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ABSTRACT This paper addresses the challenging problem of achieving consensus in multi-agent systems
(MASs) under the simultaneous influence of communication delays and packet loss. We introduce a novel
switched system model that differentiates between delays caused by network-induced temporal factors
and those resulting from packet loss, offering a more precise and less conservative analysis compared to
traditional unified delay models. A key contribution of this paper is the design of a low-gain controller,
developed using a parametric algebraic Riccati equation, which enhances system robustness without
requiring recalibration when the number of agents varies. We also employ Lyapunov stability theory
to establish constraints that ensure consensus is maintained despite the intermittent and transient nature
of packet loss. Theoretical analysis confirms that our enhanced time-delay model effectively reduces
system conservatism. The efficacy of the proposed approach is validated through numerical simulations,
demonstrating its capability to achieve consensus in MASs even in the presence of dynamic delays and

packet dropouts.

INDEX TERMS Multi-agent systems, cooperative control, communication time-delay, packet loss.

I. INTRODUCTION

In the dynamic field of interconnected autonomous entities,
the cooperative control of multi-agent systems (MASs)
has gained significant momentum, demonstrating substantial
versatility across various sectors including transport net-
works [1], [2], power grid management [3], [4], wireless
sensor clusters [5], [6], [7], and drone swarm coordina-
tion [8], [9]. However, in the implementation of coop-
erative control, these systems are often constrained by
communication environments. Particularly in complex and
dynamic environments, communication delays and packet
loss become inevitable phenomena. These adverse factors
directly affect the interaction of agents, thus posing threats
to the cooperative performance and stability of the system.
Therefore, investigating cooperative control of MASs under
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communication delays and packet loss scenarios holds both
profound theoretical importance and practical value.

In recent years, works both domestically and internation-
ally have conducted a series of studies on cooperative control
of multi-agent systems under communication delays and
packet loss scenarios. These studies encompass optimization
of control algorithms, improvement of communication pro-
tocols, enhancement of system robustness, and application
of the exact system [10], [11], [12]. However, despite
some achievements, numerous unresolved issues persist.
For instance, how to effectively mitigate the impact of
communication delays and packet loss on cooperative control
while ensuring system stability; how to design more efficient
and robust cooperative control strategies to adapt to complex
and dynamic communication environments, etc.

Addressing the aforementioned issues, a favored approach
in this context is distributed coordinated control based
on sampled-data. This strategy concentrates on utiliz-
ing local data from immediate neighbors as opposed to
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relying on a centralized model that requires collective
information. The benefits of this periodic control scheme
include resource preservation and sustained research interest
due to its effectiveness [13], [14], [15], [16]. A crucial
challenge within MASs is achieving consensus, where
agents are aligned to reach a universal agreement within
a defined or indefinite time frame. This topic has been
extensively explored, highlighting significant contributions
such as the influence of interconnectivity in undirected
networks on achieving consensus, synchronization of frac-
tional reaction-diffusion complex networks and learning
control, and similar findings for directed networks with a
spanning tree structure [17], amidst switching topologies and
delays.

Research has also delved into scenarios involving con-
sensus amidst random network agreements [18], [19], the
impacts of measurement noise [20], [21], and systems with
time delays [22], [23], [24], [25], [26], including non-linear
MASSs [27], [28], [29], and finite-time consensus [30], [31].
The utilization of stochastic matrix theory and system theory
has been crucial in enhancing the understanding and solutions
for consensus, with Lyapunov’s stability functions [32] being
a notable method used by researchers.

While previous studies have primarily addressed general
aspects of consensus in MASs with or without communica-
tion delays, issues such as insufficient bandwidth, sensor-
related noise, packet loss, or communication latency can
critically impair the functionality of MASs, leading them
towards potentially unstable states. Pioneering works have
looked into these issues; for instance, Wang et al. [33]
and Zhang et al. [34] focused on the consensus challenges
posed by time delays and both deterministic and random
packet losses in linear MASs. Further explorations by
Kikuchi et al. [35] addressed average consensus in discrete
MASs with the consideration of time-varying delays and
data losses assumed to follow a Bernoulli sequence. Refer-
ences [36], [37], [38], [39] propose novel control methods
and theoretical analysis for addressing system uncertainties,
specifically in the context of random packet losses and
time-varying delays to effectively respond to consensus
challenges. However, the consensus problems in continuous
MASSs under the combined constraints of communication
failures and time delays remain underexplored, a gap this
study aims to bridge.

This paper aims to address the dual challenge of time
delays and packet loss in MASs. The main contributions are
outlined thus:

1) Unlike previous studies that focus solely on either
packet losses [34], [40], [41], [42] or time delays [27],
[43], [44], [45], this study embodies the broader scenario
of sampled-data MASs impacted simultaneously by packet
losses and time delays.

2) This paper proposes a novel switched system framework
to distinguish between time delays arising from computation
and communication, and those resulting from packet loss.
Unlike conventional modeling approaches that treat both
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types of delays as a single issue [23], [46], this method leads
to less conservative results.

3) This paper introduces a low-gain controller, which offers
a significant advancement over the high-dimensional matrix
inequality solutions proposed in previous works [47], [48].
This approach enhances system robustness and obviates the
need for recalibration of the controller when the number
of agents changes. By employing Lyapunov functions,
the paper effectively addresses the complexities associated
with constructing a Lyapunov functional for the consensus
problem in the presence of both time delays and packet losses,
thereby making a substantial contribution to the field.

Here is the proposed paper structure: Section II outlines the
problem statement and introduces key terms and preliminary
information. Section III details the methods behind the sug-
gested sampled-data controller and corroborates its stability.
Section IV illustrates the efficacy of the proposed controller
via numerical simulations, and Section V encapsulates the
study’s pivotal revelations and its scholarly contribution.

Il. PROBLEM STATEMENT

We explore the dynamics of MASs consisting of N agents.
Each individual agent within the system is characterized by its
state x; € R" and control input ©; € R™. The evolution of the
state variables over time is given by the following equation:

Xi(t) = Ax;(t) + Bu;(t), i=1,2,...,N (1)

where the system matrices A € R"*" and B € R"*" are
constant, describing the underlying dynamics of the agents.

Furthermore, in the context of MASs, the communication
between agents is characterized by an undirected graph.
We denote a graph as G = (V,E,A), where V =
{1,2, ..., N} represents the index set of N agents, E € V xV
is the set of edges, and A = [ay] is the adjacency matrix.
The presence of a positive element a;; in the adjacency matrix
indicates an information exchange between agents i and j,
while a; = 0 implies no direct communication between
them. Note that there is no communication flow from an
agent to itself, resulting in a;; = 0. A graph G is considered
connected if there exists a path between any two agents i
and j within V. For any agent i, its set of neighbors, denoted
as N;, consists of all agents j € V for which there exists
an edge (j, 7). The degree of a node i is defined as deg(a;)).
Additionally, the Laplacian matrix of an undirected graph V is
defined as £ = D—A, where D = diag{deg(1), ..., deg(N)}.
Notably, in the case of undirected graphs, the Laplacian
matrix L is symmetric and positive semi-definite. It is worth
mentioning that the sum of each row of L is zero, expressed
as L1y = 0, indicating that the vector 1y corresponds to the
eigenvalue 0. When the undirected graph G is connected, all
its eigenvalues, except for one eigenvalue of 0, are positive.
These eigenvalues can be arranged in ascending order as
0=211(L) <2(L) = A3(L) = -+ < AN (D).

The control architecture of the MASs is depicted in Fig. 1.
This figure provides a clear illustration of the connections
between the agents, sensors, actuators, and the controller.
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FIGURE 1. The control architecture of the MASs.

The data acquisition process is facilitated by samplers that
collect data and transmit it through the communication
network to the controller and actuators. In this setup,
sensors operate in a time-driven manner with sampling
intervals determined by predefined time periods, specifically
employing periodic sampling. In contrast, the controllers,
buffers, and actuators function in an event-driven manner,
responding promptly to incoming signals. Upon receipt of
these signals, the controllers, buffers, and actuators initiate
the necessary actions or adjustments, thereby ensuring the
effective operation of the system.

This assumption holds for the majority of control systems,
as evidenced by previous studies [46], [49]. It is assumed
that all agents in the system have synchronized sampling
periods, denoted as 2 > 0. This synchronization ensures
that each agent samples data at the same instants. However,
in a networked environment, the sampled data from agent
i and its neighboring agent j may arrive at the controller
of agent i at different times, despite having been sampled
simultaneously. To tackle this problem, a buffer is utilized
on the controller’s side to temporarily store data received
from agent i’s neighboring agents. This buffer refrains
from forwarding the sampled data to the controller until
it has collected data from all of the neighbors of agent i.
Time stamps on the data samples play a crucial role in
distinguishing between samples taken at different sampling
instances.

We define rg-c(k) as the communication delay experienced
by agent i when receiving data from its neighboring agent
Jj at the k-th sampling instant. Additionally, considering that
the controllers of agents usually have data buffers, we define
77¢(k) as the delay for controller i to receive the k-th sampling
data. To maintain synchronous operations among all agents,
a buffer is used at the actuator end to store the received state
data from neighbors until all agents have completed the k-
th round of information exchange between controllers and
actuators. The communication delay between controller i and
actuator i is represented by 7/%(k). Therefore, the total delay
experienced by the k-th sampled data across all agents in the
multi-agent system can be expressed as 7y = max{r;“(k) +
k) | i = 1,2,...,N}. This approach ensures that
all agents operate on the same timescale, thus facilitating
coordinated actions within the MAS.

Therefore, in a multi-agent system, the total delay experi-
enced by the k-th sampling data can be expressed as 7z =
max{z(k) + /%(k) | i=1,2,...,N}.
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This approach ensures that all agents operate on the same
time scale, thereby facilitating coordinated actions within the
multi-agent system.

We formulate the control protocol as follows:

ui(t) = K ) ay(xj(kh) — x;(kh)) ©)
JjeN;
fort € [tx, Tk+1), Wwhere K denotes the controller gain, which
will be specified later. % is the time interval of state sampling
of agents.

To maintain generality, we assume the existence of a
positive constant d3 such that & + 7441 < d3. This
assumption ensures that there is ample time for successful
packet transmission to the actuators, thus preventing any
scenario where data might not be successfully transmitted.

Remark 1: In this paper, we propose that if the condition
kh+t, > (k+1)h+ 1141 is met, the k-th packet is considered
lost. As a result, only the most recent signal is regarded as
valid for transmission to the actuator. This criterion ensures
that kh + tp < (k 4+ 1)h + 7441, thereby addressing packet
disorder effectively. Thus, the controller design encapsulated
by Eq. (2) accounts for both time delays and packet losses.

Key assumptions regarding the system and communication
topology are outlined as follows.

Assumption 1: The controllability of (A, B) holds, where
A and B are system matrices.

Assumption 2: The undirected graph G representing the
communication topology is connected.

The Assumption 1 is a fundamental requirement for any
controlled system, ensuring the possibility of steering the
system’s dynamics through appropriate control actions.

The Assumption 2 pertains to the connectivity of the
communication network among agents. It is essential for the
successful implementation of consensus algorithms, even in
the absence of time delays and packet losses. Previous studies
have emphasized the significance of these assumptions in
the context of consensus problems, as discussed in relevant
literature [33], [47].

Definition 1: In MAS (1), consensus is defined as the
condition where the states of all agents converge to a common
value over time, despite possible differences in their initial
conditions. Formally, for a system of N agents with state
vectors x;(¢) for (i = 1, 2, ..., N), consensus is achieved if:

lim |lx;(1) —x(O)|| =0, Vi,je{l,2,...,N} (3)
—>00

Denote

x(0) = [x{ 0,1 @, ..., 2y 0]
u(t) = [ul (1), 1l (1), ... up (1)) 4)
The system dynamics described by Eq. (1), when governed

by the controller specified in (2), can be formulated as
follows:

x(t) = Uy @ A)x(t) + (In ® Bu(t)
u(®) = —(L ® K)x(t — d()) &)
x(0) = ¢(0), 0 € [-2d5, 0]
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where x(0) represents a continuous vector-valued function
defined over 6 € [—2d3, 0] to avoid confusion with x(z), ¢(6)
isused, d(t) = t—khand t € [kh + t, (k + Dh + tk + 1).
Denote d; = min i, it holds that 0 < d(f) < d3.

Remark 2: The parameter d(¢) in the system captures
the combined effect of time delays arising from both
network delays and packet loss. It is important to note that
different types of time delay may have distinct upper bounds.
For instance, in some scenarios, the upper bound of the
time-delay function d(¢) may be denoted as d>, while in other
situations, it may be represented as d3.

Additionally, for a given set of systems, consensus can be
ensured if the time delay remains within a certain range. How-
ever, if this delay exceeds a specified threshold, achieving
consensus is not guaranteed. In this paper, we assume that
when the time delay d(¢) caused by network transmission
meets the condition di < d(t) < d», consensus among the
agents can be achieved within this time delay. On the other
hand, when the time delay d(¢) caused by packet loss satisfies
d; < d(t) < d3, achieving consensus among the agents may
not be guaranteed.

To ensure the stability of the system, specific constraints
must be imposed on both the frequency and duration of
transmission packet loss. These constraints are vital in assess-
ing the viability of the packet loss scenario. To accurately
describe the frequency and period of deterministic packet
loss, we introduce the following notations:

We define Ty as the total duration when d(¢) lies within
the interval [d1, d>]. Similarly, define T, as the total duration
when d(¢t) falls within the range [d,d3], ie., T, =
U,fil [min{kh + dy, (k + Dh + tk+1}]. We also introduce
Ts(to, t), which represents the total duration during which
d(t) is within [dy, d2] over the time interval [7y, ¢). Similarly,
T.(to, t) represents the total time during which d(¢) falls
within [dp, d3] over the period [f9,¢). For convenience,
we assume that [a, a) = a.

Iil. MAIN RESULTS
To ensure clarity in the subsequent discussions, we introduce
the following notations.

Define o as minp<j<y Ai(£) = A2(L), and let o; =
Li(L)o L. Clearly, it holds o; < 1.
We select a consensus gain matrix K = o~ 'BT &),

where © () satisfies the parametric algebraic Riccati equa-
tion (ARE):

AT ®®) + &(9)A — d(9)BBT @) = —9 D(D)

In this context, ¥ > —2min{Re(A(A))}, where Re(A(A))
represents the set of real parts of the eigenvalues of matrix
A. For brevity, we denote ® = &(}) in the subsequent
statements. Additionally, we introduce useful lemmas that are
instrumental in deriving our results.

A. LEMMAS
Lemma 1 ([50]): Consider a system characterized by the
pair (A, B) which is controllable. Let ¢ be a scalar parameter
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satisfying the condition ¥ > —2 min{Re(A(A))}. Under this
condition, the corresponding algebraic Riccati equation has
a unique positive definite solution ®(¢). This matrix ®(H)
is known as a low gain matrix and exhibits the property that
limy _, o+ ®(9) = 0if all the eigenvalues of the matrix A have
zero real parts. Further,

Tr(B" ®(9)B) = n® + 2Tr(A) (6)
O@)BBT®Y) < (nd + 2Tr(A)) D) @)
and
Tr(®” AP~ ()AT) < %(m? + 2Tr(A))2 + 9 Tr(A)
— %0(1119 +2Tr(A)) — Tr((AT)?)

®)

Lemma 2 ( [51]): For a positive definite matrix M > 0,
two scalars «; and o3 such that @ > o, and a vector function
w: [ay, 2] — R", then it holds

(f T (s)ds) M ( / " T (5)ds)

1 o]

< (@2 —a) / T () Mw(s)ds ©)

Lemma 3 ( [33]): Let(A, B) be controllable withA; = A—
0;BBT ®(®), thenfori = 1,2, ..., N, it holds

1 1
Afop(ﬁ)Aig[(a,% + Soin — Eamz)ﬁz + aiTr(AT)2:| DY)

(10)

Lemma 4 ([52]): Consider a continuous function y(¢) :
[to — t,00) — [0, 00), where T > 0 is a constant. The
function y(r) satisfies the differential inequality
vVt > 1y (11D

y(@) < —ay(t)+b sup y(s),

t—1<s<t

where a > b are two positive constants. Assume 1 > 0 is the
unique non-negative solution to the equation n—a+be* = 0.
In this situation, y(¢) satisfies the inequality
(@) < Yig)e T,V = g, (12)
implying an exponential decay of y(¢) over time.
Additionally, if the constants a and b satisfy a < b,
referencing the result from [53], it follows that
W) < 0V w), Vi =1 (13)
where v = b—a > 0. This result indicates that, in the scenario

where a < b, y(t) grows at most exponentially with a rate
determined by the difference v.
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B. STABILITY ANALYSIS
To derive our results, we leverage the properties of the
communication graph to decouple the coupled system (5)
into multiple independent subsystems. We transform the
overall system dynamics into a set of uncoupled systems,
simplifying the analysis and enabling a more straightforward
investigation of each uncoupled subsystem.

Consider a left eigenvector p = [p1, p2, ... ,pN]T of L
corresponding to A;(£) = 0. We define the non-singular
matrix by

T
_ P P 14
S [—11\/—1 IN—1i| 14
where p2) = [p2, ..., pn1T. By (14), we have
_15® _
et) = [6[2](l)] = ®1)x() (15)
where €p(t) = [eg(t),...,eig(t)], ¢ = xi —x1,(0I =

2,3,...,N).

Note that € is a variable related to the state error between
agents, given system (5), we define the error dynamics as
follows:

&) = (Iy ® A)e(t) — (SLS~' @ BK)e(t — d(1))  (16)

Thus, we have

1 _[oo0
SLS~! = [OLJ, (17)

where L, is a matrix with N — 1 real eigenvalues such that 0 <
M(L) < --- < An(L). Based on this observation, we derive

E(1) = AE(1)
€1(1) = Un—1 @ A)ep)(t) — (L2 ® BK)ep)(t — d(1))
(18)

Define €2)(t) = (M ® I,)ep)(t), where the matrix M
satisfies MLoM ™~ = diaghy(L), A3(L), ..., An(L), thus it
holds that

(1) = A&(t) — M(L)BKE(t —d(1)),i=2,...,N (19)

which expresses the decoupled dynamics in terms of the
eigenvalues A;(L) of the matrix £ for the range i =
2 to N. This suggests that if lim,_,» €(f) = 0, we have
lim;_, oo €(t) = 0, which signifies the achievement of
consensus. Therefore, to attain the control objective, our
focus lies in demonstrating that lim,_, o €(¢) = 0.

Remark 3: Based on the undirected communication topol-
ogy of Assumption 2, we can obtain the decoupled sys-
tem (19). If the communication topology G is directed, we can
also decouple the system (1) into the following form by
further assuming that G contains a directed spanning tree:

(1) = A&(t) — M(L)BKE; (1 — d(1)) — 8;BK &1 (t — d(1)),
fori=2,...,N (20)

where formulation (20) expresses the mutual influence
between connected nodes based on the communication links.
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Re{Ai(L)} > 0, Ai(L) € C, én41(t) = 0, and §; takes the
value of either 1 or 0, with §y = 0, and

Aa(L) 82

MM~ = R (1)
AN—1(L) dn—1

AN (L)

The eigenvalue of the Laplacian matrix CLsatisfies the
stability condition, then the coupling relationship does not
lead to instability. Therefore,the stability of system (20) is
equivalent to the stability of

&) = A&(t) — M(L)BKE(t — d (1), i=2,...,N (22)

Based on the analysis in the problem statement, it can be
deduced that the system (1), can be represented as a switched
system e ncounters packet loss, where the switching behavior
is regulated by the time-delay functions. With this framework,
we can proceed to explore the conditions necessary to ensure
consensus in MASs with deterministic packet losses and time
delays.

Theorem 1: Given Assumptions 1 and 2, consensus in the
system described by (1) can be attained despite the presence
of packet losses and time delays. This is accomplished using
the consensus protocol described by (2), where the controller
gain is given by K = o~ — BT ®(#). In this context,
o is defined as A(L), with A(L) satisfying condition (5).
Additionally, the existence of & > 0,0 < dy < dz is
required for the following inequalities to hold:

— 0 +d3A* <0 (23)
—mTs(t, t0) — m2Tyu(t, to)
p—— ——=-5 (@
=19 r—1o

where 1) — @ + dj A2eM @) < 0,9y =9 —djA% <0,
A = JoyQTr(@A) + n9)(/an2(2Tr(A) + n?)), and ay =
(al\zln2 + %aNn — %oNn2)192 + oy Tr(AT)H2.

Proof: Considering the switched system framework and
to reduce the computational complexity, by selecting the
Lyapunov function V() = El-T (t)®€;(t), the derivative of V
along the solution of (19) can be computed. This calculation
yields

V(1) = 2&T (1)@ (A&i(t) — M(L)BKE(t — d(1)))
=& (PA + AT ® — M(L)PBK — 1(L)BK) ®)&(t)
+ 20(L)E] (1) PBK (&(1) — &(t — d (1))
< -l )W + O®BBT & — 20,0BB” ®)é (1)
+ 0:€! (1)®BBT ®&(r) + oiT (1) ®BBT dey;(1)
< —0&] () DE(t) + 0ie] (1) PBB” deyi(r) (25)

where €1;(t) = €;(t) — €;(t — d(1)).
By Lemma 1, it yields ®BBT & < (2Tr(A),9)®, then

V() = —0V(t) + (2Tr(A) + nd)oie () Deri(t)  (26)
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Using the Jensen inequality, we have

fvenn = ([ &ow)e(

t—d(t) t—d(t)

t t

¢ i (s)ds)

'
<d(1)

T
((A — Mi(L)BK)éi(s) — Ai(L)BK Sli(s))
t—d(t)

X (D(A — Ai(L)BKéE;(s) — )\i(ﬁ)BKeli(S))

t

<1 +r)d / el (5)AT ®A&(s)ds
t—d(t)

t

H1+ l)c_lal-z (2Tr(A) + m?)z/ el.(s)Deyi(s)ds
ri

t—d(t)
(27)

Here, d represents the upper limit of the time-delay
function d(t), such that d(t) < d.
Base on Lemma 3, we obtain

Al oa;

< ((ofnz + %ain - %Uinz)z?Z + 0; (Tr(Az))) o
_ 2
- ((oin _a . My _ 4 4”) )192 + ai(Tr(AZ)))d>

(1—;1))2 (1 = n)?
2 4

2 ay P (28)

< ((oNn - )192 + oy (Tr(Az))) @

Then inequality (27) can be formulated by

- 1
elTi(t)Cbsl,'(t) < +rmd*ay sup V(s)+(1+ —)(7]\2/
t—d<s<t n
X 4(2Tr(A) + nd)’d> sup <5 <1V(s)
t—(d3+d)
(29)

Let ri = ([2QTr(A) + n9)]/ /o), we have

V() < —0El (DE(r) +d*A>  sup &l (s)DE(s)
t—(d+d3)<s<t

(30)

where A = ,/on (ZTr(A) + nz?) (\/W + 2(2Tr(A) + m‘}))

Two cases of (30) are considered as following.

1) Case 1 (d < (V9/A)): Let ¢(f1)) = i1 — 9 +
d>A2eM@+d) clearly, ¢(0) < 0, limj, o0 ¢(71) = +00
and ¢(7i1) = 1 + d>A%(d + d3)e"'@+493) > (. This implies
that there is precisely one solution to the equation ¢(7;) = 0.

Drawing from Lemma 4, it becomes evident that

V(1) < Ve M0 1= 1 31
where 771 > 0 is determined 71 — 9 + d2A2eid+ds) — g,
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Case 2 (d > /9 /A): Applying the results from Lemma 5,
we find that

V(1) < V(tg)e 0= (32)

where 7> < 0 is defined by 7j; = © — d?A2.

Next, we turn to the initial time interval [ + t{, min{h +
dy,2h + 1}). Let t9 = h + 11 be denoted. Referring to
inequality (31), we can infer that

V) < V(lo)e*m(f*(lﬂrfl)) (33)

If [min{h + da,2h + 12},2h + 12) # 0, according to
inequality (32), for ¢ € [min{h + dy, 2h + 1}, 2h + 1'2),
we have

V() < V(h+ dz)e—ﬂz(t—(h-i-dz))
< V(to)e—m(h+d2—fo)e—772(t—(h+d2)) (34)

where 9, = ¥ — d32A2 <0.
By repeating the aforementioned procedure, we obtain
V() < ”Vto”e—mTs(fsfo)e—flzTu(tJo)

Ts(t,10) Tult.t0)
= ||Vz0||e(_'7‘f—itoo_"2 w00 (1-1)

(35)
According to condition (23), we have

—mTs(t, t0) — m2Tyu(t, to) < —&(t — o) (36)
It is obvious that

Amin(@)ED)? < V(1) < [|[Vigeb 0| (37)

Amax(P) SUPy,—2dy <5<t ”gl(s)“2
)"min(q))

This implies that as ¢ approaches infinity, lim,_, , €;(¢) =
0. In other words, consensus can be achieved in the MASs
described by (1), despite the presence of packet losses and
time delays.

Remark 4: As observed in Theorem 1, it can be deduced
that d» serves as the permissible upper limit for time delay
in the system. That is to say, if the time delay exceeds d,
it may jeopardize the stability of the system. It is evident that
dy increases with an increase in the decay rate « of the original
system, which aligns with conventional wisdom.

Remark 5: The parameter dz denotes the maximum allow-
able time delay due to consecutive packet losses. The rela-
tionship between the maximum allowable consecutive packet
losses and switching frequency is described in condition (24).
Therefore, to maintain system stability, the system cannot
remain in an unstable state for extended periods, which also
means that packet loss cannot be too frequent. In the control
gain K (m) BT ®(®), the control law
relies on the smallest real part of the eigenvalues of the
Laplacian matrix (i.e., the real part of £). The use of the real
part helps to handle the complex eigenvalue distribution in
directed graphs, by leveraging control gain K, allowing the
original control theory for undirected graphs to be extended to

&> <

(38)
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FIGURE 2. The communication topology of the MAS in our simulation.
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FIGURE 3. The event of transmission packet loss from agent 1 and
agent 2.

directed graphs, while still maintaining the connectivity and
control performance of the system.

In the case where different types of time delays are not
distinguished, the time delay function d(¢) in the system can
be described by the inequality 0 < d(¢) < c~l3. Based on this,
we can derive the following results.

Corollary 1: Given Assumptions 1 and 2, we can deduce
that the system described by Eq. (1) can achieve consensus
through the implementation of the protocol specified by
Eq. (2). This is contingent upon the controller gain being
set to K = o~ 'BT®(¥)), where o represents the second
smallest eigenvalue of the Laplacian matrix, denoted as
A(L), and ®(¥) is a solution to the algebraic Riccati
equation. The time delay d(¢) must adhere to the condition
0 < d(t) < ds, with d3 bounded by +/9/A. The
parameter A is calculated using the expression A =
VonQTr(A) + nd) (Jan + 2(2Tr(A) + ni)), where ay is
defined as ay = (6]%,112 + %aNn — %aan) 92. Moreover,
in the special case where all eigenvalues of the system matrix
A are zero, it is crucial for the time delay d(¢) to satisfy
0<d@) < ;13, with the stricter bound Of;ig < 1/p.Here, pis
defined as p = \/oyn \/0’1\2/}12 + %aNn — %O’an + Znﬁ).

Remark 6: Delving into Corollary 1 reveals a signifi-
cant insight: d3 < d3. This suggests that ignoring the
distinctions between different types of time delays might
result in a smaller upper-bound estimate for the time delay.
Consequently, when more detailed information about the
nature of the time delays is taken into account, the resulting
analysis can be less conservative. To substantiate this
observation, we provide theoretical evidence demonstrating
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FIGURE 4. The consensus of the first and second-order state of agents in
MAS.

that incorporating nuanced time delay characteristics leads
to more precise and potentially less conservative estimates,
improving the accuracy of the system’s assessment.

Remark 7: Tt is worthwhile to draw a comparison with
the findings presented in [34], which focused exclusively on
scenarios involving packet losses. Our paper, however, offers
a broader analysis that includes not only packet losses but
also additional complexities such as time delays. Therefore,
the system described in [34] can be viewed as a special case
within the more comprehensive framework we explore in
this paper. This expanded analysis provides a more thorough
understanding of the system’s behavior under a wider range
of conditions.

IV. NUMERIC SIMULATION

In this section, we demonstrate the aforementioned theo-
retical results through numeric simulation. We examine a
group of six agents, each operating under the general linear
dynamics outlined in system (1), where the parameters for
these agents are defined as

o[8[

The communication topology of the agent network is
illustrated in Fig. 2. Based on this topology, the corresponding
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First-Order State of Agent Group

Second-Order State of Agent Group

time [ms]

FIGURE 5. The consensus of the first and second-order state of agents in
the second simulation.

Laplacian matrix is defined as follows:

2 =10 0 0 -1

02 —-1-10 O
r— 0 0 2 —-1-10
0 0 0 2 —-1-1

-1-10 0 2 O
-10 0 0 0 1

Given that ¥ = 0.1, we can derive the matrrix ® by solving
matrix (24), resulting

o |02 —005
[ =0.050.1(0.12+2) |~

The smallest real part of the eigenvalue of the Laplacian
matrix £ can handle the complex eigenvalue distribution in
directed graphs. By designing the control gain K, the control
theory originally developed for undirected graphs can be
extended to directed graphs. The control grain matrix K is
determined as K = (AZ(L))_IBTCD = [0.4387, —0.0081].
According to condition (19), we have d» < 0.2039s. In this
paper, we choose do = O0.1s, based on condition (20),
if (Ts(t0, 1)/t — 19) = 0.9 and (T,(to, 1)/t — 1) = 0.1,
it follows that d3 < 0.26,n; = 0.012 and 7, = —0.168.
Fig. 3 presents a schematic of the packet loss transmission
from agent 1 to agent 2, where a value of “1” represents a
packet loss at that specific time and a value of “0” denotes
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second simulation.

no packet loss. The system is capable of achieving consensus
despite packet losses and time delays, as demonstrated in
Fig. 4. The simulation results are derived from the initial
condition

(). xe(0] = cos() [2 115253 3.5]‘

34052 1525

With a sampling period of 2 = 0.05, the condition d3 <
0.28 implies that the system can tolerate a maximum of two
consecutive packet losses. Specifically, this condition ensures
that within the sampling interval of 0.05, the system remains
stable and performs within acceptable bounds even when up
to two consecutive packets are lost. This result highlights the
robustness of the system to packet loss, as it indicates that
the occurrence of such events does not lead to significant
degradation in performance or stability, provided the loss is
within this specified threshold.

In the second experiment, we increased the communication
delay and packet loss rate of the multi-agent system (as
shown in Fig. 2). We set d» and d3 to 0.2s and 0.25s,
respectively, and the random packet loss rate was set to
0.15. The first-order and second-order state changes of the
multi-agent system are shown in Fig. 5. It can be seen that
our proposed control algorithm still enables the system to
achieve consensus. In Fig. 6, we compared the cooperative
error of our proposed control algorithm with PID and sliding
mode control. It is evident that our control algorithm achieves
smaller cooperative error and faster consensus stabilization.

V. CONCLUSION

This paper explored the consensus problem of MASs
subjected to dynamic communication delays and packet
loss scenarios. To differentiate and effectively manage
network-induced temporal delays and packet loss, we have
adopted a methodology based on switched systems. This
approach allowed us to craft a controller with a reduced
gain formulated through the application of a parametric
algebraic Riccati equation, thereby addressing the inherent
complexities of such network conditions. By leveraging

149811



IEEE Access

H. Xie: Cooperative Control of MASs Under Communication Delays and Packet Loss Scenarios

Lyapunov stability theory, we established constraints that
ensure the maintenance of consensus despite the intermit-
tent and transient nature of packet losses in MASs. Our
theoretical analysis has shown that utilizing an enhanced
time-delay model reduces the conservative assumptions
typically associated with such systems, thereby improving the
robustness of our control strategy. Future work can expand
on this foundation by exploring additional enhancements
to the controller and addressing other types of network
imperfections to further enhance the robustness and efficacy
of MASs.
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