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Abstract—Achieving a lower radiation dose and a faster
imaging speed is a pivotal objective of computed tomography
(CT) reconstruction. However, these often come at the cost of
compromised reconstruction quality. With the advent of deep
learning, numerous CT reconstruction methods rooted in this
field have significantly improved the reconstruction performance.
Recently, diffusion models have further enhanced training sta-
bility and imaging quality for CT. However, many of these
methods only focus on CT image domain features, ignoring the
intrinsic physical information of the imaging process. Although
compressive sensing-based iterative reconstruction algorithms
utilize physical prior information, their intricate iterative process
poses challenges in training, subsequently influencing their
efficiency. Motivated by these observations, we introduce a
novel physics-regularized generalized diffusion model for CT
reconstruction (PrideDiff). On the one hand, our method further
improves the quality of reconstructed images by fusing physics-
regularized iterative reconstruction methods with diffusion
models. On the other hand, we propose a prior extraction module
embedded with temporal features, which effectively improves
the performance of the iteration process. Extensive experimental
results demonstrate that PrideDiff outperforms several state-of-
the-art methods in low-dose and sparse-view CT reconstruction
tasks on different datasets, with faster reconstruction speed.
We further discuss the effectiveness of relevant components in
PrideDiff and validate the stability of the iterative reconstruction
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process, followed by detailed analysis of computational cost and
inference time.

Index Terms—Deep learning (DL), diffusion models, iterative
reconstruction, low-dose computed tomography (CT), sparse-
view CT.

I. INTRODUCTION

COMPUTED tomography (CT) is an imaging technique
extensively used in clinical settings. However, the radi-

ation from X-rays poses potential risks to human health [1].
Consequently, various low-dose CT techniques have emerged.
Typical methods include reducing the X-ray tube current
and sparse sampling. Nonetheless, these alternatives often
inevitably introduce noticeable noise and artifacts, compromis-
ing clinical diagnostic accuracy. As a result, how to balance
radiation dose and imaging quality has become a key issue in
the field of CT reconstruction.

Recently, researchers have proposed a variety of algorithms
to solve this conundrum [2], [3], [4], [5], [6], [7]. Typically,
these techniques can be categorized into three primary groups:
1) sinogram domain processing [8], [9], [10]; 2) image domain
processing [11], [12], [13], [14]; and 3) iterative reconstruc-
tion [15], [16], [17].

For sinogram domain processing methods, the main concept
involves utilizing raw sinogram data with a specific filter,
followed by an analytic image reconstruction method, such
as filtered back projection (FBP). Typical methods include
penalized weighted least square [18], bilateral filtering [19],
and structural filtering [20]. Recently, rapid advances in deep
learning (DL) have catalyzed numerous algorithms based
on convolution neural networks (CNNs) for low-dose CT
reconstruction [4], [21]. Typical methods utilize different
network architectures to process the sinogram before FBP is
applied [3], [8], [22], [23]. However, such algorithms usually
suffer from a loss of spatial resolution and blurred edges.

For image domain processing methods, traditional meth-
ods usually introduce natural image restoration methods into
low-dose CT denoising, such as nonlocal means [24] and
BM3D [25]. Many DL-based methods were developed due
to their fast inference speed. Chen et al. [26] introduced
a residual network aided by an encoder–decoder structure,
termed RED-CNN. Jin et al. [27] employed a U-Net [28]
denoiser, termed FBPConvNet, which effectively suppresses
image noise and artifacts. Nevertheless, many of these
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models usually employ the �2 norm as their loss func-
tion, leading to oversmoothing in the predicted images. To
alleviate this, Yang et al. [29] introduced a model built
upon generative adversarial networks (GANs) with perceptual
loss, further enhancing the quality of reconstructed images.
Geng et al. [30] also introduced a content-noise comple-
mentary learning (CNCL) strategy, which employs GANs
to learn the content and noise of the image dataset in a
complementary manner. However, challenges, such as mode
collapse during GANs training, render the training of GANs
arduous [31]. At the same time, transformer architectures have
recently garnered significant attention in the image process-
ing field, demonstrating impressive efficacy [32], [33], [34].
However, training a transformer-based model necessitates not
only a large volume of training data but also a considerable
computational cost [35]. A key limitation of these image
domain processing techniques is their sole reliance on image
domain attributes, neglecting the measurement in the sinogram
domain. This oversight often leads to suboptimal reconstruc-
tion results without the constraint of data consistency.

Iterative reconstruction methods synergize the feature
information of the sinogram domain with the prior knowledge
inherent in the image domain to yield improved reconstruction
performance. Classic methods include total variation [36],
dictionary learning [37], and low-rank minimization [38].
However, these methods are usually time-consuming and need
to manually adjust parameters for different target images.
DL-based iteration reconstruction methods are potential solu-
tions to fix these limitations. Chen et al. [39] unrolled the
steepest gradient descent algorithm and proposed the learned
experts’ assessment-based reconstruction network (LEARN)
for sparse-view CT. He et al. [40] proposed a parameter-
ized plug-and-play alternating direction method of multipliers
framework to achieve robust low-dose CT reconstruction.
Xia et al. [41] introduced a manifold and graph integra-
tive convolutional reconstruction network for low-dose CT.
Although DL-based iterative reconstruction methods have
achieved promising results, these techniques face new chal-
lenges: they require extensive iterative models, which, in turn,
demand substantial computational resources, amplifying the
training burden. Additionally, the model’s intricate iterative
structure can also prolong the reconstruction time.

Recently, the denoising diffusion probabilistic
model (DDPM) has garnered considerable success in the
realm of image generation [42], [43], [44], [45], [46].
Compared to other generative models, diffusion models
demonstrate more consistent training and better performance
in image generation [43], [47], [48], [49]. DDPM estimates
and eliminates noise from a Gaussian distribution, which is
achieved by training a noise estimation network progressively
via continuous iterations. Usually, DDPM requires numerous
iterative steps to achieve a satisfactory image generation result.
For instance, vanilla DDPM requires nearly 1000 steps for
complete sampling. To improve the applicability of the DDPM
method to the field of medical imaging, Xia et al. [50] adapted
the fast ordinary differential equation solver [51] to improve
the sampling efficiency in CT reconstruction. While these
enhanced DDPM algorithms deliver commendable results,
they remain rooted in vanilla diffusion model theory. Inspired

by [52], Qi et al. [53] proposed a contextual error-modulated
generalized diffusion (CoreDiff) model for low-dose CT
denoising. Chung et al. [54], [55], [56], [57] further explored
the score-based method for image reconstruction under
ultrasparse sampling conditions by incorporating manifold
constraints and prior features into the diffusion process.
Dou and Song [58] proposed sequential Monte Carlo
methods to ensure asymptotic accuracy in Bayesian posterior
sampling for diffusion models, which demonstrated excellent
performance in zero-shot tasks. However, these methods
primarily focus on image domain features while neglecting
crucial sinogram consistency, which can lead to unexpected
artifacts. Additionally, most DDPM-based methods necessitate
a large number of iterations, which reduces the efficiency of
image restoration.

In this study, to further improve the performance of CT
reconstruction tasks, we propose a novel fusion model syn-
ergizing iterative reconstruction and DDPM. Different from
CoreDiff [53] which focuses on image domain features, our
method further integrates prior feature learning with the diffu-
sion model efficiently. Inspired by the LEARN model [39], we
incorporate the regularization prior learning network into the
diffusion process, further promoting the reconstruction quality.
To this end, we develop a prior extraction module (PEM) that
fuses time-embedding features, thereby unifying the diffusion
process with regularization learning. Furthermore, to balance
the number of iteration steps and reconstruction performance,
and better fit the network with CT reconstruction tasks,
we establish the diffusion process based on cold diffusion,
thereby achieving superior reconstruction performance with
fewer iteration steps.

In summary, the contributions of this article are as follows.
1) We develop a novel iterative CT reconstruction network

model, termed PrideDiff, which serves as a bridge
between the general diffusion model and the physics-
regularized iterative reconstruction model. To the best
of our knowledge, PrideDiff is the first work in CT
reconstruction that synergizes Cold Diffusion and prior
feature learning effectively.

2) To integrate the CT sinogram physical prior fea-
tures into the diffusion process, we devise a novel
restoration–reconstruction framework, which allows
effective integration for a trainable regularization
network and the diffusion process.

3) To validate our proposed PrideDiff, both sparse-view
and low-dose experiments are conducted on two datasets
with different sampling conditions. The results indicate
that our method not only produces superior reconstruc-
tion results but also accelerates the sampling process.

The remainder of this article is structured as follows. We
introduce the relevant principles used in PrideDiff and describe
the detailed workflow of PrideDiff in Section II. Experimental
setups, results, and discussions are presented in Section III.
At last, the conclusion is drawn in Section IV.

II. METHOD

To achieve efficient feature extraction in the image domain,
we utilize a general diffusion model, cold diffusion, and
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show its basic principles in this section. However, in CT
reconstruction tasks, the guidance of physical priors plays
a pivotal role, which is exactly what the diffusion model
lacks. In order to effectively exploit the priors, we introduce
a regularization learning method. Finally, we present our
PrideDiff to integrate the physics-regularized learning process
into the diffusion model, yielding a general and efficient CT
reconstruction network.

A. Cold Diffusion

Diffusion has been understood as a random walk under
the guidance of Langevin dynamics [46], [59]. The diffusion
process can be described as gradually adding Gaussian noise
from a low noise state (cold state) to a high noise state (hot
state). Cold diffusion [52] generalizes this process, relaxing
it to arbitrary degradation operations, which implements the
transition from the cold state to the hot state. Similar to the
vanilla diffusion model, cold diffusion is also composed of two
phases: 1) forward (diffusion) process and 2) reverse (sam-
pling) process. In the forward process, cold diffusion aims
to transform the image from the cold state to the hot state.
Within this framework, the clean image x0 can be seen as
being in a cold state, which is randomly sampled from a
training data distribution Pdata. xT can be seen as an image
in a hot state sampled from a random distribution Prand. By
using a degradation operator D(·), image at any time t can be
determined as

xt = D(x0, xT , t) = √αtx0 +
√

1− αtxT (1)

where T represents the total number of steps for the diffusion
process. αt are hyperparameters, which dictate the variance of
the noise introduced at time t.

In the reverse process, cold diffusion transforms the sampled
image from a random hot state to a cold state. We introduce
a restoration operator R(·), tasked with recovering the clear
image x0 from any degraded image xt at time t. This process
can be described as follows:

x̂0 = R(xt, t) ≈ x0. (2)

We utilize a neural network with parameters θ to serve as the
restoration operator, Rθ (·), which can be optimized by

min
θ

E x0∼Pdata
xT∼Prand
t∼U(0,T)

‖Rθ (D(x0, xT , t), t)− x0‖ (3)

where U denotes a uniform distribution. However, researchers
suggest that such a one-step learning procedure significantly
diminishes image quality [52], [53]. To address this issue,
cold diffusion employs a naive sampling algorithm, which
progressively restores the degraded image over T iterations

xt−1 = D(
x̂0, xT , t − 1

)
. (4)

This technique yields more favorable reconstruction results
than the one-step version. However, Bansal et al. [52] found
that when R(·) is not perfectly equal to the inverse of D(·),
it will bring prediction errors between x0 and x̂0. During the
sampling process, errors are accumulated, which will further

undermine the reconstruction result. To effectively avoid this
accumulative error, an improved sampling algorithm is used

xt−1 = xt −D(
x̂0, xT , t

) +D(
x̂0, xT , t − 1

)
. (5)

B. Physics-Regularized Learning

To guide image reconstruction with the physical priors
of the image, inspired by LEARN [39], we adopted a
learnable regularization network structure. To ensure self-
contained and comprehensiveness, we provide a brief overview
of the LEARN model. A typical reconstruction model can be
formulated as

min
x

1

2
‖Ax− y‖22 + λG(x) (6)

where x ∈ R
mn denotes the vectorization of an image matrix

of size m×n, y ∈ R
M represents the measured sinogram data,

and the system matrix, A ∈ R
M×mn, aims to map image pixels

to sinogram data. The function G(·) indicates the physical
prior derived regularization term and λ serves as a tradeoff
hyperparameter to balance the data fidelity and regularization
terms. Following the LEARN model, we employ a generalized
regularization term known as “field of experts” (FoE) [60]

G(x) =
K∑

k=1

ϕk(φk(x)) (7)

where K represents the number of regularizers. The terms
ϕk(·) and φk(·) represent the transform function and potential
function, respectively. In the FoE model, these functions can be
substituted with convolution operators, which can be learned
in a data-driven manner. Based on (6), x can be obtained by
minimizing the following objective function:

x̄ = argmin
x

1

2
‖Ax− y‖22 +

K∑

k=1

λkϕk(φk(x)). (8)

Equation (8) can be solved iteratively using the gradient
descent method

xt+1 = xt − η

[
AT(

Axt − y
)+

K∑

k=1

λkφ
′
kϕk

(
φk(x

t)
)]

(9)

where φ′(·) signifies the conjugate operator of φ(·), and η

stands for the iteration step size. When making the terms in
(9) to be iteration-dependent, we have

xt+1 = xt − ηtAT(
Axt − y

)−
K∑

k=1

λt
kφ

t′
k ϕt

k

(
φt

k(x
t)
)
. (10)

The last term in (10) can be implemented as a neural network,
	ξ(·). Consequently, the entire process can be represented as

xt+1 = xt − ηtAT(
Axt − y

)−	ξ

(
xt). (11)

C. Proposed PrideDiff Model

Building upon the foundational principles discussed earlier
and taking into account the physical characteristics of CT
images, we develop a novel iterative diffusion model for CT
reconstruction, termed PrideDiff. This new model employs a
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Fig. 1. Overview of the proposed PrideDiff. PrideDiff enhances image reconstruction by integrating CT image sinogram domain prior features into the
diffusion process during each iterative using a two-stage network. To achieve a more effective feature representation, we propose a PEM embedded with time
embedding features.

general diffusion model to integrate CT physical prior with
image domain features in an efficient manner. The whole
structure of the model is shown in Fig. 1.

1) Improved Diffusion Process: In the context of a CT
image reconstruction task with a vanilla diffusion model, one
usually transitions a fully sampled CT image to a whole
random Gaussian distribution and uses an undersampled CT
image as a condition to predict the fully sampled CT image.
However, real clinical CT images are usually contaminated by
hybrid noise, which cannot be precisely characterized by any
statistical distribution. As a result, we leverage cold diffusion
to make the degradation process more general, aligning more
closely with the statistical features of CT images. In PrideDiff,
we use undersampled CT images as the starting point and fully
sampled CT images as the endpoint for the sampling process.
To make this process close to the CT image degradation
process, we draw inspiration from CoreDiff [53] and adopt a
consistent strategy for our experiments. Consequently, (1) is
adjusted as follows:

xt = D(x0, xt, t) = αtx0 + (1− αt)xT (12)

where xT represents the undersampled CT image, x0 is the
fully sampled CT image, and xt denotes the intermediate
result obtained at time t. Indeed, xT can be perceived as an
intermediary state between a fully sampled CT (cold state)
and random noise (hot state), termed a warm state. Clearly,
the transition from the cold state to the warm state is simpler
than from the hot state. Thus, by using an undersampled CT
image instead of random noise as the sampling starting point,
we can effectively reduce the number of iteration steps T .

2) Restoration–Reconstruction Mechanism: To incorporate
the sinogram domain prior data of CT images with the
diffusion process, we are inspired by the LEARN structure and
redesign the iterative process to a “restoration–reconstruction”
mechanism, illustrated in Fig. 1. In the restoration stage, we

get the degraded image xt generated by (12) and then use
the restoration operator Rθ (·) to obtain the restored image x̂0.
In the reconstruction stage, we take the restored CT image
x̂0 and the corresponding undersampled sinogram data yT as
input, then we can obtain the reconstruction result x̃0. At this
stage, we construct a PEM that incorporates time embedding
features as a regularization term to effectively utilize physical
priors. In order to extract effective prior features at different
time steps t, we need to use time embeddings in PEM
for guidance. The time step t is embedded using the time
embedding module, as shown in Fig. 1. This process can
be denoted as: MLP(SinPE(t)), where SinPE(·) represents
sinusoidal position encoding for time step t, followed by
a multilayer perceptron (MLP) to get the time embedding
features.

The whole restoration–reconstruction process can be
described as

⎧
⎨

⎩

x̂t
0 = Rθ (xt, t)

x̃t
0 = F(

x̂t
0, yT , t,	ξ

)

xt−1 = xt −D(
x̃t

0, xT , t
)+D(

x̃t
0, xT , t − 1

) (13)

where x̂t
0 and x̃t

0 are the outputs of the restoration stage and
reconstruction stage at time t, respectively. F(·) represents
the reconstruction stage, and 	ξ(·) is the PEM with learnable
parameters ξ . The F(·) process combined with (10) can be
expanded as follows:

F(
x̂t

0, yT , t,	ξ

) = x̂t
0 − γtAT(

Ax̂t
0 − yT

)−	ξ

(
x̂t

0, t
)

(14)

where yT is the projection data corresponding to the undersam-
pled CT image xT , and γ is a learnable tradeoff factor. In order
to further improve the performance of the reconstruction stage,
according to [16] and [61], we replace AT with an inverse
transformation of A (e.g., FBP) to make this process more
efficient. Then, the formula can be rewritten as
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Algorithm 1: Training Stage of PrideDiff
Input: Total sample steps T . Paired fully sampled and

undersampled CT images (x0, xT , yT) ∼ Pdata.
Output: Rθ ,	ξ

1 while not converged do
2 Sample (x0, xT); Sample t ∼ U(1, . . . , T);

xt ← αtx0 + (1− αt)xT ; // Eq. (1)
3 x̂t

0 ← Rθ (xt, t); // Restor.
4 x̃t

0 ← F(x̂t
0, yT , t,	ξ ); // Recon.

5 Update θ, ξ using Eq. (16)
6 end

Algorithm 2: Sampling Stage of PrideDiff
Input: Total sample steps T . An undersampled CT image

with sinogram (xT , yT)

Output: Reconstruction CT image xout.
1 for t = T, T − 1, . . . , 1 do
2 x̂t

0 ← Rθ (xt, t); x̃t
0 ← F(x̂t

0, yT , t,	ξ );
xt−1 = xt −D(x̃t

0, xT , t)+D(x̃t
0, xT , t − 1);

3 end
4 xout ← x0

x̃t
0 = x̂t

0 − γt FBP
(
Ax̂t

0 − yT
)−	ξ

(
x̂t

0, t
)
. (15)

Additionally, according to the CT imaging algorithm shown
in [16], FBP(p) = B(h ∗ p), where B denotes the backpro-
jection matrix and h represents the R–L filter. Since the FBP
algorithm involves only convolution and matrix multiplication
operations, which are linearly differentiable, (15) can still be
optimized using a gradient-based optimization algorithm.

It is worth noting that both the diffusion model and iterative
network model are time-dependent. The use of the PEM
structure well integrates these two types of models. On the
one hand, we can benefit from the advantages of both iterative
network model and diffusion model. On the other hand, we
can avoid the additional computational consumption required
by the iterative reconstruction method as much as possible.

Based on the above description, the training objective
function of our PrideDiff is defined as follows:

min
θ,ξ

Ex0,t

[
‖x̂t

0 − x0‖2 + ‖x̃t
0 − x0‖2

]
(16)

where x̂t
0 = Rθ (xt, t) represents the restoration result obtained

at time t and x̃t
0 = F(x̂t

0, yT , t,	ξ ) represents the correspond-
ing reconstruction result.

In summary, during the training process, we continuously
randomly sample data at time t to train the network parameters.
During the sampling process, we fix the parameters of the cor-
responding network and iteratively perform the reconstruction
T times. After T iterations, we obtain the final reconstruction
results. The training and sampling processes of the proposed
PrideDiff are listed in Algorithms 1 and 2, respectively.

III. EXPERIMENTS

A. Datasets

To validate the effectiveness of the proposed PrideDiff,
we conducted experiments on two different tasks: 1) low-
dose and 2) sparse-view CT reconstructions. The data were
obtained from the “2016 NIH-AAPM-Mayo Clinic Low-Dose
CT Grand Challenge (Mayo-2016)” and the “Low-dose CT
image and projection dataset (Mayo-2020)” [62]. The “Mayo-
2016” data includes 5936 CT slices of 1-mm slice thickness
from ten patients. We selected data from seven patients as
the training set, data from one patient as the validation set,
and the rest as the test set. The “Mayo-2020” dataset includes
data from the head, lungs, and abdomen. Here, we selected
eight sets of lung data as a supplement to the “Mayo-2016”
data, including 2378 slices.

The physical parameters of CT simulation were set as
follows: the physical height and width of the pixels are 0.7433
mm, and there are a total of 768 detector units, each with
a size of 1.2858 mm. The projection data were simulated
using the distance-driven method [63], [64] with fan beam
geometry. The distance between the X-ray source and the
scanner rotation center is 595.0 mm, and the distance between
the scanner rotation center and the detector is 490.6 mm. To
meet the requirements of different tasks, we processed the
data separately. For the low-dose CT reconstruction task, we
conducted experiments using 25% dose data from the Mayo-
2016 dataset and 10% dose data from the Mayo-2020 dataset.
All low-dose data used for our experiments were provided by
the Mayo Clinic [62]. For the sparse-view CT reconstruction
task, the “Mayo-2016” data were used. We downsampled the
1024-views fully sampled CT projection data to 120 views
and 60 views, respectively, to obtain sparse-view CT data for
training.

B. Implementation Details

In the data preprocessing stage, we conducted experiments
using CT images of size 512× 512, and normalized the data
to a range of [0, 1]. The basic operators in CT reconstruction,
including projection, back-projection, and FBP, were imple-
mented using the CUDA-based DeepRecon package [65].
In the training stage, Adam optimizer was employed with
a learning rate of 1.0 × 10−5 across 400K iterations. The
model training took approximately three days. The whole
experiment was conducted on PyTorch v1.12 and ran on
Ubuntu 20.04, using a single NVIDIA RTX 4090 (24 GB).
We will release the associated training weights and codes later
at https://github.com/phoenixyu/PrideDiff.

We evaluated PrideDiff against several state-of-the-art
DL-based CT reconstruction methods, including: 1) DL-
based image domain processing methods: FBPConvNet [27],
RED-CNN [26], and CNCL [30]; 2) DL-based iterative
reconstruction methods: LEARN [39]; 3) Diffusion methods:
DDPM [45], DDPM with DPM-solver (DDPM-DPM) [51],
Cold Diffusion [52], and CoreDiff [53]; and 4) Unconditional
score-based methods: MCG [55] and DiffMBIR [57].
Specifically, except for unconditional score-based methods, all
other methods are based on supervised learning and require
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Fig. 2. Qualitative results of 60-view abdomen sparse-view CT image from Mayo 2016 by different methods. (a) GT, (b) FBP, (c) FBPConvNet, (d) RED-CNN,
(e) CNCL, (f) LEARN, (g) DDPM-1000, (h) Cold Diffusion, (i) CoreDiff, and (j) PrideDiff (ours). The display window is [−160, 240] HU.

paired data for training. For all comparative methods, we
used the officially released codes with the hyperparameters or
inference weights suggested in the original papers.

For image domain processing methods, we set the batch size
to 6, the maximum epoch number to 200, and the learning
rate to 1.0×10−4. For CNCL, we adopted the PatchGAN [66]
as the discriminator, as used in the original paper, with a
learning rate 1.0× 10−5. For LEARN, we set the number of
iteration blocks to 50 with a learning rate of 1.0× 10−4. For
DDPM-based methods, we set the iteration step T to 1000,
the learning rate was 1.0 × 10−5, and generated α1, . . . , αT

from 0.999 to 0 linearly. We also utilized the DPM-Solver to
accelerate the DDPM inference phase, reducing the iteration
steps to 50 (termed DDPM-DPM-50). For the cold diffusion,
we set the iteration T to 10, as recommended in [52] and [53].
In the PEM module, we configured six convolution blocks
and integrated temporal features, while maintaining an image
feature size of 64 throughout. All the methods employed the
Adam optimizer, with other parameters set to their default
values.

We chose three quantitative metrics commonly employed in
image reconstruction for comparison: 1) peak signal-to-noise
ratio (PSNR); 2) structural similarity index measure (SSIM);
and 3) root mean-square error (RMSE).

C. Comparisons With State-of-the-Art Methods

1) Sparse-View CT Task: Fig. 2 shows one representative
slice reconstructed with the 60-view data using different

methods. Red arrows point to the region of interest (ROI).
The lower half of Fig. 2 presents the difference maps with
the ground truth (GT). Fig. 2 shows that for image domain
methods, although most of the artifacts are removed, some
details of the image are oversmoothed. In the result of
LEARN, some image details are lost, which is caused by
the limited capabilities in network feature extraction. For
DDPM-1000, some structures in the image are distorted due
to error accumulation during iterations. Although the use of
the DPM-Solver can effectively reduce the number of iteration
steps in the inference stage, the experiments show that the
reconstruction results were unsatisfactory for this task. For the
cold diffusion model, it is noticed that while some structures
are well preserved, some streak artifacts are not effectively
removed. For the CoreDiff model, the image details have been
further improved, but there are still some shortcomings in
suppressing some streak artifacts. Our PrideDiff provides the
best visual result and the smallest difference map than other
methods. PrideDiff also obtains the best scores in terms of
both PSNR and SSIM.

Fig. 3 displays another slice reconstructed with the
120-view data using different methods. From the region
indicated by the red arrows, it can be observed that DL-
based image domain processing methods can not recover the
structural details effectively. LEARN falls in eliminating the
artifacts. DDPM-1000 tends to distort the structures. For the
acceleration version DDPM-DPM-50, although it can remove
most of the artifacts, many noises still remain. Cold diffusion
and CoreDiff remain challenged in addressing streak artifacts
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Fig. 3. Qualitative results of 120-view pelvic sparse-view CT image from Mayo 2016 by different methods. (a) GT, (b) FBP, (c) FBPConvNet, (d) RED-CNN,
(e) CNCL, (f) LEARN, (g) DDPM-1000, (h) Cold Diffusion, (i) CoreDiff, and (j) PrideDiff (ours). The display window is [−160, 240] HU.

TABLE I
QUANTITATIVE RESULTS (MEAN±SD) ON SPARSE-VIEW TESTING DATA. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

effectively. In contrast, our PrideDiff not only preserves the
structural details but also demonstrates superior suppression
of artifacts and noise. The difference maps further reveal that
in the bone region, PrideDiff achieves the closest result to the
GT.

Table I lists the quantitative results of the whole test set. It
is evident that our method yields the best results on the test
set in all the metrics.

2) Low-Dose CT Task: Fig. 4 illustrates one thoracic image
reconstructed with the low-dose data using different methods
at 10% dose level. The corresponding PSNR and SSIM results
are listed in the caption, and the related difference images
are shown below. In the ROIs indicated by the red arrows,
taking the vessel region as an example, FBPConvNet, RED-
CNN, and CNCL produce blurred details. Oversmoothing
effects in certain regions can be noticed in the result of
LEARN. The difference maps suggest that DDPM exhibits

suboptimal reconstruction within the lung regions. The method
cold diffusion, CoreDiff, and PrideDiff gain more desirable
results. Compared to CoreDiff, our method achieves better
preservation of image details. The quantitative results show an
inherent trend to the visual inspection and PrideDiff gets the
best scores in all the competing methods.

Fig. 5 shows another abdomen image reconstructed with
the low-dose data using different methods at 25% dose level.
Since the low-dose image contains less noise, most methods
can remove most noise. However, as indicated by the arrows
in Fig. 5, the results of FBPConvNet, RED-CNN, CNCL,
and LEARN exhibit oversmoothing effects to varying degrees.
Diffusion-based methods demonstrate better performance in
detail preservation. In particular, in this task, the input image
can provide a more effective feature because it has less noise,
most models can achieve noise removal well, and our PrideDiff
shows superior reconstruction around the spine. Additionally,
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Fig. 4. Qualitative results of 10% dose thoracic CT image from Mayo 2020 by different methods. (a) GT, (b) FBP, (c) FBPConvNet, (d) RED-CNN,
(e) CNCL, (f) LEARN, (g) DDPM-1000, (h) Cold Diffusion, (i) CoreDiff, and (j) PrideDiff (ours). The display window is [−200, 1000] HU.

Fig. 5. Qualitative results of 25% dose abdomen CT image from Mayo 2016 by different methods. (a) GT, (b) FBP, (c) FBPConvNet, (d) RED-CNN,
(e) CNCL, (f) LEARN, (g) DDPM-1000, (h) Cold Diffusion, (i) CoreDiff, and (j) PrideDiff (ours). The display window is [−160, 240] HU.

in the right part of the stomach, PrideDiff exhibits
smaller discrepancies than other methods, indicating better
performance.

Table II shows that the quantitative results on the whole test
set support the visual results and the proposed PrideDiff has
superior reconstruction performance over other SOTA models.
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TABLE II
QUANTITATIVE RESULTS (MEAN±SD) ON LOW-DOSE TESTING DATA. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 6. Qualitative results of 60-view sparse-view CT image from Mayo
2016 by different methods. (a) GT, (b) FBP, (c) MCG, (d) DiffMBIR, and
(e) PrideDiff (ours). The display window is [−160, 240] HU.

D. Comparison With Unconditional Diffusion Methods

We further assessed the performance differences between
our PrideDiff and unconditional diffusion methods by com-
paring it with the MCG [55] and DiffMBIR [57] on 60-view
sparse-view CT reconstruction. Although MCG and DiffMBIR
demonstrate strong generative capabilities, particularly at the
ultrasparse-view tasks, their high diversity can make it chal-
lenging to maintain content consistency, leading to deviations
from the GTs [67]. As shown in Fig. 6, the red arrow in the
second row highlights significant structural distortions caused
by these methods. Our method, however, not only preserves
detailed structures but also achieves excellent performance
at 60-view settings. Furthermore, our method has a notable
efficiency advantage. Table III shows that our PrideDiff can
restore an image in just 0.69 s, meeting the practical require-
ments for medical applications.

E. Ablation Study

1) Impact of Iteration Steps: To further investigate the
impact of the number of iteration steps T on network
performance, we conducted three experiments with several
different values of T on sparse-view CT with 120 views.
The statistical quantitative results in Table IV show that when
T = 5, PrideDiff already achieves a relatively satisfactory
reconstruction result. At T = 10, we notice an unremarkable
improvement in quantitative scores. However, as we continue
to increase the value of T , the improvement in results becomes

TABLE III
QUANTITATIVE RESULT (MEAN±SD) AND INFERENCE

TIME ANALYSIS WITH DIFFERENT METHODS

quite marginal. As a result, we empirically chose T = 10 in
this study.

2) Effect of Restoration–Reconstruction Mechanism: To
validate the effectiveness of the proposed restoration–
reconstruction mechanism, we conducted an ablation study. In
the 120-view CT reconstruction task, we kept other parameters
the same and obtained results by removing the reconstruction
stage in Fig. 1. Table V shows the quantitative results and
inference time. In Table V, we observe that by introducing
the reconstruction stage, the inference time only increases
by 0.26 s, while there is a significant improvement in
PSNR and SSIM. Based on this observation, the proposed
restoration–reconstruction mechanism can effectively enhance
the reconstruction quality while ensuring model efficiency.

F. Model Analysis

To delve deeper into whether PrideDiff meets expectations
during the iterative reconstruction phase, we showcased the
outputs of sparse-view and 25% dose level reconstruction in
Fig. 7. It is evident that as the iterative process continues, noise
and artifacts in the image are gradually removed, culminating
in the final reconstruction after T iterations. Additionally,
we observed a continuous enhancement in image details,
further suggesting that PrideDiff provides positive feedback
on image details during the iterative process. As we all
know, diffusion-based methods are difficult to apply in clinical
practice due to their long inference time. Here, we analyze
the different models, as shown in Table VI. We categorize
the methods based on whether they are diffusion-based. CNN-
based methods, such as FBPConvNet and RED-CNN, have
the fastest test speeds. GAN-based CNCL requires longer test
time. As an iterative reconstruction network model, LEARN
contains multiple projection and back-projection operations,
which significantly increase the computational time.

For diffusion-based methods, we only used a simple
network structure during the reconstruction process, as shown
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Fig. 7. Iterative process visualization of PrideDiff in sparse-view and low-dose tasks with iteration step T = 10 on Mayo 2016. The display window is
[−160, 240] HU.

TABLE IV
QUANTITATIVE RESULT (MEAN±SD) OF DIFFERENT

NUMBERS OF ITERATION STEPS

TABLE V
ABLATION STUDY OF RESTORATION–RECONSTRUCTION MECHANISM

TABLE VI
MODEL SCALE AND INFERENCE TIME ANALYSIS

in Fig. 1. Therefore, in terms of the number of parameters
and computational complexity, diffusion-based methods have
a distinct advantage. However, since these methods require
many iterations to complete the reconstruction, they demand
extra test time. As shown in Table VI, vanilla DDPM requires
approximately 223 s to process one single slice, heavily
hindering its promotion in clinical practice. Even with the
expedited DPM-Solver algorithm, the inference time hovers
around 116 s. However, the cold diffusion model yields a
remarkable reduction in test time. The proposed PrideDiff also
benefits from this, slightly increasing the testing time while
effectively improving performance. Our method improves the
testing speed by 63% compared to the LEARN.

IV. CONCLUSION

In this article, we introduced PrideDiff, a novel CT recon-
struction network that merges the iterative reconstruction
network with a generalized diffusion model. Our PrideDiff
serves as a bridge between the diffusion model and the

physics-regularized iterative reconstruction network model.
On the one hand, PrideDiff effectively integrates physical
prior into the diffusion process, significantly enhancing the
imaging quality. On the other hand, PrideDiff efficiently
leverages the advantages of cold diffusion and fuses time-
embedding features into the regularization network, effectively
reducing the number of iteration steps and enhancing network
performance. Moreover, we verified the impact of different
components on network performance. We also analyzed the
intermediate results produced by PrideDiff during iterations
to demonstrate the stability and effectiveness. The model
analysis also demonstrates the superiority of PrideDiff in
terms of model scale and inference time. In the future,
we aim to enhance the generative capabilities of our
method, explore its performance under conditions of ultra-
sparse sampling, and further refine the quality of image
restoration.
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