
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

VPPFL: Verifiable Privacy-Preserving Federated
Learning in Cloud Environment
HUIYONG WANG1,2,4, TENGFEI YANG1,3, YONG DING4,5, SHIJIE TANG 6and Yujue Wang,7
1School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
2Center for Applied Mathematics of Guangxi, Guilin University of Electronic Technology, Guilin 541004, China
3Guangxi Engineering Research Center of Industrial Internet Security and Blockchain, Guilin university of electronic technology, Guilin 541004, China
4Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
5Institute of Cyberspace Technology, HKCT Institute for Higher Education, Hong Kong, China
6School of Electronic Engineering and Automation, GuiLin University of Electronic Technology, Guilin, 541004, China
7Hangzhou Innovation Institute, Beihang University, Hangzhou, 310052, China

Corresponding author: Shijie Tang (e-mail: tangsj@guet.edu.cn).

This article is supported in part by the Guangxi Natural Science Foundationunder grant 2023GXNSFAA026236, the National Natural
Science Foundation of China under project 61962012, and the National Key R & D Program of China under project2020YFB1006003, and
the Science and Technology Project of Guangxi (Guike AD23023002).’

ABSTRACT As a distributed machine learning paradigm, federated learning has attracted wide attention
from academia and industry by enabling multiple users to jointly train models without sharing local data.
However, federated learning still faces various security and privacy issues. First, even if users only upload
gradients, their privacy information may still be leaked. Second, when the aggregation server intentionally
returns fabricated results, themodel’s performancemay be degraded. To address the above issues, we propose
a verifiable privacy-preserving federated learning scheme VPPFL against semi-malicious cloud server. We
use thresholdmulti-key homomorphic encryption to protect local gradients, and construct a one-way function
to enable the users to independently verify the aggregation results. Furthermore, our scheme supports a
small portion of users dropout during the training process. Finally, we conduct simulation experiments on
the MNIST dataset, demonstrating that VPPFL can correctly and effectively complete training and achieve
privacy protection.

INDEX TERMS Privacy protection; Federated learning; Verifiable; Threshold multi-key homomorphic
encryption.

I. INTRODUCTION

RECENTLY machine learning technology has played
a key role in numerous fields. For example, it has

achieved significant results in medical prediction [1] [2],
autonomous driving technolog-ies [3] [4], and image recog-
nition [5]. In machine learning, data privacy and security are
key concerns. For example, medical data often contains a lot
of sensitive personal information. If an unauthorized third
party accesses medical data, it can lead to a serious privacy
breach that affects the interests of patients [6] [7]. Addition-
ally, since traditional machine learning typically operates on
unencrypted data, this also poses a serious risk of privacy
leakage.

To address these issues, Google proposed federated learn-
ing in 2016 [8]. In federated learning, users only need to
share the local gradients instead of original valuable data.
This method conveniently utilizes sensitive information while
mitigating the risk of privacy breaches that may arise from

collecting data from different users.
However, current research indicates that even if users only

upload gradient information, their privacy could still be com-
promised [9] [10]. Attackers might exploit vulnerabilities in
cloud server to reveal specific attributes of training samples,
or fabricate aggregation results to induce users to leak more
valuable information. In some extreme cases, attackers could
even use the leaked data to reconstruct users’ original data. On
the other hand, motivated by illicit profits, malicious cloud
server might return incorrect aggregation results to users. For
example, in order to reduce its computation costs, the cloud
server may use a more simplified and less accurate model to
process the uploaded gradients, or even directly modify the
aggregation results [11] [12].
To address these issues, we propose the Verifiable Privacy-

Preserving Federated Learning (VPPFL). Our contributions
are outlined as follows:

• We design a verifiable federated learning mechanism to

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

deal with the semi-malicious cloud server. This scheme
enables users to independently verify the aggregation
results without the intervention of a trusted third party,
and can effectively prevent collusion attacks initiated by
the cloud server in collaboration with a small portion of
users.

• Our scheme employs multi-key threshold homomorphic
encryption to protect users’ privacy data, and allows a
small portion of users dropout during training without
adding additional burden to the server. Even if several
users fail to upload their data, the training process won’t
be interrupted.

• We provide security analysis and simulation experi-
ments to validate the security and efficiency of VPPFL.

The rest of this paper is organized as follows. Section 2
reviews the current relevant research and the basic concepts
and techniques involved. Section 3 introduces the system
model and security requirement. Section 4 elaborates in detail
the teshnical specific of VPPFL. We analyze the security and
performance of VPPFL in Section 5. Section 6 presents the
experimental analysis results. Finally, section 7 concludes the
work.

II. RELATED WORK AND RELEVANT CONCEPTS AND
TECHNOLOGIES
A. RELATED WORK
When constructing privacy-preserving federated learning,
there are two commonly used cryptographic tools, i.e. differ-
ential privacy [13] and homomorphic encryption [14].

Differential privacy is a privacy protection technique with
provable security, which protects data by adding random
noise. In 2006, Microsoft’s Dwork [15] first proposed the dif-
ferential privacy technology, and later in [16], a new differen-
tial privacy mechanism Propose-Test-Release(PTR) was used
to achieve high-quality differential privacy results. Geyer et
al. [17] used differential privacy for the first time in federated
learning to protect participants’ data by adding Gaussian
noise on the server side. K. Wei et al. [18] employed a local
differential privacy strategy during the local model updates
of deep neural networks. They protect the local gradient by
adding noise before uploading the local model. However, this
method does not take users dropout into consideration.

Homomorphic encryption is now widely used in the con-
struction of privacy-preserving federated learning. Phong et
al. [19] introduced homomorphic encryption in the asyn-
chronous stochastic gradient descent training. However, all
users utilize the same private key, leading to a potential risk:
if the server colludes with some users, the data privacy of
other users cannot be guaranteed. B. Wang et al. [20] in
their research adopted homomorphic encryption to protect
users’ local data and implemented access control to verify
the credibility of user identities, effectively defending against
threats from internal attacks. J. Ma et al. [21] used multi-key
homomorphic encryption to encrypt the model before updat-
ing the local gradients. Decryption requires the collaborative
participation of all users to prevent unauthorized access to

participant’s data. As a result, if users dropout in the middle
of the training process, decryption cannot be achieved, which
is impractical for real-world federated learning.
Recently, the research community has proposed various

schemes to address the data integrity challenge in federated
learning. G. Xu et al. [22] introduced an innovative verifi-
able privacy-preserving federated learning architecture. By
employing homomorphic hash functions and zero-knowledge
proof, they construct a verifiable and secure aggregation
mechanism. X. Guo et al. [23] modified this framework to
reduce the communication cost, while they also pointed out
that if malicious cloud server colluded with users, the scheme
in [22] would still face certain security vulnerabilities. L.
Lin and X. Zhang [24] used differential privacy and one-way
function to allow users to verify aggregation results returned
by a lazy server, but the approach does not support user
dropout during training. Y. Ren et al. [25] adopted linear
homomorphic hash functions and digital signature to achieve
traceable verification of aggregation results and identifica-
tion of erroneous cycles. However, this approach inevitably
increases communication cost.

B. CONCEPTS AND TECHNOLOGIES
We now introduce some relevant conceptions and technolo-
gies. Some of the symbols used in this paper are listed in Table
1.

TABLE 1. List of symbols

Symbol Meaning

N number of users
K security parameter
Pn the n-th user
θ learning rate
gn gradient of the n-th user
ω weigth
Dn dataset of the n-th user
Djn dataset of the n-th user in the j-th iteration
t number of users for collaborative decryption

sum(g) If g is a vector, it represents the sum of vector elements;
If g is a matrix, it represents the sum of all elements in the matrix

1) Federated learning
Different from traditional machine learning, federated learn-
ing has made significant strides in protecting user’s privacy.
In federated learning, users do not upload personal data, but
only need to share the local gradients, significantly reducing
the risk of personal information leakage. As shown in Figure
1, users upload these gradients to the cloud server, which then
aggregates the data and feeds the results back to users. By
this method, users and server collaborate to cultivate a com-
prehensively optimized global model, ensuring the security of
personal data while achieving efficient model training.

2) Neural network
We now introduce a classic deep neural network - fully
connected neural network (FCNN). Figure 2 shows the ar-

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Federated learning architecture.

chitecture of FCNN. The neurons in each layer are densely
connected to the neurons in the preceding and following
layers by weight ω.

FIGURE 2. The architecture of FCNN.

FCNN can be represented by f (x, ω) = ỹ, where x is the
input and ỹ is the corresponding output. Assuming the entire
dataset D = {< xi, yi >, i = 1, · · · ,T}, the loss function be
defined as:

Lf (D, ω) =
1

|D|
∑

(xi,yi)∈D

Lf ((xi, yi), ω), (1)

where Lf ((xi, yi), ω) = l(y, ỹ) = ||y, ỹ||2.
The objective of neural network training is to achieve an

optimal set of parameters ω, which minimizes the value of
the loss function. To achieve this goal, we use Algorithm 1:
the mini-batch gradient descent method (SGD).

3) Threshold paillier cryptosystem
In VPPFL, we use the threshold Paillier cryptosystem [26]
to construct a secure framework since it has two important
features: 1) Threshold property: Each user cannot decrypt the
ciphertext alone, at least t users are need to work together to
decrypt the ciphertext; 2) Homomorphic additivity: Multiply-
ing ciphertexts equals adding plaintexts, enabling operations
on plaintexts through ciphertext calculations. These two fea-
tures provide sufficient functionality and privacy protection
for our scheme.

In the threshold Paillier cryptosystem, the public key pk =
(G,K ) is openly shared with all participants, where G = 1 +

input : Dataset D = {(xi, yi) : i = 1, . . . ,N},
Learning rate θ,
Loss function

Lf (D, ω) = 1
|D|
∑

(xi,yi)∈D Lf ((xi, yi), ω).
output: The optimal model parameters ω.

Randomly select an initial ω0;
At the j-th iteration, randomly select a small batch
of data Dj ⊆ D;
for (xi, yi) ∈ Dj do

Calculate gj(xi,yi) ← ∇Lf ((xi, yi), ωj);
end
Calculate gj∗ ← 1

|Dj|
∑

(xj,yj)∈Dj g
j
(xi,yi)

;

Update weight ωj+1 ← ωj − θ · gj∗;
until convergence is satisfied;
return ω.

Algorithm 1: SGD

K , K = pq, with p and q are two large primes. The private
key is split into N keys, denoted as (sk1, sk2, . . . , skN ), with
each user holding his own private key.
For a plaintextM , encrypting it using the public key pk will

yield the ciphertext

c = Epk(M) = GMxK mod K2, (2)

where x is a random positive integer in the multiplicative
group ZK2 .

This cryptosystem has homomorphic additivity, which
can be described as: c = Epk(M1 + M2) =
G(M1+M2)(x1x2)K mod K2 = Epk(M1) · Epk(M2),where
M1 and M2 are the two plaintexts, and x1 and x2 are random
positive integers in Z∗K2 .

4) One-way function
The generation of one-way function is based on hardness of
the irreversible logarithm problem, which ensures that the
semi-malicious cloud server cannot infer the user’s privacy
information through the function values of gradients. The
specific process is as follows:

Assume a is a generator of order k , and b is a large prime
number. Construct a one-way function h: Z→ Zp as:

h(M) = aM mod b, M ∈ Z. (3)

It satisfies homomorphic addition, i.e.∀x1, x2 ∈ Z, h(x1) =
ax1 mod b, h(x2) = ax2 mod b, then h(x1 + x2) =
ax1+x2 mod b = (ax1 mod b) · (ax2 mod b) mod b =
h(x1)h(x2).

III. SYSTEM MODEL AND SECURITY REQUIREMENTS
A. SYSTEM ARCHITECTURE
As shown in Figure 3, our system consists of three parts: semi-
malicious cloud server (CS), trusted authority (TA) and semi-
honest users (Users).

Semi-malicious cloud server (CS): The main task of CS
is to aggregate the gradients uploaded by users, broadcast

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. System architecture.

the function values of gradients to all users, decrypt the
aggregation results, and send them to users. We require CS
to only obtain ciphertexts and the final aggregation results,
without knowing any other information.

Trusted authority (TA): TA is an authoritative and trust-
worthy entity (e.g. a government agency). It does not collude
with any party. Its main task is to initialize model parameters,
generate a one-way function, and generate key pairs for all
users. Then, it sends the one-way function and key pairs to
users through secure channel and broadcasts public key. After
that, unless there is a dispute, it will go offline.

Semi-honest users (Users): Users are the owner of the data,
who participate in the training process, and ultimately obtain
the global model. Each user sends his encrypted local gradient
and the function value of gradient to CS during each round,
and cooperates with CS to decrypt the aggregation results.
Finally, all users verify the aggregation results returned by
CS.

B. THREAT MODEL
Semi-malicious CS attack: CS may deceive users by reducing
the gradient aggregation of one or more users in order to save
costs.

Half-honest user attack: He may try to use the information
he has to infer the private data of other users.

Collusion attacks: There may be collusion attacks between
a small number of users and CS, and the private information
of other users can be inferred by sharing information such as
model parameters.

External malicious attack: There is a malicious adversary,
denoted as A, who will use any means to obtain useful infor-
mation from users. For example, A can launch active attacks
by infiltrating CS, modifying or injecting false data, returning
incorrect aggregation results to deceive users into revealing
more privacy data.

C. SECURITY OBJECTIVES
We aim to propose an efficient, secure, and verifiable privacy-
preserving federated learning scheme. Specifically, the fol-
lowing objectives should be achieved:

1) Privacy of user’s data: No entity other than the user
himself should be able to access sensitive information of the
user, including an external adversary A and CS.
2) Every user should be able to independently verify the ag-

gregation results. If CS returns incorrect aggregation results,
users should have the right to deny the results and request CS
to reaggregate the results.
3) The scheme should allow a small portion of users to

join or dropout the training process without interrupting the
overall training of the model.

IV. VPPFL
In this section, we provide the detailed design of VPPFL.
Our scheme consists of four main stages: 1) Initialization;
2) Encryption; 3) Decryption and 4) Verification. Figure 4
illustrates the process flow of VPPFL.
1) Initialization
TA takes on the role of initializing the system parameters

and generating key pairs. The specific process for generating
the public and private keys is as follows, as shown in Algo-
rithm 2.
Parameter Generation: The parameters that need to be ini-

tialized include the global weight ω, learning rate θ, training
epoch, safety parameter L, and the one-way function h.
Key generation and distribution: First, TA randomly gener-

ates two large prime numbers p = 2p′+1, q = 2q′+1, where
p′, q′ < L. Second, TA generates the RSA modulus K = pq,
ensuring that gcd(K , ψ(K )) = 1. Then, TA randomly selects
β ∈ Z∗K and calculates m = p′q′ and ∆ = N !. Next, TA
disguise m as α = mβ mod K .
TA sets public key pk = (K ,G, α) and private key SK =

βm, whereG = K+1. TA splits the private key SK as follows:
selects t random numbers a1, a2, . . . , at ∈ {0, 1, . . . ,Km −
1}, then generates the polynomial f (x) = βm+ a1x + . . .+
atx t−1 mod Km. Finally, TA sends f (n) to each participant
Pn(1 ≤ n ≤ N ) through secure channel.
2) Encryption
Each user Pn(1 ≤ n ≤ N ) encrypts his own gradient:

for the gradient vector gn = [gn1, gn2, . . . , gnm], Pn chooses a
random number xn ∈ Z∗K , uses the public key pk to calculate
ciphertext Encpk(gn) = GgnxKn mod K2, and the one-way
function value of gradient h(sum(gn)) = asum(gn) mod b.
Each user Pn sends the ciphertext Encpk(gn) and the one-

way function value of his gradient h(sum(gn)) to CS. CS
broadcasts the received one-way function values of gradients
{h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}, and aggregates
the ciphertexts to obtain the encrypted gradient ciphertext,

c =

N∏
n=1

Encpk(gn). (4)

3) Decryption
For the ciphertext c, CS randomly selects t(1 ≤ t ≤ N )

users to send decryption requests. Suppose the selected par-
ticipants form a set S. The selected participant computes the

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. The process flow of VPPFL.

output: Private key (sk1, sk2, . . . , skN ).

Randomly generate two prime numbers p′ and q′,
where p′, q′ < L;
Calculate p = 2p′ + 1, q = 2q′ + 1, p and q are also
prime numbers;
Calculate RSA modulus K = pq, and ensure that
gcd(K , ϕ(K )) = 1, where ϕ(K ) = (p− 1)(q− 1);
Calculate decryption key m = p′q′ = ϕ(K)

4 ;
Randomly choose a β ∈ Z∗K , calculate
α = mβ mod K ;
Calculate ∆ = N !;
Set private key SK = βm, public key
pk = (K ,G, α,∆), where G = 1 + K ;
Split the private key SK : select t random numbers
a1, a2, . . . , at−1 ∈ {0, 1, . . . ,Km− 1}, generate a
polynomial f (x) = βm+ a1x + . . .+ atx t−1

mod Nm, calculate skn = f (n) and send skn to the
corresponding participant Pn(1 ≤ n ≤ N ).

Algorithm 2: KGA(TA)

decryption share sn = c2∆skn mod K2 and sends it to CS. CS
can then compute the aggregation results

g∗ = L(
∏
n∈S

s2µnn mod K2)× 1

4∆2α
mod K , (5)

where µn = ∆ × λS0,n ∈ Z, λS0,n =
∏

n′∈S\{n}
−n′
n−n′ , L(u) =

u−1
K .
4) Verification
Each user Pn(1 ≤ n ≤ N ) receives the one-way function

values of gradients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}

from CS, then he calculates h(sum(g′∗)) =
∏N

n=1 h (sum(gn),
and h(sum(g∗)) = asum(g∗) mod b based on the aggregation
results g∗ returned by CS. If h(sum(g′∗)) = h(sum(g∗)), the
next round of training will begin. Otherwise, CS is required
to reaggregate the results.
Algorithm 3 provides a detailed description of the VPPFL

process.
.
Next, we provide a proof of correctness for our scheme.
Theorem 1: If CS honestly performs the aggregation op-

erations in the VPPFL, the aggregation results will pass veri-
fication.
Proof: The encrypted gradients uploaded by the users to CS

are {Encpk(g1),Encpk(g2), . . . ,Encpk(gN )}. If CS honestly
performs the aggregation operation, it will get the encrypted
aggregation results as Encpk(g∗) =

∏N
n=1 Encpk(gn). Subse-

quently, CS randomly sends decryption requests to t users,
and the numbers of the selected participants form a set S to
perform the decryption operation. After receiving the decryp-
tion request from CS, each user in S sends the decryption
share sn = c2∆skn mod K2 (n ∈ S) to CS.

We have
∏

n∈S s
2µn
n = c4∆

∑
n∈S f (n)µn

= c4∆
∑

n∈S ∆f (n)λS0,n

= c4∆2mβ = (Gg∗xK mod K2)4∆2mβ

= G4∆2mβg∗ mod K2(∵ ∀x, x2Km = 1 mod K2)

= 1 + 4∆2mβg∗K mod K2(∵ G = 1 + K ).

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Round 0 (Initialization)
TA:
Generate a set of private keys {sk1, sk2, . . . , skN} and a public key pk = (K ,G, α,∆) based on Algorithm 2. Broadcast
the public key to all participants;
Send the private key skn = f (n)(1 ≤ n ≤ N ) to the corresponding user Pn via a secure channel;
Select a large prime number b and a generator a of order k to create a one-way function. Send the function to all users
and then go offline.
Round 1(Encryption )
Users:
Each user Pn selects a mini-batch subset Dj

n ⊆ Dn and calculates gn ←
∑

(xi,yi)∈Dj
n
∇Lf ((xi, yi), ωj);

Calculate the encryption of gradient Encpk(gn) and the one-way function of the gradient h(sum(gn)) and then upload
them to CS.
CS:
Receive Encpk(gn) and h(sum(gn)) from user Pn;
Calculate the aggregated encrypted gradient c←

∏N
n=1 Encpk(gn);

Broadcast the received h(sum(gn)) to all users.
Round 2(Decryption)
CS randomly selects t users and sends the decryption requests to them;
After receiving the decryption request, user Pn(1 ≤ n ≤ t) calculates decryption share sn = c2∆f (n) mod K2 and sends
it to CS;
CS:
Receive the decryption shares sn(1 ≤ n ≤ t) from the users ;

Calculate λS0,n ←
∏

n′∈S\{n}
−n
′

n−n′ ;
Calculate µn ← ∆× λS0,n;
Decrypt the aggregation gradient g∗ ← L

(∏
n∈S s

2µn
n mod N 2

)
× 1

4∆2α mod K ;
Send g∗ = [g1

∗, g
2
∗, . . . , g

m
∗ ] to the users.

Round 3(Verification)
Users:
Each user receives g∗ from CS;
Calculate h (sum(g∗))← asum(g∗) mod b;

Calculate h
(
sum(g

′

∗)
)
←
∏N

n=1 h (sum(gn));

if h
(
sum(g

′

∗)
)

= h (sum(g∗))

Users perform parameter update ωj+1 ← ωj − θ ·
(∑

n∈N g∗
)
/
(∑

n∈N |D
j
n|
)
;

else
Users request CS to recompute the aggregation results.

Algorithm 3: VPPFL

Therefore, L
(∏

n∈S s
2µn
n mod K2

)
= 4∆2mβg∗ = g∗ ×

4∆2α mod K .
Given that ∆ and α are components of the public key,

CS is thus able to obtain the aggregation results g∗ =
L
(∏

n∈S s
2µn
n mod K2

)
× 1

4∆2α mod K .
Participants will receive the aggregation gradient g∗ re-

turned by CS and the broadcasted one-way function values
of gradients {h (sum(g1)) , h (sum(g2)) , . . . , h (sum(gN ))},
then they will obtain sum(g∗) by summing up all elements
within g∗. Since threshold Paillier encryption satisfies ho-
momorphic addition, i.e. Encpk(g∗) =

∏N
n=1 Encpk(gn), the

following equation holds: g∗ = g1 + g2 + · · ·+ gN .
Based on the homomorphic property of the one-way func-

tion, if the following equation holds, then the aggrega-
tion gradients will pass verification:

∏N
i=1 h (sum(gi)) =∏N

i=1 a
sum(gi) mod b = a

∑N
i=1(sum(gi)) mod b =

asum(g∗) mod b = h (sum(g∗)).
Therefore, the aggregation results will pass verification.

V. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION
A. SECURITY ANALYSIS
In this section, we conduct theoretical analysis and security
proof of the VPPFL, including data privacy and the verifia-
bility of the aggregation gradients.
We first introduce some notations. Consider a server CS

interactingwith a set ofN users, and let the security parameter
be L. We use Ui to denote the set of users that successfully
uploaded their local gradients in round i− 1, such that U4 ⊆
U3 ⊆ U2 ⊆ U1. Users from these sets can dropout at any
time during the process.

Given a subset W ⊆ U , the collective perspective

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of users in W can be represented as a random variable
REALLW (g,U1,U2,U3,U4), where L is the security param-
eter. To prove that our scheme is secure, we first introduce
a definition; only schemes that meet the conditions of this
definition are considered secure.

Definition 1:If any adversaryA has a negligible advantage
over the following game in polynomial time for security
parameter L, then the scheme is indistinguishable under the
choice of plaintext attack, and the scheme is said to be ICD-
CPA secure.

Initialization stage: Enter the security parameter L, chal-
lenger C generates the system parameter para and private key
sk , and sends the system parameter para to opponent A.

Challenge Phase: The adversary chooses two messages m0

and m1 and sends them to the challenger C. Here, the two
messages are of equal length, i.e. |m0| = |m1|. Upon receiving
these two messages, the challenger C randomly selects b ∈
{0, 1}, computes C∗ = ENC(param,mb), and then sends C∗

to the adversary A.
Output: The adversaryA outputs a guess b′ for b. If b′ = b,

the adversary A wins the challenge; otherwise, the adversary
A loses the challenge.

The advantage of the adversary A in winning the above
game is defined as Advε,A(L) =

∣∣Pr(b = b′)− 1
2

∣∣.
1) Data privacy
Theorem 2: VPPFL can resist collusion attacks between

the CS and fewer than t users. That is, for all L, g,W ⊆ U ,
and U4 ⊆ U3 ⊆ U2 ⊆ U1, there exists a PPT simulator SIM
whose output is indistinguishable from the output of REALLW .

REALLW (g,U1,U2,U3,U4) ≡ SIML
W (g,U1,U2,U3,U4).

Proof: We assume the set of participants colluding with
CS is Pcollude = {P1,P2, . . . ,PNum}, where Num < t . If
the adversary A want to obtain the plaintext gradient gn
from the encrypted gradient Encpk(gn), he needs to get the
decryption key Sk . However, none of the parties can obtain
this decryption key individually, at least t users are required
through Shamir’s secret sharing. In fact, Shamir’s secret shar-
ing scheme has been shown to be semantically secure under
the DDH hardness assumption [27]. Therefore, in the case
of fewer than t users colluding, the output of the simulator
SIM is computationally indistinguishable from the output of
REAL.
Theorem 3: In VPPFL, no party can obtain the private

information of other users.
Proof: The data that CS can obtain the encrypted aggrega-

tion gradients and the one-way function values of gradients
{h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}. The data that a
user Pi can obtain include all users’ one-way function value
of gradient and their own split secret key ski.
From Theorem 2, we know that CS colluding with

fewer than t users, cannot extract other users’ pri-
vate information from the encrypted gradients. There-
fore, a single user also cannot derive any useful infor-
mation from the encrypted gradients. Both CS and all
users can obtain the one-way function values of gradi-

ents {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}. Further-
more, users can also access the one-way function h(M) =
aM mod b. Due to the irreversibility of the one-way function,
the plaintext sum(gi) is secure. Even in the extreme case
where sum(gi) is obtained, users wouldn’t get any private
information about gi, since sum(gi) is only the aggregation
value of the gradient.

Theorem 4:If the DDH difficulty question is assumed,
VPPFL is IND-CPA safe. That is, the proposed scheme can
meet the security definition of data privacy under the selection
of plaintext attacks.

Proof: If there exists an external adversary A who attempts
to eavesdrop on the encrypted gradients Encpk(gn) uploaded
by users to the server. Since Encpk(gn) is a valid ciphertext in
the Paillier cryptosystem, and this system has been proven to
be semantically secure under the DDH hardness assumption
[26]. The external adversary A cannot obtain the correspond-
ing plaintext information from the ciphertexts generated by
the users.

At the same time, as a result of theorem 2, our protocol
is secure even if a small number of users collude with the
server. It can be obtained from theorem 3, even if any party
involved in the training calculates based on the input data they
obtain, intermediate results, etc. Therefore, the probability
that external adversary A will get the plaintext in polynomial
time is negligible.

Through the above proof, neither external adversary nor
internal adversary can obtain the private information of a
single user. Therefore, our protocol is IND-CPA secure.

2) Verifiability of the aggregation gradient
Theorem 5: If CS returns an incorrect aggregation gradient

g∗, it will fail the verification process.
Proof: From Theorem 1, if CS tries to reduce the

amount of computation for aggregation, the aggrega-
tion gradient ciphertext will become

∏N
i=1 h(sum(gi)) =∏N

i=1 a
sum(gi) mod b = a

∑N
i=1(sum(gi)) mod b =

asum(g∗) mod b = h(sum(g∗)). If CS attempts to reduce
the computation cost by providing an aggregated gradient
ciphertext Encpkless(g∗) =

∏less
n=1 Encpk(gn), where less < N .

Each user already knows the one-way function values of gra-
dients {h(sum(g1)), h(sum(g2)), . . . , h(sum(gN ))}, so they
can compute h

(
sum(g∗(less))

)
<
∏N

i=1 h (sum(gi)). There-
fore, any reduction in the computation cost by CS, indicating
laziness or tampering, will certainly be detected.

B. PERFORMANCE EVALUATION
To highlight the advantages of VPPFL, we conducted a de-
tailed comparison with some existing schemes, as shown
in Table 2. Moreover, we also implemented the PPVerifier
scheme to facilitate a more detailed comparison with our
scheme.

The following introduces the computation cost of the
scheme. Assuming there is N users and one server, and each
user with a model parameter vector of size d . CS randomly
selects t users to cooperate in decryption. As the cost depends

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Scheme comparison

PPML [28] SafetyNets [11] PPVerifier [24] VPPFL
Data Security X × X X
Verifiability × X X X

Support users dropout X × × X

onN , d , and t . The cost of VPPFL on the user andCS is shown
in Table 3.

TABLE 3. Computation and communication cost

Computation cost Communication cost

CS O(N + t) O(N + t)
User O(d) O(1)

The computation cost for CS mainly comes from three
main aspects. The first is the computation cost of aggre-
gating gradient ciphertexts uploaded by N users, which is
0(N ); Second, CS randomly selects t users to cooperate with
the decryption of the global aggregation gradients, and the
computation cost is O(t); Third, CS calculats the one-way
function values of the global aggregation gradient, where the
computation cost is O(1). Therefore, the total computation
cost for CS is O(N + t). The communication cost of CS
mainly comes from sending the decrypted global model to
N users, accepting the encryption gradient and the one-way
function values sent by N users, and selecting t users to send
decryption requests. Therefore, the total communication cost
for CS is O(N + t).
The computation cost for the user mainly comes from

the computation cost on the user mainly comes two aspects.
First, the computation cost of the local gradient, which is
O(d). Second, the computation cost for verification, which is
O(1). The communication cost of the user mainly comes from
sending the one-way function value of the gradient to CS and
encrypting the local gradient, which is O(1). Therefore, the
communication cost for the user is O(1).

VI. EXPERIMENT EVALUATION
In this section, we conduct all-round experiments on VPPFL
to evaluate its performance.

A. EXPERIMENTAL ENVIRONMENT
We implemented VPPFL using MATLAB2016a. The
algorithm was implemented on the MNIST dataset
(http://yann.lecun.com/exdb/mnist/). The dataset includes
70,000 grayscale images, each 28x28 pixels, depicting hand-
written digits, segmented into 60,000 images for training and
10,000 for testing. The experiment utilized a neural network
as the training model, consisting of an input layer, an output
layer and two hidden layers. We set the learning rate is 0.2.
The experiments were conducted on a computer with Intel
Core i5-1035G1, 1.0GHz CPU, and 8GB of memory.

B. CLASSIFICATION ACCURACY
We implemented the PPVerifier protocol [24] as well as the
unencrypted original algorithm FedSGD [8] to analyze the
accuracy of our scheme in neural network training. In prac-
tical use cases, as gradient vectors typically exist in floating-
point format, our approach requires preprocessing them into
integers before encryption. This is why our VPPFL and
PPVerifier slightly lag behind FedSGD in terms of accuracy.
We kept all conditions the same.

FIGURE 5. Compares the accuracy of VPPFL, PPVerifier and FedSGD.

As shown in Figure 5, with a total gradient count set to
100,000 and 100 training rounds respectively. After 100 train-
ing rounds, both VPPFL and FedSGD achieved nearly the
same 98% accuracy. This indicates that when using VPPFL
to protect the gradients, it can still maintain the model’s
accuracy. This is because only a small portion of gradient
information is lost.

C. COMPUTATION COST
In this section, we will delve into the total computation cost,
the impact of the number of gradients on computation cost,
the computation cost on CS and users, as well as the analysis
of computation cost when users dropout during the training
process.
1) Total computation cost
As shown in Figure 6, we set the total number of gradients

involved in training to 100,000. Although we incurred some
additional time cost compared to PPVerifier, this cost is ac-
ceptable, and our scheme supports involvement and dropout
of users during the training process, which is more aligned
with practical applications. PPVerifier does not support this
feature. Therefore, the cost we incurred is worthwhile.
2) Computation cost between CS and users
To facilitate observation, we set the number of users partici-

pating in training to 10. As shown in Figure 7, with an increase

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. Total computation cost.

in the number of gradients, the computation cost on the client
side increases linearly. When each user has 10,000 gradients,
the users’ computation cost will surpass the CS computation
cost. This places higher demands on the computing power of
users participating in training. Therefore, each user needs to
appropriately manage the amount of data they participate in
training each round, thus to avoid training too much data at
once to prevent excessive burden on themselves. The server’s
computation cost does not significantly increase because the
server does not participate in the users’ training process,
which ensures user privacy and security.

3) The computation cost in different stages.
We analyze in detail the computation cost of different

stages in one round of training. We set the number of users
participating in training to 100. As shown in Table 4, it is
evident that the users’ computation cost are primarily com-
posed of encryption and verification stages, with this portion
of the expenditure occupying a very low proportion of the
total computation cost. The part that incurs the highest cost
is the decryption process, which is handled by CS, making it
more inclusive for users with weaker computing capabilities.

4) Computation cost on CS when users dropout
As shown in Figure 8, we set the number of users partic-

ipating in training to 100. As the number of dropout users
increases, the computation cost on CS does not increase. The
reason for this is that the cloud server’s computation cost
are mainly concentrated in the decryption process, which
involves sending decryption requests to t users. Even if some
users dropout, CS only needs to send decryption requests to
the remaining users who are still online, thus not adding extra
computation for CS.

VII. CONCLUSION
In this paper, we proposed VPPFL, a privacy-preserving fed-
erated learning scheme for the semi-malicious server. VPPFL
supports users dropout and provides verifiability for each user
during the training process while preserving user privacy. Fur-
thermore, we proved the security of the scheme and validated
the practical performance of our scheme through simulated
experiments on real data theoretically.The scheme proposed
in this paper solves some problems in federated learning to

a certain extent, but there is still room for improvement. For
example, this scheme relies on a trusted third party, and in
the actual deployment of federated learning, finding such a
trusted entity is a huge challenge. How to achieve verifiable
privacy-preserving federated learning without the participa-
tion of a trusted third party is an important direction of follow-
up research.
Data availability
The datasets are available online. The URL is as follows:

MNIST database: http://yann.
lecun.com/exdb/mnist.

REFERENCES
[1] K. Ahiska, M. K. Ozgoren, and M. K. Leblebicioğlu, ‘‘Autopilot

design for vehicle cornering through icy roads,’’ IEEE Transactions on
Vehicular Technology, vol. 67, pp. 1867–1880, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:3964921

[2] W. Bo, L. Hongtao, and W. Jie, ‘‘Privacy protection federal learning
architecture for medical data,’’ Journal of Xi’an University of Electronic
Science and Technology, vol. 50, pp. 166–177, 2023.

[3] P. Mohassel and Y. Zhang, ‘‘Secureml: A system for scalable privacy-
preserving machine learning,’’ in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 19–38.

[4] Z. Qu, Y. Tang, M. Ghulam, and P. Tiwari, ‘‘Privacy protection in
intelligent vehicle networking: A novel federated learning algorithm based
on information fusion,’’ Inf. Fusion, vol. 98, p. 101824, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:258434239

[5] R. A. S. A. A. Z. K. V. M. Shariatnia S, Ziaratban M, ‘‘Modeling the
diagnosis of coronary artery disease by discriminant analysis and logistic
regression: a cross-sectional study,’’ BMCMed Inform Decis Mak, vol. 22,
no. 1, p. 85, 2022.

[6] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, ‘‘Enabling efficient and
geometric range query with access control over encrypted spatial data,’’
IEEE Transactions on Information Forensics and Security, vol. 14, no. 4,
pp. 870–885, 2019.

[7] W. Canxia and L. Wenjuan, ‘‘Research on patient privacy protection and
countermeasures in the application of health and medical big data,’’ Net-
work Security Technology and Applications, 2022.

[8] H. B. McMahan, E. Moore, D. Ramage, and B. A.
y Arcas, ‘‘Federated learning of deep networks using model
averaging,’’ ArXiv, vol. abs/1602.05629, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16861557

[9] L. Zhu, Z. Liu, and S. Han, Deep leakage from gradients. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[10] Z. Wang, M. Song, and Z. Zhang, ‘‘Beyond inferring class representatives:
User-level privacy leakage from federated learning,’’ p. 2512–2520, 2019.

[11] Z. Ghodsi, T. Gu, and S. Garg, ‘‘Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud,’’ 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:25998539

[12] A. Fu, Z. Chen, Y. Mu, W. Susilo, Y. Sun, and J. Wu, ‘‘Cloud-based out-
sourcing for enabling privacy-preserving large-scale non-negative matrix
factorization,’’ IEEE Transactions on Services Computing, vol. 15, no. 1,
pp. 266–278, 2022.

[13] X. Hua and T. Youliang, ‘‘Weighted social network privacy protection
under differential privacy,’’ Journal of Xidian University, no. 001, p. 049,
2022.

[14] A. Falcetta and M. Roveri, ‘‘Privacy-preserving deep learning with homo-
morphic encryption: An introduction,’’ IEEE Computational Intelligence
Magazine, vol. 17, no. 3, pp. 14–25, 2022.

[15] C. Dwork, ‘‘Differential privacy,’’ in International Colloquium on
Automata, Languages and Programming, 2006. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2565493

[16] C. Dwork and J. Lei, ‘‘Differential privacy and robust statistics,’’ ser. STOC
’09. NewYork, NY,USA:Association for ComputingMachinery, 2009, p.
371–380. [Online]. Available: https://doi.org/10.1145/1536414.1536466

[17] R. C. Geyer, T. Klein, and M. Nabi, ‘‘Differentially private federated
learning: A client level perspective,’’ ArXiv, vol. abs/1712.07557, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:3630366

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Comparison of computation cost on client and CS.

TABLE 4. Computation cost of different parts of the training process

Number of
gradients for
each user

Key Genera-
tion (TA)

Encryption
(Users)

Decryption
(CS)

Verification
(Users + CS)

Total Cost

2000 1.5ms 2.7ms 1147ms 0.5ms+2ms 1153.7ms
4000 1.5ms 2.7ms 1314ms 0.5ms+1.9ms 1320.6ms
6000 1.6ms 3.3ms 1376ms 0.6ms+2.7ms 1384.2ms
8000 2.5ms 3.3ms 1430ms 0.7ms+2.2ms 1438.7ms
10000 3.2ms 3.4ms 1662ms 0.7ms+4.1ms 1673.4ms

FIGURE 8. Comparison of computation cost on CS when users dropout.

[18] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S.
Quek, and H. Vincent Poor, ‘‘Federated learning with differential privacy:
Algorithms and performance analysis,’’ IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[19] R. L. Rivest and M. L. Dertouzos, ‘‘On data banks
and privacy homomorphisms,’’ 1978. [Online]. Available:
https://api.semanticscholar.org/CorpusID:6905087

[20] B. Wang, H. Li, Y. Guo, and J. Wang, ‘‘Ppflhe: A privacy-preserving
federated learning scheme with homomorphic encryption for healthcare
data,’’ Appl. Soft Comput., vol. 146, no. C, oct 2023. [Online]. Available:
https://doi.org/10.1016/j.asoc.2023.110677

[21] S. S. Jing Ma, Si-Ahmed Naas and X. Lyu, ‘‘Privacy-preserving federated
learning based on multi-key homomorphic encryption,’’ vol. 37, no. 9, pp.
5880–5901, 2022.

[22] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, ‘‘Verifynet: Secure and verifiable
federated learning,’’ IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 911–926, 2020.

[23] X. Guo, Z. Liu, J. Li, J. Gao, and T. Baker, ‘‘Verifl: Communication-
efficient and fast verifiable aggregation for federated learning,’’ IEEE
Transactions on Information Forensics and Security, vol. PP, no. 99, pp.

1–1, 2020.
[24] L. Lin and X. Zhang, ‘‘Ppverifier: A privacy-preserving and verifiable

federated learning method in cloud-edge collaborative computing environ-
ment,’’ IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8878–8892,
2023.

[25] Y. Ren, Y. Li, G. Feng, and X. Zhang, ‘‘Privacy-enhanced and verification-
traceable aggregation for federated learning,’’ IEEE Internet of Things
Journal, vol. 9, no. 24, pp. 24 933–24 948, 2022.

[26] T. Nishide and K. Sakurai, ‘‘Distributed paillier cryptosystem without
trusted dealer,’’ in International Conference on Information Security Ap-
plications, 2010.

[27] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM,
vol. 22, no. 11, p. 612–613, nov 1979. [Online]. Available:
https://doi.org/10.1145/359168.359176

[28] K. Bonawitz, Ivanov, Vladimir, and Kreuter, ‘‘Practical secure aggregation
for privacy-preserving machine learning,’’ in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17, New York, NY, USA, 2017, p. 1175–1191. [Online].
Available: https://doi.org/10.1145/3133956.3133982

FIRST A. HUIYONG WANG received the Ph.D.
degree in software theory and applications from the
Chinese Academy of Sciences, China, in 2017. He
is currently a Lecturer with the School of Math-
ematics and Computing Science, Guilin Univer-
sity of Electronic Technology, China. His research
interests include privacy-preserving computation,
information security, cyber security, multi-party
computation, and homomorphic encryption.

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIRST B. TENGFEI YANG is currently a master’s
student in the field of network information security
and privacy protection at Guilin University of Elec-
tronic Technology. Her current research interests
include cybersecurity, privacy protection, and arti-
ficial intelligence. yangtengfei2022@163.com.

FIRST C. YONG DING received the PH.D.degree
in cryptography from the School of Communi-
cation Engineering, XiDian University, China,in
2005. From 2008 to 2009, he was a Research Fel-
low of computer science with the City University
of Hong Kong. He is currently a Professor with
the School of Computer Science and Information
Security, Guilin University of Electronic Technol-
ogy,China. His research interests include cryptog-
raphy ang information securit.

FIRST D. SHIJIE TANG is currently a lecturer and
doctoral student in the field of industrial control
security at Guilin University of Electronic Sci-
ence and Technology, China. Her current main re-
search interests include industrial control security,
network information security and privacy protec-
tion.tangsj@guet.edu.cn.

FIRST E. YUJUE WANG received the joint Ph.D.
degree fromWuhanUniversity,Wuhan, China, and
the City University of Hong Kong, Hong Kong, in
2015. He was a Research Fellow with the School
of Information Systems, Singapore Management
University. He is currentlywith the School of Com-
puter Science and Information Security, Guilin
University of Electronic Technology, China. His
research interests include applied cryptography,
database security, and cloud computing security.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3472467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


