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ABSTRACT Human pose estimation is a task that involves locating the body joints in an image. Current
deep learning models accurately estimate the locations of these joints. However, they struggle with smaller
joints, such as the wrist and ankle, leading to lower accuracy. To address this problem, current models add
more layers and make the model deeper to achieve higher accuracy. However, this solution adds complexity
to the model. Therefore, we present an efficient network that can estimate small joints by capturing more
features by increasing the network’s channels. Our network structure follows multiple stages and multiple
branches while maintaining high-resolution output along the network. Hence, we called this network
Wide High-Resolution Network (WideHRNet). WideHRNet provides several advantages. First, it runs in
parallel and provides a high-resolution output. Second, unlike heavyweight networks, WideHRNet obtains
superior results using a few layers. Third, the complexity of WideHRNet can be controlled by adjusting
the hyperparameter of expansion channels. Fourth, the performance of WideHRNet is further enhanced
by adding the attention mechanism. Experimental results on the MPII dataset show that the WideHRNet
outperforms state-of-the-art efficient models, achieving 88.47% with the attention block.

INDEX TERMS Convolution neural network, efficient network, human pose estimation, wide network.

I. INTRODUCTION
Many computer vision tasks use deep learning to boost
performance [1], [2], and the human pose estimation task is
no exception. Human pose estimation involves identifying the
positions of body joints (e.g., head, neck, wrist, elbow) in
the image. The network model used for this task estimates
the coordinates (x, y) for each keypoint (joint) in the input.
This task has numerous applications, including abnormal
behavior detection [3], [4], pose tracking [5], [6], and gesture
translation [7]. In addition, it can serve as a fundamental step
for other tasks such as 3D human reconstruction [8].
Among deep learning types, conventional neural networks

(CNN or ConvNet) work well with the image [1], and
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therefore, most studies of human pose estimation use
CNN [2]. Unlike the traditional method that requires
handcraft features, CNN helps extract robust features without
needing an expert engineer to do feature engineering. Hence,
CNN shifts the researcher’s work to focus more on building
the network structure rather than doing handcraft features.
Fig. 1 shows some of these handcraft features.

One approach to creating a strong ConvNet structure is to
increase the number of layers, making the network deeper.
Deeper ConvNets can capture more complex features [9],
[10], but they also face issues such as exploding or vanishing
gradients during training. One solution to this problem
is the use of skip connections [11]. Another challenge
with deep networks is their increased complexity and high
computational demands [12], [13], [14], [15], [16], which
makes them unsuitable for lightweight devices.

148990

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-1413-0403
https://orcid.org/0000-0003-0513-9872
https://orcid.org/0000-0002-7895-6999
https://orcid.org/0000-0002-5993-5236
https://orcid.org/0000-0002-9256-9995


E. Samkari et al.: WideHRNet: An Efficient Model for Human Pose Estimation Using Wide Channels

FIGURE 1. Examples of handcrafted features, where (a) silhouette,
(b) edges, and (c) histogram of oriented gradients.

To address these issues, using a wide network can be
more effective. A wide network has fewer layers than a deep
network but includes more neurons (channels) in each hidden
layer [11], [17]. This design allows the model to operate
efficiently on devices with limited resources [11], [17], [18].
According to Cheng et al. [19], the major difference

between the deep and wide networks is that deep networks
excel at generalization, while wide networks are better at
memorization. Although memorization can lead to issues
like overfitting [10], wide networks have demonstrated
superior performance in various tasks, including classi-
fication [9], [20], detection [11], [17], and single-image
super-resolution [10].

Inspired by these wide networks, this paper aims to build a
wide network for pose estimation by increasing the number of
channels in the hidden layer. However, the models of human
pose estimation require fusing multiresolution features to
obtain a high accuracy [12], [16], [21] and existing wide
networks [9], [10], [11] did not have entirely focusing on
this point. In addition, many literature reviews [1], [2] show
that the networks that combine multiresolution outperform
the other pose estimation networks. For example, models
that use a multiresolution such as Stack Hourglass [16] and
High-Resolution Network (HRNet) [12] are widely used over
other networks like the Residual Network (ResNet) [1], [2].
Fig. 2 illustrates what multiresolution looks like.

Recently, HRNet has been widely adopted by numerous
studies focused on pose estimation [14], [15], [22], [23]. The
HRNet architecture consists of multiple stages and branches,
which contribute to its high accuracy. Additionally, HRNet
improves performance by adding more layers, creating a
deeper model. However, this makes it less suitable for
lightweight devices. With the growing interest in developing
small and efficient networks [11], [17], [24], [25], [26],
models like Small HRNet [23] and Lightweight HRNet
(LiteHRNet) [22] have been proposed. Thesemodels enhance

FIGURE 2. Multiscale resolutions of feature maps. Models of human pose
estimation utilize different feature resolutions to enrich the information
of the target features. Here, we illustrate four different resolutions of
feature maps, where (a) is high resolution, (b) and (c) are medium
resolution, and (d) is low resolution. These feature maps are extracted
from the WideHRNet.

FIGURE 3. Building block, where (a) is the proposed block that is inspired
by various blocks, including (b) the conditional channel weighting (CCW)
and (c) the inverted residual block. The stride value of all these blocks
is 1. Conv: convolution, BN: batch normalization, SE: squeeze-excitation
block, CRW: cross-resolution weights block, and SW: spatial weights
block.

HRNet’s efficiency by reducing the network’s depth and
width. Among these networks that fuse multiscale features,
we adopted the LiteHRNet model and modified it to make it
wider.

To make LiteHRNet wider, we first need to understand
its basic block. LiteHRNet is state-of-the-art in building
an efficient model for the human pose estimation task.
It follows the HRNet structure in terms of having multiple
stages and branches. However, it replaces the residual block
with an efficient CNN block called Conditional Channel
Weighting (CCW). The CCW block contains several efficient
components, as shown in Fig. 3(b). However, based on our
analysis, we observed that only the depthwise convolution in
CCW has a significant impact on the accuracy. Therefore,
we removed all blocks except the depthwise layer in the
CCW. Then, we increased the number of channels before
applying the depthwise convolution. By increasing the
channels, we made the network wider. Thus, we named the
new model WideHRNet.

As shown in Fig. 3(a), the basic block of WideHRNet
increases the number of channels by using a pointwise layer
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(1 × 1 convolution) before performing any convolution. This
expanding method follows the inverted residual block [11]
in terms of controlling the expansion ratio and building a
linear bottleneck; see Fig. 3(c). In addition, we utilize the
Squeeze-Excitation (SE) block [27], the attention mechanism
technique, to extract more important features between the
expanding channels. Furthermore, light operations such as
channel split, skip connection, and channel shuffle are also
used.

We can summarize the contribution of the paper as follows:
• We leverage parallel performance in building a wide and
efficient model that requires less amount of complexity.
Hence, we present a WideHRNet for human pose
estimation. In each layer in WideHRNet, the model
increases the number of channels to increase the ability
to capture more features of small joints.

• We use different techniques to enhance the performance
of WideHRNet. In this paper, we use a channel split,
channel shuffle, and shortcut connection to reduce
complexity, improve accuracy, and avoid the training
problem, respectively. All of these techniques did not
add complexity.

• We add the attention mechanism to the expanding chan-
nels block. Specifically, we use the Squeeze-Excitation
attention block to weight the expanding channels. The
experiment shows that adding channel attention has
enhanced accuracy without adding complexity to the
model.

• Our experiment on the MPII dataset shows that the
WideHRNet model performs better than the LiteHRNet
model and other efficient models.

The rest of the paper is organized as follows: Section II
provides an overview of state-of-the-art networks used in
human pose estimation. Next, Section III explains in detail
the structure and basic block of the WideHRNet model.
Section IV presents the results of the WideHRNet and
discusses the effect of the increase in the number of channels
on performance. Section V presents a conclusion with
limitations and future works of this paper.

II. RELATED WORK
Many works concern estimating human joints using ConvNet
(i.e. [28], [29], [30], [31], [32]). Building a deep network is
one way to achieve high accuracy for the pose estimation
task [12], [16]. However, this method is not suitable for
lightweight devices. Therefore, recently, many studies [11],
[17], [18] have focused on building an efficient network
by making the network wider rather than deeper. This
section provides an overview of the state-of-the-art models
and divides the topics into two subsections: heavyweight
networks and lightweight networks. In addition, it covers the
attention mechanism techniques.

A. HEAVYWEIGHT NETWORKS
Many studies [12], [15], [33] focus on developing
high-accuracy models using different techniques. For

instance, the Stacked Hourglass model [16] uses a repetitive
symmetric low-to-high resolution with adding a skip
connection to preserve spatial information. This model has
been adopted by many studies [34], [35]. Later, however,
Sun et al. [12] noted that recovering a high-resolution
representation from a low-resolution representation will
likely affect the quality of the predicted output. Hence,
they proposed HRNet, which has a parallel architecture.
In the HRNet model, the high-resolution representation is
preserved along the network while gradually adding high-
to-low-resolution sub-networks in parallel. HRNet has been
adopted by many studies [13], [14], [36], [37], and one such
study is HRFormer [15] that integrates the Swin Transformer
with CNN. Both Hourglass and HRNet achieve high accuracy
by making the network deeper, i.e., by increasing the number
of hidden layers.

Unlike CNN, which is concerned with capturing local-
range dependence, the Transformer helps capture long-range
dependence [38], [39]. Therefore, recent studies [33], [40]
have developed models that rely entirely on Transformer to
estimate human pose, which is currently considered one of
the most accurate models for human pose estimation.

Despite the achievements of all the above-mentioned
models, they are unsuitable for lightweight devices due to
their high computation complexity.

B. LIGHTWEIGHT NETWORKS
Small networks allow for estimating the human pose on less
powerful devices. Therefore, there are many studies [11],
[17], [22], [23], [25], [26] focused on designing an efficient
networks. To build lightweight networks, many methods that
provide a low computational are used, such as dynamic
CNN [41], [42]. Furthermore, someworks [24], [25], [26] use
techniques such as attention mechanism and channel shuffle
to boost the performance. Another popular method is to use
an efficient CNN block with fewer layers and more channels.
For instance, MobileNetV1 [17] and MobileNetV2 [11] use
a depthwise separable convolution (depthwise conv followed
by a 1 × 1 conv) with network architecture search (NAS) to
build an efficient and wide network.

Unlike the previous models [11], [17], [25], [26] which
were primarily developed for classification tasks and later
some of them were used for pose estimation [11], [24],
[26]. The LiteHRNet [22] model was specifically created
for human pose estimation. The LiteHRNet model achieved
good results by utilizing the Small HRNet [23] as the
backbone and replacing its basic block with ShuffleV2
block [26]. However, the ShuffleV2 block adds complexity
to the LiteHRNet; hence, all the complex convolution layers
in the ShuffleV2 block were replaced with less complex
convolution. Therefore, the LiteHRNet has become a state-
of-the-art model in pose estimation task [41], [43], [44].

Later, many models have improved LiteHRNet by using a
dynamic CNN block [41], [42] or adding different attention
mechanisms [43], [45]. However, they either made their
architecture difficult to follow despite its performance [41],
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[42] or made minor improvements in accuracy [43], [45].
Therefore, this paper aims to propose a block with a
simple structure, high accuracy, and low complexity. This
is accomplished by extending LiteHRNet, enhancing its
width, and incorporating an attention mechanism to improve
performance further.

C. ATTENTION MECHANISM
The attention mechanism helps to improve the performance
without affecting the complexity [27], [46]. There are six
categories of attention [47], and among them is chan-
nel attention. Channel attention [47] can be defined as
‘‘what to pay attention to’’. It helps to select important
channels.

The first study that suggest the channel attention was
Squeeze-and-Excitation Network (SENet) [27]. The main
idea is to compress all channels as a single value and then use
these values to reweight the channels to distinguish between
the channels and understand which one of the channels
has the most important information. Following this work,
several studies [46] have proposed other channel attentions,
for example, Effective Channel Attention (ECA) proposes
to replace dimensionality reduction in SENet with a local
channel interaction strategy.

Since the wide model means increasing the number of
channels, one of the channel attention techniques should be
used. Therefore, in this paper, we use the SE channel attention
to weight each channel in the proposed block.

III. METHODS
This section describes the proposed model. First, we will
describe the structure of the LiteHRNet model that we
modified and proposed our model based on. Then, we will
explain what layers we used to build our block and why
this block structure follows a linear bottleneck. Next,
we will discuss the channel attention block used in the
proposed block. Finally, we will describe the structure of
the WideHRNet model. Fig. 4 shows the general structure of
WideHRNet.

A. LITEHRNET MODEL
We chose LiteHRNet because it is an efficient model
that delivers good performance with low complexity for
the pose estimation task. LiteHRNet structure follows the
HRNet model, a design that includes multiple stages and
branches. In each stage, information from different branches
is exchanged through a multiscale fusion unit, which helps
the high-resolution subnetwork receive more information.
Hence, the predicted heatmap (output) is more likely to
be high quality, resulting in more accurate detection of the
keypoints.

To further enhance performance, the LiteHRNet follows
the Small HRNet in terms of using fewer layers with a
smaller width. In addition, the LiteHRNet model introduced
a Conditional Channel Weighting (CCW) block to improve
the performance; see Fig. 3(b).

FIGURE 4. WideHRNet model structure. We adopted the LiteHRNet model
and modified its main block, replacing its sub-blocks with a residual
block and channel attention. This new block is used in all stages except
stage 1, which uses the ShuffleV2 block. In this figure, we only visualize
the number of blocks and modules for stage 2. For more information
about the other stages, we refer to Table. 2. Conv: convolution, BN: batch
normalization, DW: depthwise, and SE: squeeze-excitation block.

TABLE 1. Ablation study on conditional channel weighting (CCW) of
LiteHRNet_18 model. The MPII val set is used for evaluation, where the
input size is 256 × 256. CRW: cross-resolution weights block, DW:
depthwise layer, and SW: spatial weights block.

The CCW block splits the input channels into two
branches: one branch is used as identity, whereas the other
branch contains three sub-blocks: cross-resolution weights
(CRW), 3 × 3 depthwise convolution, and spatial weights
(SW). CRW block applies element-wise weighting operation
between the input channels and channels from different
resolutions. Hence, it weights the maps by exchanging
information from all the input channels of all the resolutions.
Then, a 3× 3 depthwise convolution is performed to do some
filtering. Finally, the SW block is used to reweight the feature
map channels.

Table. 1 shows how each of these sub-blocks affects
the performance of the model. According to Table. 1, the
depthwise convolution layer has a significant effect compared
to other blocks. Hence, we attempt to utilize this layer and
boost the performance by making the depthwise layer receive
more channels.

B. LINEAR BOTTLENECK
Adding an activation function before any convolution layer
may result in some information loss [11]. The activation
functions set some threshold to perform the nonlinear
operation. For example, the ReLU activation sets a threshold
that changes all negative inputs to zero. This allows the
model to learn nonlinear mappings between inputs and
outputs. However, setting a certain threshold may cause some
information to be lost. Therefore, we address this problem
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FIGURE 5. Squeeze-Excitation block. It consists of two modules: squeeze
and excitation. The squeeze module contains a global average pooling
(GAP) layer, whereas the excitation module contains two fully connected
(FC) layers. This block is used to weight the input channels. C: channel, W:
width, and H: height, r: reduction ratio.

by increasing the number of channels before applying any
nonlinear operations. Hence, if information is lost, it can be
recovered via other channels.

Our block consists of three convolutional layers: two
pointwise and one depthwise. First, a pointwise convolution
is applied to increase the number of channels. Then, batch
normalization is performed, followed by a nonlinear activa-
tion function. Instead of applying a standard convolution,
a depthwise convolution is used to process each channel
separately, which helps reduce computational complexity.
Another activation function is then applied. Finally, a second
pointwise convolution projects the expanded channels back
to match the input dimensions of the block.

Note that no activation function is added after the
second pointwise layer, which, according to Sandler et al.
[11], helps maintain representational power. Since we did
not add a nonlinear activation after the second pointwise
layer, our block follows a linear bottleneck. Notice that
our block structure follows the same structure as the
inverted residual block [11], see Fig. 3(c), in terms of
increasing the channels and maintaining the representational
power.

C. CHANNEL ATTENTION
Squeeze-and-Excitation (SE) [27] is the most popular
channel attention that is used by many studies [22], [46].
As shown in Fig. 5, the SE block consists of two modules:
the squeeze and the excitation. The squeeze module uses a
global average pooling (GAP) to perform feature aggregation,
and the excitationmodule contains two fully connected layers
(FC). In addition, SE uses channel-wise multiplication to
weight the channels of the feature maps.

According to SENet [27], the objective of the SE block
is to provide a single parameter per channel to learn the
importance of different channels. Hence, we incorporate the
SE block after the depthwise layer to weight the expanding
channels and extract the most important channels.

D. WIDEHRNET MODEL
This section provides a detailed explanation of the pro-
posed model. We adopted the LiteHRNet model for its
balance between accuracy and computational cost. However,

TABLE 2. WideHRNet structure. The proposed model has the same depth
as LiteHRNet_18. Hence, the depth of WideHRNet is set to 18.

as shown in Table. 1, the depthwise convolution layer in the
CCW block of the LiteHRNet model has a greater accuracy
impact than other layers. Therefore, we removed all layers
except the depthwise layer in the CCWblock. Then, we added
a pointwise convolution before the depthwise convolution
to expand the channels. Our expanding method follows the
inverted residual block in terms of expanding and projecting
the number of channels in a linear bottleneck block.

According to studies that build wide networks [9], [10],
[11], [17], [48], increasing the channels led to redundant
features. Hence, we applied channel expansion to part of the
input channels, leaving the other part unchanged. To simplify,
our proposed block starts by dividing the input channels into
two groups. One half serves as an identity, while the other
serves as input for the inverted residual block. The number
of input channels for the second group is expanded by a
factor of e. After expanding the channels using a pointwise
layer, a deep convolution is used, which filters over a large
number of channels at a low cost. Then, another pointwise
convolution is utilized to restore the original number of
channels. In addition, We followed a linear bottleneck, as in
the inverted residual block, to preserve information from the
loss. Finally, the channels of the identity group and the output
of the inverted residual block are concatenated and shuffled.

To distinguish the important features among the massive
number of channels, we added channel attention, specifically
the SE block. This channel attention extracts the important
feature by weighting all the expanding channels. The
structure of our model is illustrated in Table. 2 and Fig. 4.
The following section will provide a detailed discussion of
the results obtained by different proposed blocks, i.e., the
expanding block with and without channel attention.

IV. EXPERIMENTS
This section describes the experimental setup and its results.
First, we will explain the dataset and the configuration
values of the training and testing phases. Next, we will
discuss the performance of the WideHRNet model. Finally,
we show the results of tuning the expansion and reduction
hyperparameters, as well as the effect of other lighter
operations, including channel splitting, channel shuffling,
and shortcut connection, on the accuracy of the model. The
code of all experiments conducted in this paper is available
to access1

1https://github.com/IsraaSamkari/WideHRNet
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FIGURE 6. The MPII dataset. It provides (a) annotated 16 keypoints and
(b) images with different human poses, including simple and complex
poses.

A. IMPLEMENTATION DETAILS
In this section, we provide more detailed information about
the dataset used to evaluate the WideHRNet model, as well
as the configuration values for the training and validation
phases.

1) DATASET AND EVALUATION METRIC
The MPII Human Pose dataset [49] contains about 25K
images and 40K person pose instances, each with a label
of 16 keypoints. We train our network on the MPII training
set that contains 22K images and evaluate them on the MPII
validation set that includes 3K images. The MPII images are
fromYouTube videos, and the pose in these images represents
one of the human daily activities such as sitting, walking,
running, dancing, bicycling, etc. Fig. 6 shows examples of the
MPII images. The head-normalized Probability of the Correct
Keypoint (PCKh) metric is used to evaluate the proposed
model.

2) TRAINING
The WideHRNet model was trained on a single GeForce
RTX 3060 GPU. For a fair comparison, we used LiteHRNet’s
default training setting. Hence, the optimizer is set to Adam
with a base learning rate of 2e−3, batch size set to 32, epoch
set to 210, and the image is resized to 256 × 256. The
same goes for setting values of detection boxes. The human
detection box aspect ratio is set to 4:3. In addition, several
data augmentations are used, including random flipping,
random scale, and random rotation.

3) TESTING
We follow the same testing setting as LiteHRNet. The
LiteHRNet adopted a top-down paradigm in the test phase.
This paradigm has two stages. The first stage is pose detection
using the bounding box, which, for the MPII dataset, we used
the bound boxes present in the annotation file. The second
stage is to predict the position of joints by estimating
heatmaps, each of which shows the probability of a particular
joint being in a particular position in the image.

It is worth noting that we found that the MPII bounding
boxes affect the final result because their boundaries include
several other poses, not just the target pose. However, fixing
the bounding box of person poses is beyond the scope of

TABLE 3. Evaluation results between WideHRNet model and the other
models. These models are evaluated on the MPII val set, where the input
size is 256 × 256. #Params and FLOPs indicate the model size and
complexity, respectively. Pretrain: pretrain the backbone on ImageNet.
Bold means the best result.

TABLE 4. A comparison of how accurately each joint is estimated in the
WideHRNet and LiteHRNet. The MPII val set is used for evaluation.

our research. Yet, we used an object detection model to
demonstrate that the quality of the boundaries affects the
accuracy of the pose estimation model. We have discussed
this point in detail in Appendix.

B. RESULTS
LiteHRNet provides a network that optimizes accuracy and
efficiency by utilizing a CCW block. Nevertheless, as shown
in Table. 1, analysis indicates that some operations within
this block have low impact, except the depthwise layer.
Consequently, we removed all operations within the CCW
block and kept only the depthwise layer. Then, two pointwise
layers were added before and after the depthwise layer to
expand and project the number of channels, respectively,
so the input and output can be added. We utilized this
new block as a fundamental component in a high-resolution
network, leading to a model with wider channels, which we
have named WideHRNet.

The depth of WideHRNet is set to 18, which is the same as
LiteHRNet_18. Then, we evaluated it on the MPII validation
set. Table. 3 shows that the proposed model outperforms
LiteHRNet_18 without adding significant computational
complexity, as its value ofGFLOPs is lower than 1. Compared
to the CCW block, the proposed block significantly boosts
accuracy to 87.7%. In addition, as shown in Table. 4,
WideHRNet was able to predict the position of small joints,
specifically the wrist and ankle, better than LiteHRNet. Fig. 7
shows the quality results between the LiteHRNet_18 and
WideHRNet_18.
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FIGURE 7. Evaluation quality results between (a) LiteHRNet_18 model
and (b) the WideHRNet_18 model.

It is important to note that the expanded channels in the
proposed block have the same weights. To address this, the
attention mechanism was added after the depthwise layer to
reweight all the expanded channels. The attention mechanism
used in this study is the SE block. As shown in Table.3
and Table.4, integrating the SE block into the WideHRNet
significantly increased accuracy, reaching 88.47%, without
adding complexity. However, this modification also led
to doubling the number of parameters, which can be
reduced by adjusting the reduction hyperparameter. Tuning
hyperparameters will be discussed in Section IV-C.

Table. 3 presents a performance comparison between
WideHRNet and other state-of-the-art models, including
large and small networks. Notice that the WideHRNet with
SE achieves good accuracy with few parameters and low
FLOPs compared to the big networks. However, compared
to small networks, like small HRNet and LiteHRNet_18,
WideHRNet needs more parameters and FLOPs to get high
accuracy. Nevertheless, the WideHRNet achieves the desired
performance with fewer layers compared to lightweight net-
works that achieve high accuracy by making their networks
deeper, e.g., LiteHRNet_30. Overall, the performance of the
proposed model outperforms the existing efficient models
such as MobileNetV3, ShuffleNetV2, and RTMPose.

C. ABLATION STUDY
In this section, we perform an ablation study on the proposed
block to see how each component affects the performance.
Hence, we studied the effect of increasing and decreasing
the number of channels. In addition, we study the impact
of channel split, channel shuffle, and shortcut connection on
WideHRNet.

1) WIDE CHANNELS
The proposed block achieves high accuracy due to the
increased number of channels. This increase is controlled by
the e hyperparameter, which is set to 4 in Table. 3. In this
section, the hyperparameter e is set to different values to
measure its effect on the model accuracy. The expansion
ratio was initially set to 2 and gradually doubled until we

FIGURE 8. Ablation study on the expansion and reduction ratios of the
proposed block. E2, E4, and E6 mean expanding channels with different
values (2, 4, and 6). R4 and R16 mean reduction ratios with different
values (4 and 16).

reached our hardware resource limit. As illustrated in Fig. 8,
the higher the expansion ratio values, the more accurate
the WideHRNet model is. However, this also increases the
model’s size and computational requirements. Yet, the most
favorable result occurs when the expansion ratio is set to 6,
resulting in a model accuracy of 88.3%. This result is close
to WideHRNet with SE but with lower parameters and higher
complexity.

Regarding the proposed block that includes SE, SE intro-
duces more parameters, which can be controlled by changing
the hyperparameter r (reduction ratio). Thus, we also
tuned this hyperparameter to decrease the model size.
Unfortunately, changing the hyperparameter r to different
values reduced the model’s accuracy, as shown in Fig. 8.
In general, the adjustments in the expansion and reduction
provide a balance between accuracy and efficiency. All these
tuning results are shown in Fig. 8.

2) CHANNEL SPLIT
Increasing channels may lead to redundancy in filters [48]
and thus increase unnecessary parameters in the model.
To emphasize this point, we studied the effectiveness of
dividing the input channels into groups. Previous experiments
in Section IV-C1 have shown that dividing the input channels
into two groups reduces the number of parameters while
maintaining good accuracy (see Table. 3 and Fig. 8).
However, it is unknown whether expanding the channels
without splitting the input channels will increase the model
accuracy. Therefore, in this section, the split channels were
removed, and the inverted residual block was directly used.
As a result, all input channels are expanded by the e ratio.
The results are shown in Table. 5 indicate that model accuracy
increased slightly, but this improvement came at the cost of
model size and complexity. The number of parameters has
increased significantly, and the complexity has tripled. This
experiment demonstrated that applying the expanded layer
without dividing the input channels introduces redundant
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TABLE 5. Ablation study on the proposed block with and without using
the channel split. The MPII val set is used for evaluation. SE:
squeeze-excitation, E: expanding ratio of expansion layer, and R:
reduction ratio of squeeze-excitation block.

TABLE 6. Ablation study on the proposed block with and without using
the channel shuffle. The MPII val set is used for evaluation. E: expanding
ratio of expansion layer, and R: reduction ratio of squeeze-excitation (SE).

parameters to the model. In contrast, dividing the input
channels before applying the expanded layer preserves the
model’s accuracy and efficiency.

3) CHANNEL SHUFFLE
As discussed in the previous section, splitting the input
channels into two branches helps reduce model complexity
while maintaining accuracy. However, the effect of using
the channel shuffle operation after joining the channels
from different branches is still unknown. Therefore, this
section will discuss the impact of channel shuffle in the
proposed block. ShuffleNetV2 [26] suggests using a channel
shuffle to exchange information between branches. Our
proposed block has two branches: one remains unchanged
(identity), while the other performs convolutions. The output
channels from these branches are then concating. Applying
the channel shuffle after the branch concatenation should
facilitate information exchange. However, as shown in Table.
6, the results indicate no big difference in accuracy when
the channel shuffle is added or removed. Furthermore,
removing the channel shuffle did not affect the model size
or complexity. The conclusion from this experiment is that
the channel shuffle operation can only improve performance
by around 0.1 to 0.3 points.

4) SHORTCUT CONNECTION
Deep networks may face the vanishing gradient problem [11],
where the early layers of the network stop learning due
to the small values that come from backpropagation. The
depth of the WideHRNet is 18, and to avoid the vanishing

TABLE 7. Ablation study on the proposed block with and without using
the shortcut connection. The MPII val set is used for evaluation. E:
expanding ratio and R: reduction ratio.

TABLE 8. The ablation study of linear and nonlinear bottlenecks. A linear
bottleneck means removing the activation function after the second
pointwise layer, while a nonlinear bottleneck means adding the
activation function.

gradient problem in the WideHRNet, the proposed block
uses a shortcut connection between thin layers. In this
section, we conducted an ablation study on the shortcut
connection and compared the effect of the proposed block
with and without a shortcut connection on the model
accuracy. As demonstrated in Table. 7, removing the shortcut
connection from the proposed block did not lead to a
vanishing gradient problem. However, using the shortcut
connection in the proposed block is useful, as it slightly
improves accuracy and does not add complexity to the model.

5) LINEAR AND NONLINEAR BOTTLENECK
In deep learning, the concept of a linear bottleneck refers
to a design choice in neural network architecture where
the dimensionality of data is reduced through a linear
transformation without the use of activation functions. This
technique is often employed to retain essential features of the
input data [11]. In this section, we study the effect of adding
and removing the ReLU activation function after the second
pointwise layer in the proposed block. As shown in the Table.
8, the performance of the proposed block that follows a linear
bottleneck is better than a nonlinear bottleneck, where the
accuracy drops slightly when using the nonlinear bottleneck.

V. CONCLUSION
We proposed WideHRNet, a new efficient model for
estimating human pose from the images. WideHRNet is
built on the LiteHRNet_18 model, taking advantage of
its high-resolution representation and parallel performance.
The main contribution of WideHRNet is its basic block,
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FIGURE 9. MPII Bounding Box (BBox): The scale and center indicate the
values of the BBox length and center, respectively. To obtain the BBox
length, the scale value must be multiplied by 200.

which increases the number of channels to capture various
joint sizes. Besides expanding the channels, WideHRNet
uses methods like channel splitting, shuffling, and attention
techniques to boost efficiency. Additionally, the structure of
the basic block follows the linear bottleneck to maintain
the representational power. We show how each of these
methods impacts the model’s performance. By making the
network wider and using the attention mechanism, the results
on the MPII show that the WideHRNet outperforms the
existing efficient models with an accuracy of 88.47% and a
computational complexity of less than 1 GFLOP.

We proved that increasing the channels in each layer
allows the model to estimate the small joint more accurately.
However, we could not increase the number of channels
beyond a certain limit due to hardware limitations. Therefore,
many experiments are needed to find the appropriate
expanding ratio. In addition, WideHRNet suffers from high
parameters due to the use of the squeeze-excitation (attention
block). Therefore, in future work, this block needs to be
replaced with a free parameter block. Furthermore, regarding
the MPII dataset, we noticed its bounding box is inaccurate,
with each box including more than one person. We proved
that fixing the bounding box of MPII will enhance the
performance of the pose estimation model. However, fixing
all the bounding box values is out of our scope. Hence, we left
it as a future work.

APPENDIX
BOUNDING BOX OF MPII DATASET
This section will discuss the impact of the bounding box
(BBox) on the results of the WideHRNet model. It is
known that there are two approaches for estimating multipose
[1], [2]: bottom-up and top-down. This paper follows the
top-down approach that first identifies the person’s location
through a detection model and then predicts the body joints.
However, the studies [12], [13], [14], [16], [22], [33], [41] that
do the evaluation on MPII dataset, they use the BBox ground
truth that provided by the MPII dataset. In our experiment,
we did the same. Yet, we found one problem with this BBox.

The MPII dataset stores BBox values as BBox length
and BBox center (see Fig. 9). However, we observed
that the BBox often has a large boundary, introducing
unnecessary information such as noisy backgrounds or
including multipose. Additionally, if the person’s pose is at
the edge of the image, the remaining pixels inside the BBox

FIGURE 10. Samples from the MPII val set after cropping.

FIGURE 11. The evaluation of WideHRNet model using (A) MPII val set
with (B) the ground truth MPII bounding box and (C) object detection
model. The key scenarios include: (a) pose surrounded by black pixels,
(b) small pose size, and (c) overlapping keypoints.

FIGURE 12. Examples of poor-quality images in the MPII dataset include
some with (a) unclear poses, (b) blurring effects, (c) hidden poses, and
(d) no pose centered in the image.

are filled with black. Fig. 10 presents some samples from the
validation set of the MPII dataset after extracting the BBox.

Despite the above problems, there are some samples in the
MPII validation set that our model fails to evaluate accurately.
This is due to the use of BBox present in the MPII dataset.
To verify if the problem is from the MPII BBox, we used a
Faster R-CNN [50] detection model. As shown in Fig. 11,
with a detection model, our network is able to estimate
the pose keypoints accurately. However, even by using a
detector, we found some samples in the validation set hard to
recognize, even with the human eye (see Fig. 12). However,
we argue that if any model is able to estimate such samples
accurately, it indicates that the model has low generalization.

Overall, in this section, we evaluated the quality of the
MPII validation set and showed how the BBox accuracy
affected the pose estimation result. However, fixing the values
of the MPII BBox is beyond our scope. Therefore, we left it
as an open area that needs to be solved.
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