10.4 0.0 6.3 18.6 29.4 29.5
VGG-D-LFE 60.1 45.1 | 51.5 27.7 25.8 1.5 28.1 42.0 34.5 33.1
Massachusetts Buildings Dataset
Mnih-CNN [66] 91.5 — — — — — — — — —
Saito-CNN-MA [69] 94.3 — — — — — — — — —
Sherrah [52] 93.0 633 | 66.1 43.0 26.5 21.9 29.3 33.6 37.8 38.2
U-Net [17] 94.1 67.6 | 74.0 49.3 329 27.0 36.9 38.2 45.0 529
FCN-8s [16] 93.1 610 | 464 29.5 12.3 10.6 16.3 27.4 39.2 454
Deeplab-LFOV [10] 89.7 536 | 174 13.0 44 1.5 4.2 18.7 28.5 343
Deeplab-V2 [32] 93,5 629 | 482 32.0 15.1 9.3 15.7 28.1 39.1 352
Deeplab-V3+ [19] 954 703 | 753 49.5 33.7 21.8 38.1 38.6 48.6 46.0
PSPNet [18] 948  66.1 | 51.0 31.6 18.1 9.9 19.3 324 47.8 54.3
VGG-D-LFE 934  64.1 75.1 50.3 35.0 28.9 39.7 38.2 43.1 42.1
ResNet-D-LFE 94.1 669 | 74.7 48.6 33.8 23.0 38.0 372 43.7 40.6
ConvNeXt-D-LFE 94.1  68.1 76.9 49.7 36.1 23.6 41.2 39.2 43.0 39.4
DeepGlobe Building Detection Dataset
Sherrah [52] 792 652 | 529 355 25.7 0.3 2.6 20.2 36.0 43.7
U-Net [17] 846 725 | 674 48.1 38.4 2.1 13.0 36.8 49.6 553
FCN-8s [16] 804 658 | 553 36.9 27.0 1.2 6.8 232 36.0 445
Deeplab-LFOV [10] 78.7  60.0 | 469 29.6 19.1 0.1 0.8 12.0 28.0 40.2
Deeplab-V2 [32] 856 749 | 684 48.6 38.7 1.8 10.9 36.3 51.0 59.5
Deeplab-V3+ [19] 85.1 743 | 664 47.1 37.1 1.7 10.4 344 49.0 573
PSPNet [18] 863 759 | 70.0 50.6 415 2.7 14.5 39.1 54.1 62.6
SwinTransformer [73] | 87.1  77.3 | 71.9 52.2 43.1 3.2 16.2 41.7 55.6 61.2
SegFormer-B5 [74] 869 77.0 | 71.0 519 433 39 17.5 40.8 56.1 62.3
DSAT-Net [26] 86.6 765 | 71.1 51.3 425 1.8 14.7 40.7 55.6 59.3
SDSC-Unet [27] 87.0 773 | 70.0 50.7 41.1 1.7 13.5 38.9 53.8 61.6
VGG-D-LFE 80.7  68.1 66.2 49.8 413 6.9 239 41.1 494 49.8
ResNet-D-LFE 834 719 | 699 53.0 44.7 8.0 25.6 44.6 534 55.6
ConvNeXt-D-LFE 822 702 | 674 50.3 41.9 6.2 22.6 40.3 51.3 529
Inria Aerial Image Labeling Dataset

Sherrah [52] 792 66.7 | 62.6 41.5 32.0 0.2 7.5 27.3 445 46.1
U-Net [17] 849 763 | 73.6 532 46.2 3.0 18.2 40.3 59.9 63.7
FCN-8s [16] 824 722 | 658 44.7 35.8 1.2 9.8 29.1 50.2 58.4
Deeplab-LFOV [10] 775  50.7 | 383 23.8 14.7 0.0 1.2 10.0 24.0 37.1
Deeplab-V2 [32] 855 763 | 717 51.2 424 1.8 13.0 37.3 56.7 63.9
Deeplab-V3+ [19] 85.1 765 | 70.7 50.6 425 1.9 15.0 37.0 56.3 62.1
PSPNet [18] 86.1 7777 | 735 533 455 2.5 17.1 40.3 59.8 65.3
SwinTransformer [73] | 86.8 793 | 753 56.2 49.3 4.5 233 45.0 62.7 66.5
SegFormer-B5 [74] 87.3 80.0 | 75.6 56.5 49.7 42 222 45.1 63.8 714
DSAT-Net [26] 86.1 782 | 745 55.0 48.5 29 21.9 44.6 61.9 64.4
SDSC-Unet [27] 86.4 787 | 732 53.5 46.4 2.5 18.4 41.8 60.7 68.2
VGG-D-LFE 823 716 | 739 56.2 49.2 9.8 30.2 46.5 59.2 59.6
ResNet-D-LFE 847 755 | 76.3 59.0 52.0 10.4 32.8 49.0 62.5 65.0
ConvNeXt-D-LFE 84.6 753 | 747 57.7 50.8 8.9 30.7 47.5 61.7 63.3

The bold values represent the best results.

proposed model to the state-of-the-art semantic segmentation
models.

1) Effect of the Dilated Backbone and the LFE Module:
Table VII compares the proposed and baseline models. (Plain
versus Dilated) The use of the dilated backbone consistently
improves AP, of the plain baseline, showing the importance of
high-resolution feature maps also for the vehicle extraction task.
(Keep versus LFE) The LFE module improves the performance
for most cases (two out of three). The last row of Fig. 12 shows
the qualitative comparison of the predictions with and without
the LFE module. While the model without the LFE module
produces many false alarms due to the spatial inconsistency
problem, they are successfully suppressed in the model with the

LFE module. Moreover, the boundaries of the adjacent vehicles
are more accurate with the LFE module.

2) Comparison to the State-of-the-Art Models: Table VIII
compares the proposed models to the state-of-the-art segmenta-
tion models. We can see similar results as the building detection
task. The proposed model outperforms the previous models on
instance-level metrics. On the other hand, the previous methods,
such as PSPNet, perform well on pixel-level metrics.

E. Road Extraction

This section describes the results on the road extraction task.
Road extraction is a fundamental task in RS image analysis
with various applications such as automatic map updates for
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TABLE V

EXPLORATION OF ALTERNATIVE SOLUTIONS
Backbone | Massachusetts  DeepGlobe  Inria
D 49.9 42.8 49.9
VGG ID 47.8 43.2 50.0
DSP - 42.1 50.0
D 46.8 46.3 52.6
ResNet ID 44.9 46.2 52.3
DSP - 45.9 50.9
D 45.9 48.3 54.5
ConvNeXt ID 48.7 49.3 55.5
DSP - 48.2 53.1
D - 48.6 51.2
DeepLabV2 ) : 99 524

Table compares AP, of the dilated backbone (D), incrementally dilated (ID)
backbone, and dilated spatial pyramid (DSP).

The bold values represent the best results.

28.0 28.0
27.5 275 | VGG-D-LFE
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Fig. 14.  Sensitivity analysis on the depth (left) and the RF size (right) of the
LFE module.
TABLE VI
COMPARISON ON DIFFERENT SCHEMES OF DECREASING DILATION RATE IN
LFE MODULE
Scheme Dilation rate AP,
LFE-Dec 4-4-4-2-2-1-1 27.7
LFE-Dec-Dec  4-4-2-1-4-2-1 27.5
LFE-Inc 1-1-2-2-4-4-4  27.1
LFE-Inc-Inc 1-2-4-4-1-2-4  27.8

The bold values represent the best results.

VGG-P

VGG-D-Keep VGG-D-LFE

Fig. 15.  ERF visualization results for VGG-P (left), VGG-D-Keep (mid), and
VGG-D-LFE (right). Although the grid-like patterns appear in the ERF of VGG-
D-Keep, they disappear in VGG-D-LFE thanks to the LFE module (mid versus
right).

autonomous driving, damage assessment for disasters, and urban
monitoring and planning. To accurately extract the long and
thin structure of roads, the model requires special care on the
resolution of the feature map and the receptive field size [76],
similar to small object detection.

As an evaluation metric, the task puts more emphasis on the
connectivity of roads than the pixel-level accuracy [77], [78],
[79] because a small error on pixels can change the connec-
tivity of roads resulting in completely wrong road networks. To
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evaluate the connectivity of roads, average path length similarity
(APLS) [80] has been widely used. It measures the deviation
of the shortest path length for every pair of nodes in the road
graph, reflecting topological similarity between the predicted
and the ground truth road networks. Following previous works,
we focus on the APLS metric in this experiment.

1) Effect of the Dilated Backbone and the LFE Module:
Table IX shows the comparison result between the proposed
and the baseline models. (Plain versus Dilated) The use of the
dilated backbone largely degrades the APLS of the plain model.
The result contradicts the results of the previous sections, where
the dilated backbone consistently improves the performance for
small objects such as buildings and vehicles. A primary reason is
that the spatial inconsistency caused by the dilated convolutions
is more crucial for the road extraction task. We can see the impact
of the problem in Fig. 16. The predicted roads are disconnected
around the crossings due to the spatial inconsistency problem.
(Keep versus LFE) Using the LFE module effectively solves
the spatial inconsistency problem, significantly improving the
APLS. As shown in Fig. 16, the disconnected roads are success-
fully connected with the LFE module.

2) Comparison to the State-of-the-Art Models: Table X
shows the comparison result to the state-of-the-art segmentation
models. The proposed models perform worse on both the pixel-
level metrics and the APLS. One reason is that the proposed
methods utilize shallow architecture (i.e., until stage3 of the base
networks), and hence, the receptive field size is not sufficient for
recognizing the long and thin structure of the roads [76]. Based
on the observation, we extend ResNet-D-LFE by using deeper
architecture, i.e., layers until stage4 of ResNetl8, as the base
network. As shown in the table, using the deeper architecture
significantly improves the performance. However, the previous
models still perform much better than the proposed model. The
possible reason is that the receptive field size still needs to
be increased because the previous model uses a much deeper
architecture, such as ResNet101, as the backbone.

VI. DISCUSSION
A. Effectiveness of the Proposed LFE Module

To accurately segment small objects, not only high-resolution
features but also large receptive fields are crucial. We con-
firm this by the results in Fig. 11, where the performance for
small buildings is degraded by decreasing the receptive field
size. This result motivates us to utilize dilated convolutions to
extract high-resolution feature maps with large receptive fields.
In previous works, dilated backbones commonly have increasing
dilation rates [18], [21], [32], [37], [38]. However, as shown
in Fig. 12, we find that the “increasing” architecture causes
grid-like artifacts in the prediction results. The proposed LFE
aims to solve this problem by introducing a novel scheme of
“increasing-decreasing” dilation rates. The effect of the LFE
module is evident from Figs. 12 and 16 and Tables III, VII,
and IX, where grid-like artifacts successfully disappeared from
the results, and the overall segmentation performance is signifi-
cantly improved with the LFE module across different datasets
and tasks.
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TABLE VII
EFFECT OF THE LFE MODULE ON THE VEHICLE EXTRACTION TASK

APVOI AR ARXS ARS AR]\/[ ARL ARXL
VGG-P 54.6 46.9 26.7 40.0 47.8 36.4 0.0
VGG-D 61.9 53.5 0.0 30.8 54.7 50.9 0.0
VGG-D-Keep 65.1 57.5 40.0 43.3 58.9 43.6 0.0
VGG-D-LFE 65.7 56.5 13.3 31.7 58.0 56.4 0.0
ResNet-P 59.2 45.2 0.0 23.3 46.6 34.6 0.0
ResNet-D 62.0 539 40.0 233 55.7 40.0 0.0
ResNet-D-Keep 53.7 56.6 40.0 26.7 58.3 45.5 0.0
ResNet-D-LFE 62.4 53.6 40.0 25.0 55.2 45.5 0.0
ConvNeXt-P 61.3 53.0 40.0 21.7 543 52.7 0.0
ConvNeXt-D 66.6 56.3 0.0 35.0 57.4 56.4 0.0
ConvNeXt-D-Keep 67.9  59.6 0.0 333 61.2 49.1 0.0
ConvNeXt-D-LFE 65.5 58.2 0.0 31.7 59.7 52.7 0.0

For ResNet- and ConvNeXt-based models, we use the same learning rate settings as the VGG-based models (initial
learning rate of 1.0 x 10> and increased learning rate at scratch layers).

The bold values represent the best results.

TABLE VIII
COMPARISON TO THE STATE-OF-THE-ART MODELS ON VAIHINGEN DATASET

Pixel metrics Instance metrics AR for each size

AR | ARxs ARg ARy AR; ARy

FI IoU | F1 APy,
Sherrah [52] 777 589 | 673 480
U-Net [17] 835 703 | 797 626
FCN-8s [16] 81.0 67.1 | 636 476

DeepLab-LFOV [10] | 849  73.0 | 72.1 54.8
DeepLab-V2 [32] 91.6  82.1 82.9 60.9
DeepLab-V3+ [19] 79.8 663 | 76.2 54.0

334 0.0 18.7 34.5 25.5 0.0
52.0 0.0 30.0 539 473 0.0
325 0.0 21.4 33.7 27.3 0.0
43.6 0.0 233 39.2 43.6 0.0
454 0.0 16.9 46.9 41.8 0.0
37.5 0.0 6.7 39.3 25.5 0.0

PSPNet [18] 938 87.5 | 85.0 64.9 51.6 0.0 40.0 52.6 41.8 0.0
VGG-D-LFE 719  40.7 | 80.5 65.7 56.5 13.3 31.7 58.0 56.4 0.0
ResNet-D-LFE 70.9 550 | 789 62.4 53.6 40.0 25.0 552 45.5 0.0

ConvNeXt-D-LFE 70.1 55.1 81.3 65.5

58.2 0.0 31.7 59.7 52.7 0.0

The bold values represent the best results.
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Fig. 16.  Qualitative comparison of the prediction results with and without the

LFE module on road extraction task. The region inside the yellow box is enlarged

on the right, where the output probability and the predicted mask of the region are shown. The predictions of “w/o LFE” and “w/ LFE” are acquired from

ResNet-D-Keep and ResNet-D-LFE, respectively.

B. Advantage Against Previous Methods

The main advantage of our model is its significantly enhanced
performance on small objects. Although the previous meth-
ods perform well on pixel-level metrics in building detection,
Table IV shows that they perform poorly on small buildings

when evaluated on the instance-level metrics. On the other hand,
our LFE module enables more aggressive use of dilated convolu-
tions, i.e., replacing all the downsampling layers with the dilated
convolutions to keep full resolution throughout the network. As a
result, our model shows significantly enhanced performance on
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TABLE IX
EFFECT OF THE LFE MODULE ON THE ROAD EXTRACTION TASK

Acc. ToU  APLS
VGG-P 97.2 502 0.358
VGG-D 97.1 49.1 0.254
VGG-D-Keep 97.6 563 0.351
VGG-D-LFE 97.6 558 0.459
ResNet-P 97.6 549 0.463
ResNet-D 973 51.7  0.290
ResNet-D-Keep 97.8 574  0.380
ResNet-D-LFE 97.7 577 0.480
ConvNeXt-P 97.6 555 0459
ConvNeXt-D 97.5 548 0.366
ConvNeXt-D-Keep | 97.7 56.8 0.402
ConvNeXt-D-LFE 97.6 56.2  0.477

The bold values represent the best results.

TABLE X
COMPARISON TO THE STATE-OF-THE-ART MODELS ON THE VALIDATION SET OF
DEEPGLOBE ROAD EXTRACTION DATASET

Acc. IoU  APLS
Sherrah [52] 96.8 46.0 0.310
U-Net [17] 981 633 0614
FCN-8s [16] 97.8 58.6 0.491
DeepLab-V2 [32] 97.9 610 0578
DeepLab-V3+ [19] 98.1 63.8 0.642
PSPNet [18] 98.1 638 0.624
VGG-D-LFE 97.6 558 0.459
ResNet-D-LFE 97.8 593 0.521
ConvNeXt-D-LFE 97.7 579 0.49%
ResNet-D-LFE (stage4) | 979 60.0 0.557

The bold values represent the best results.

small buildings at the expense of little performance drop on large
buildings. Moreover, thanks to the performance enhancement
on small buildings, our model shows better overall performance
than the previous models (see Tables IV and VIII). Still, our
model performs worse than the previous methods in road ex-
traction (see Table X). One reason is the shallow architecture of
our model. The receptive field size of our shallow model might
be insufficient for road extraction that requires a large receptive
field [76].

The other advantage of our model is that it works comple-
mentary to the existing models in terms of object size. Because
our model and existing models are good at small and large ob-
jects, respectively, the ensemble of both models can effectively
enhance the performance of all kinds of objects (see Fig. 13).

C. Limitations and Future Work

A limitation of the proposed method is its high memory con-
sumption. Since high-resolution feature maps are memory in-
tensive, keeping full resolution throughout the network requires
a large memory footprint during training and inference, which
limits the application of the method for deeper architectures
such as ResNet101. Architectural improvements might address
the limitation, e.g., finding narrow and deeper architecture with
architecture search or using memory efficient convolution meth-
ods such as depthwise separable convolutions. We leave these
to our future work.

Our experiments focus on foreground object segmentation
tasks, but the proposed method should also be effective for
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multiclass segmentation. Moreover, our method should be ef-
fective for tasks other than segmentation (e.g., object detection
and change detection). We leave the extension to the different
settings or tasks for our future work.

Another future work is an end-to-end model combining the
conventional downsampling-based and the proposed dilation-
based models. A feature fusion approach might be practical, in
which the features from the downsampling and dilation branches
are fused at intermediate layers. We expect that such a model
will better exploit the synergetic effects of both approaches,
achieving highly robust performance for objects of any size.

VII. CONCLUSION

This article presents a novel network architecture for segment-
ing small objects in RS imagery. Unlike previous approaches,
the proposed architecture has no downsampling layers and uses
dilated convolutions instead. We revealed that such aggressive
use of dilated convolutions causes problems in local feature
propagation and proposed a novel “increasing-decreasing” di-
lation rates to address the problems. We have evaluated the
proposed method on six datasets across three tasks: building
detection, vehicle detection, and road extraction, where the
method has shown remarkable performance for small objects.
The proposed method will apply to a wide range of remote
sensing applications that require the detection of individual
small objects, such as population estimation, automatic map
creation, and urban monitoring.
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