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Abstract— Virtual coupling is regarded as an efficient way
to improve the line capacity of rail transportation systems by
reducing the spacing between consecutive trains. This paper is the
first to compare and assess different distributed model predictive
control (MPC) approaches, i.e., cooperative distributed MPC,
serial distributed MPC, and decentralized MPC, for virtually
coupled trains with a nonlinear train dynamic model. To make
a balanced trade-off between computational complexity and
efficiency, we also propose and assess convex approximations
of the above control approaches. Furthermore, we are the first
to introduce the relaxed dynamic programming approach to
analyze the stability of the MPC-based nonlinear train control
problem. By using the relaxed dynamic programming approach,
a distributed stopping criterion with a stability guarantee is
developed for the cooperative distributed MPC approach. In real
life, masses of trains are different and can change at stations
due to changes in passenger loads. This change in mass can
significantly affect the dynamics and control of the virtually
coupled trains when not taken into account in the control design.
Therefore, we explicitly consider heterogeneous train masses
when designing MPC approaches. We evaluate the different
distributed MPC approaches through case studies based on the
data of the Beijing Yizhuang Line. Simulation results indicate
that the cooperative distributed MPC approach has the best
tracking performance, while the serial distributed MPC approach
can reduce communication requirements and computation capa-
bilities with sacrifices of tracking performance.

Index Terms— Virtual coupling, train speed control, dis-
tributed model predictive control, heterogeneous train masses,
relaxed dynamic programming.

I. INTRODUCTION

HE transport demand for rail transportation systems
has increased rapidly, and the need to enhance rail
line capacity while ensuring operational safety remains a
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paramount concern for rail operators. The line capacity is
associated with the spacing between consecutive trains, which
is determined by the signal systems. Currently, the widely
applied signal system in urban rail transit is the moving block
system [1], [2], which determines the distance between two
consecutive trains based on the absolute braking distance,
i.e., the distance a train needs to fully stop from its current
speed.

In recent years, an advanced signaling technology, i.e.,
virtual coupling, has been recognized as an efficient way to
further improve the line capacity by reducing the spacing
between consecutive trains [2], [3]. In a platoon of virtually
coupled trains, the distance between two consecutive trains
is determined based on the relative braking distance, which
also takes into account the braking characteristics of the
predecessor train [4], [5]. Different from platoons of connected
and automated vehicles (CAVs) in road traffic [6], a platoon of
virtually coupled trains features a long train braking distance,
and trains in a platoon should run on the same rail track,
leading to larger spacing between trains. Furthermore, the
communication between non-adjacent trains is typically not
considered due to the longer headway in railway systems
as communication over longer distances may become unre-
liable [7]. Hence, one cannot just adopt control approaches of
CAVs to virtually coupled trains.

As a novel signaling technology, virtual coupling sig-
nificantly relies on vehicle-to-vehicle communication and
cooperative train control schemes [8], [9], [10]. Generally, the
communication topology and the cooperative control schemes
are highly intertwined. Several control approaches have been
developed for virtually coupled trains based on different
communication topologies. Cao et al. [11] applied generalized
predictive control (GPC) to virtually coupled trains with the
aim to ensure the expected tracking distance and to prevent
collisions. Xun et al. [12] applied model predictive control
(MPC) to realize centralized control and in addition they
developed a speed protection mechanism for virtually coupled
trains. Su et al. [13] developed a centralized MPC approach for
virtually coupled trains in the cruising phase, and they applied
a generalized minimum-residual-method-based approach to
solve the resulting nonlinear optimization problem. The above
papers focus on centralized control approaches that rely on
a centralized controller, thereby significantly increasing the
communication and computation burden [14].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-8174-9181
https://orcid.org/0000-0002-4051-4896
https://orcid.org/0000-0003-3677-3323
https://orcid.org/0000-0003-1656-4719
https://orcid.org/0000-0001-9867-6196

20754

In contrast to those centralized control approaches, decen-
tralized control strategies have gained attention due to their
potential to alleviate the communication and computation
burden. Felez et al. [15] formulated a decentralized MPC
approach for virtually coupled trains based on a linear model
with nonlinear constraints. Two cases are considered in [15],
i.e., the case that the follower receives predicted states from
its predecessor train, and the case that the followers have to
predict the states of its predecessor train based on the mea-
sured information. Considering uncertainties in the dynamic
model and train positioning, Felez et al. [16] developed a
decentralized robust MPC approach based on the min-max
principle. This work is further extended in [17] by including
more uncertain factors, such as modeling errors, positioning
errors, communication delays, and possible adhesion losses.
Di Meo et al. [18] developed a decentralized control approach
based on local state variables and the information received
from other trains, and they analyzed the exponential stability
under communication delays by introducing a Lyapunov-
Krasovskii function. By using sliding mode control (SMC) and
a nonlinear train control model, Park et al. [19] developed a
robust gap controller based on the measurement of the position
and velocity of the predecessor trains. Basile et al. [20]
developed a deep deterministic policy gradient approach to
design a decentralized control law for virtually coupled trains
with heterogeneous train dynamics and uncertain disturbances,
showing lower computational burden and energy consumption
compared to MPC. However, the safety distance in [20] is con-
sidered by using a penalty term in the reward function, which
does not provide a theoretical guarantee of safety. The above
papers primarily emphasize the significance of decentralized
control strategies for virtual coupling, highlighting their ability
to alleviate the communication burden while ensuring system
performance. However, these decentralized approaches often
rely on measurement information or limited communication
information, and trains make independent decisions without
coordinating their actions with those of other trains. high-
lighting the potential for distributed and/or cooperative control
approaches' that can leverage communication data even more.

The advanced vehicle-to-vehicle communication technol-
ogy enables communication-enhanced information exchange
between virtually coupled trains [7], [8], prompting the
exploration of distributed control methods that can leverage
more extensive communication data. Quaglietta et al. [23]
analyzed the safety margin of virtually coupled trains to
handle the safety risk caused by communication delays, control
delays, positioning errors, and train braking characteristics.
Su et al. [24] considered the heterogeneous train braking dis-
tance and developed a feedback control law to ensure the
string stability of the train platoon. Liu et al. [5] linearized
the train movement model and developed a distributed MPC
approach for a platoon of virtually coupled trains, where
trains are assumed to be close to each other, and therefore
the slope difference between different trains is ignored; then,

IEach agent in a distributed control scheme only focuses on its own
objective, while cooperative distributed control enables agents to take into
account the objective of the overall system [21], [22].
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they analyzed the local stability of each individual train based
on a terminal controller. By ignoring the slope difference
between trains, Liu et al. [25] developed an optimal control
approach based on Pontryagin’s principle, and analyzed the
local stability and the head-to-tail string stability. By consid-
ering the resistance caused by tracks and winds as bounded
disturbances, Luo et al. [26] introduced tube-based distributed
MPC based on a linear train model, where the safety con-
straint can be ensured in any situation in the robust control
scheme. In the aforementioned distributed control approaches,
each train computes its control input based on the informa-
tion received from its predecessor train only, and thus the
approach is also called the serial distributed control approach.
Zhang et al. [27] introduced the fixed-time tracking control
approach and developed a cooperative control approach to
achieve virtual coupling within the fixed time. Wang et al. [28]
introduced a Q-learning-based cooperative control approach
for virtually coupled trains where monitoring sensors and
wireless communication networks are used to obtain the oper-
ational status of trains; however, only two virtually coupled
trains are considered in [28], and the extension to more
trains still requires further research. In summary, these studies
indicate the potential for enhanced control and coordination
among virtually coupled trains facilitated by vehicle-to-vehicle
communication technologies.

In a set of virtually coupled trains, trains may have different
characteristics, resulting in heterogeneity. In particular, hetero-
geneous trains may have different lengths, masses, and braking
characteristics, which should be considered in the controller
design to ensure efficient and safe operation [4], [24]. Train
mass is a crucial factor influencing train dynamics and varies
according to train type and passenger load. Therefore, without
loss of generality, we focus on train mass in this chapter as
an illustrative example of the various aspects of heterogeneous
trains.

Table 1 summarizes the aforementioned studies, outlin-
ing the differences in the model, control scheme, control
approach, and train heterogeneity they used. From Table I,
we can observe the application of both linear and nonlinear
train dynamic models. Notably, the nonlinear model generally
yields more accurate results but also comes with a higher com-
putational burden compared to the linear model. According to
different communication topologies, different control schemes,
i.e., centralized, decentralized, distributed, and cooperative
distributed, are studied. We find that MPC stands out as the
most widely adopted train control approach in virtual coupling
research. For more studies in virtual coupling, we refer to the
recent review papers [8], [10], [29]. It is worth noting that only
the study presented in [19] explicitly incorporates train masses
when designing the controller, and there is still no research
on an MPC design for virtually coupled trains explicitly
considering masses of trains. Furthermore, a comprehensive
comparison and assessment considering different models and
different control schemes for virtually coupled trains is still
unaddressed in the existing literature.

The paper contributes to the state of the art as follows:

1) A comprehensive comparison and assessment of dis-

tributed MPC approaches for virtually coupled trains
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TABLE I
SUMMARY OF STUDIES ON CONTROL FOR VIRTUALLY COUPLED TRAINS

Literature Model Control scheme  Control approach Train heterogeneity
Cao et al. (2021) [11] linear centralized generalized predictive control no
Xun et al. (2020) [12] linear centralized model predictive control no
Su et al. (2021) [13] nonlinear  centralized model predictive control no
Felez et al. (2019) [15] nonlinear  decentralized model predictive control no
Felez et al. (2022) [16] nonlinear  decentralized model predictive control no
Vaquero-Serrano et al. (2023) [17]  nonlinear  decentralized model predictive control no
Di Meo et al. (2019) [18] linear decentralized proportional—integral—derivative no
Park et al. (2020) [19] nonlinear  decentralized sliding mode control train mass
Basile et al. (2024) [20] nonlinear  decentralized deep deterministic policy gradient  train dynamics
Liu et al. (2021) [5] linear distributed model predictive control no
Liu et al. (2021) [25] linear distributed optimal control no
Luo et al. (2023) [26] linear distributed model predictive control no
Su et al. (2023) [24] nonlinear  distributed feedback control braking dynamics
Zhang et al. (2021) [27] nonlinear  cooperative fixed-time tracking control no
Wang et al. (2020) [28] nonlinear  cooperative Q-learning no
linear cooperative,
This study . distributed, model predictive control train mass
nonlinear .
decentralized

are provided, which would benefit the process of control

method design and selection for virtually coupled trains.
2) We are the first to incorporate the relaxed dynamic
programming (RDP) approach into the train control field
and to use it to ensure the stability of the nonlinear train
control problem. By using RDP, a stopping criterion
under the distributed control scheme with a stability
guarantee is developed for the cooperative distributed
MPC approach.
The mass of trains can significantly affect the dynamics
and control of virtually coupled trains if not considered
in the control design. We are the first to explicitly
account for changes in train masses when designing
MPC approaches, and we demonstrate the impact of
incorporating train masses in the control design through
simulations.

3)

The rest of the paper is structured as follows. In Section II,
the problem statement and preliminaries are provided.
In Section III, the mathematical model of the system is
provided. In Section IV, several distributed MPC approaches
are presented. In Section V, we conducted case studies to
illustrate the performance of the approaches, and in Section VI,
the conclusions and the outlook for future works are provided.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. Problem Statement

In a platoon of virtually coupled trains, trains are coupled
virtually through train-to-train communication. We consider
heterogeneous trains, and in particular, we focus on het-
erogeneous masses in this paper. The leader train receives
reference signals from the infrastructure and operates follow-
ing a reference speed profile, and each follower train follows
its predecessor train while keeping a safe distance.

Let us define s;, v;, and u; as the position, speed, and control
input of train i, respectively, and define As; and Av; as the
position difference and speed difference between train i and its
predecessor train, respectively. As stated in [7], ultra-reliable
low-latency communications are typically required when the

distance between trains is less than 50 m. Moreover, the
latency of 50 ms can be achieved for wireless train control and
monitoring system [7], [30]. The field tests and simulations
in [31] also indicated that the average transmission delay
of train-to-train communications is below 20 ms. Therefore,
in the current paper, we only consider the case that a train can
communicate with its predecessor train and follower train, and
train-to-train communication under a relatively short distance
can be ensured. As shown in Fig. 1, three possible commu-
nication topologies realized in practice are considered, i.e.,
bidirectional communication, unidirectional communication,
and measurement, and different communication topologies
require different control methods. The bidirectional commu-
nication in Fig. 1(a) allows trains to include their neighbors’
real-time control inputs, speeds, and positions when generating
control inputs. Hence, trains can compute their control inputs
in parallel and exchange information with their neighbors [7],
[27], which involves adjusting control inputs, to achieve
cooperative control; however, the communication burden of
bidirectional communication is relatively large.

For the unidirectional communication in Fig. 1(b), trains
compute control inputs sequentially in the virtual coupled train
string: each train computes the control input based on the
real-time control input, speed, and position, received from its
predecessor train, and then, the computed control input, speed,
and position are sent to its successor train. In this context, each
train only requires communicating with its neighbors once per
control step.

Fig. 1(c) corresponds to the case when the communication
between trains is lost, and thus a train cannot receive the
real-time control input, speed, and position of its predecessor
train. Then, to ensure safe operation, each train should com-
pute control inputs based on the relative speed and position of
its predecessor train measured by onboard sensors, e.g., radars
or LiDARS, assuming the predecessor train may brake with the
maximum braking force.

In this paper, we consider the three communication topolo-
gies depicted in Fig. 1 and introduce different control
approaches based on the three communication topologies.
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Fig. 1. Illustration of train-to-train communication topologies for virtually
coupled trains occurring in practice.

Remark 1: Different from platoons of connected automated
vehicles in road traffic, communication between non-adjacent
trains is not considered due to the longer headway in railway
systems compared to that in road traffic control systems,
as communication over longer distances may become unre-
liable.

The virtual coupling train control problem aims at control-
ling trains operating with a relatively short headway while
ensuring a safe and steady distance between two adjacent
trains. The safety distance can be guaranteed by including
hard constraints in the control problem. The steady distance
between a train and its predecessor train is evaluated by local
stability, while the steady distance between any two adjacent
trains in the platoon is ensured by the so-called string stability.

B. Preliminaries

To introduce the concept of string stability, let us consider
train i in the platoon, and the dynamic of train i is

S XLE), 6]

where x; ; represents the state of train i at time step k, [ is
the total number of trains in the platoon.

The definitions of local stability and string stability used in
this paper are introduced as follows.

Definition 1 (Lyapunov Local Stability [32]): For a given
system (1), the equilibrium point qu is said to be Lyapunov
local stable if

Xik+1 = filXihs ooy Xiks - -

Ve>0,38>0,||xi0 — x| <8 = |lxix — x| < €, VkeN.
2
In addition, the equilibrium point x? 4 is said to be asymptot-
ically Lyapunov locally stable if it is Lyapunov locally stable
and x; x — qu as k — oo.
Let us further define the dynamic platoon of trains as

X1 = f(xk), 3)

where xp = [x1k, ..., x7£]T.
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Definition 2 (Lyapunov String Stability [33], [34]): For a
platoon of trains described by (3), the equilibrium point x4
is said to be Lyapunov string stable if

Ve > 0,38 > 0, ||xo — x%|| <8 = ||xx —x%|| < ¢, Vk € Np.
4)

In addition, the equilibrium point x®? is said to be asymptot-
ically Lyapunov string stable if it is Lyapunov string stable
and x — x® asymptotically.

Notation: A continuous function A(-) : Ry — Ry is of
class IC, if it is strictly increasing and #(0) = 0. A continuous
function 4(-) : Ry — Ry is of class K, if it is of class K and
lim,_, 5 h(#) = oo. The quadratic norm corresponding to a
positive definite symmetric matrix Q is ||x||2Q = xT Qx. Given
a set X C R”, a scalar a € R, we define aX := {ax|x € X}.

III. MATHEMATICAL MODEL FOR VIRTUALLY COUPLED
TRAINS

A. Train Dynamic Model

Although the dynamics of a train is continuous, the con-
trol input of the automatic train operation (ATO) system is
typically implemented in a discrete-time manner due to the
implementation of digital computers. Similar to [15] and [35],
the discrete-time model of longitudinal dynamics of a train
can be described as

(uik — ri(vig) — wi(sip) T

Vik+1 = Vik + s
i,k+ i Mi,p

(5a)

Sik+1 = Sik +viiT, (5b)

where i is the train index, T represents the sampling time,
vi k and s; ; represent the speed and position of train i at time
step k, respectively, M; , denotes the total mass of train i from
station p to its successor station with p being the station index.
We assume that M; , is a piecewise constant function whose
value changes at the station in accordance with the variance of
the passenger load. Moreover, u;  is the control input, i.e., the
traction/braking force; r; (vi,k) is the basic resistance that is
related to the speed of train i; w; (s; k) denotes the additional
resistance that is determined by the position of train i.

The total mass of train i changes when train i has arrived
at a station and can be calculated by

Mi,p =m; + ni pMpa, (6)

where m; denotes the mass of train i itself; n; , is the number
of passengers on board the train at station p, and the value
of n; , changes when the train has arrived at a station; mp,
represents the average mass of a passenger.

The train basic resistance r; (v; ) can be described by

ri (vik) = Mip (Co +crvig + szgk) , (7N

where ¢y, c1, and ¢; are parameters that can be identified based
on experiment data [36]. The train basic resistance considers
the effects caused by the rotational inertia for wheelsets, the
number of axles, the effective frontal cross-section, the air
resistance, etc.
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The additional resistance w; (s,-, k) is related to the total mass
of the train and can be approximated as a piecewise constant
function of the train position:

wi (six) = Mi pgsinf(si ), ®)
where (-) is a function of train position representing slope at
the corresponding position.”

The decision variable u; , the train speed v; x, and the train
position s; ; should satisfy

~ B <uip < UM, ©)
0 < vik < Viim(si k), (10
Sik + A (Vi g, Vi1 k) < Sio1ks (11

where Bf® and U™ are the maximum service braking force
and the maximum traction force of train i, respectively,
vim (8;,k) 1s a piecewise constant function denoting the speed
limit for train i at position s; g, disafe(v,-,k, vi—1k) is the safety
distance between train i and its predecessor train, which can
be constrained by

disafe (Ui,kv Ui—l,k) > dl.Sb (vi,k) — dl-e_bl (vi_l,k) + L + Dgafe,

(12a)

d5 (v 1, vi—1k) = L + Dge, (12b)

2
Vi . . . . . .
where d%® (vi i) = 5. is the braking distance of train i with
1

b
: : : sb __ Bis eb . _
the service braking, i.e., when a;° = M, d?, (v,_l’k) =

2

——k i the braking distance of train i — 1 with emergency
2a;,

b B cb

€l —_ i
braking, i.e., ai”, = M, where B>, is the emergency

braking force 0f train i —1, £ denotes the length of a train, and
Dyt is the safety distance applied to address the safety risk
caused by modeling errors, positioning errors, communication
delays, etc [5], [23].

B. Dynamic Model for Virtually Coupled Trains

In a platoon of virtually coupled trains, a train is expected to
follow its predecessor train at a certain distance. We consider
that the relative distance between train i (i > 1) and its
predecessor train is determined by the speeds of the two trains:

ik =Si—1k —Sik —dPWig) +d® (vim1x). (13)

The first train (i = 1) tracks a desired speed profile with the
speed and position represented by vo x and so i respectively,
and we define e x = so x —51,k. The illustration of calculating
e x in (13) is shown in Fig. 2.

Let us define the state and input of train i as x;; =
[v, ky €i k]T and pjx = Ml ui k, respectively. Then, the
evolution of x; x can be expressed compactly as

Xik+1 = fi (Xi ks i k) (14)

2The additional resistance consists of the resistance caused by slope, curve,
and tunnel. Note that the curve resistance and the tunnel resistance can be
represented by w; (Si,k) = M; pgy(sik), with 0 < y(s;x) < 1; so they can
be transformed into the form of (8).

20757
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g e R
sb
a7 ) Cik
Fig. 2. Tllustration of calculating relative distance for train i (i > 1).

where x; x € X;; and w; x € Wi, with X; x and W; ; being
the feasible sets of x; x and w; g, respectively. If u; x € Uj g,
then W; ; = ﬁUiJ@ Note that, in (14), the states of train
i implicitly depend on the position and speed of train i — 1;
hence we have coupled dynamics.

IV. DISTRIBUTED MODEL PREDICTIVE CONTROL FOR
VIRTUALLY COUPLED TRAINS

In this section, we apply different distributed MPC
approaches for virtually coupled trains based on the nonlinear
model in Section III. We first provide the general nonlinear
model predictive control problem formulation. Considering the
possible communication structures introduced in Fig. 1, the
computational complexity, and the model accuracy, we then
develop the following six distributed MPC approaches:

« nonconvex cooperative distributed MPC: N-CDMPC;

« convex cooperative distributed MPC: C-CDMPC;

« nonconvex serial distributed MPC: N-SDMPC;

o convex serial distributed MPC: C-SDMPC;

« nonconvex decentralized MPC: N-DMPC;

« convex decentralized MPC: C-DMPC;

N-CDMPC, N-SDMPC, and N-DMPC are related to the
bidirectional communication case, the unidirectional commu-
nication case, and the measurement case in Fig. 1, respectively.
However, as the model (14) and constraints (11), (12), and (13)
are nonlinear, the resulting MPC optimization problems of
N-CDMPC, N-SDMPC, and N-DMPC are nonlinear and
nonconvex, which may increase the computational burden of
finding the optimal solution. Hence, we approximate these
problems as convex problems to make a balanced trade-off
between computational burden and accuracy, and the con-
vex counterparts of the methods are labeled C-CDMPC,
C-SDMPC, and C-DMPC, respectively. The details of the
above approaches are provided as follows.

A. General Nonlinear MPC Problem Formulation

To ensure that trains run with consistent speed and steady
distance, we define the quadratic stage cost for train i at time
step k as

€ (i ko i) = ik — X315 + ikl (15)

where Q € R?*? is a positive symmetric matrix, and R € R.
The first term in (15) defines the tracking error, while the
second term corresponds to the energy consumption of train i.
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Virtual coupling aims to control trains running with consistent
speed and steady relative distance. Thus, the equilibrium state

L. . T
of train i (i > 1) is defined as )cl.ec}C = [U?C}w e?(}c]

with vF} =
vi—1,k and el.ef}( = L + Dges, where L is the length of a train,
Dges represents the desired distance between two trains. The
equilibrium state of the first train (i = 1) is xfflk = [vox, 0] .
The nonlinear MPC optimization problem for train i is

ko+N—1

minJ; (ko) = D €ixik. pi) (16a)

Il'i',k(()) k=ko
s.to Xiky1 = f(xik, wik), k=ko,...,ko+N—1, (16b)
Xik € Xik, k=ko,...,ko+N—1, (16c¢)
ik €Wix, k=ko,...,ko+N—1, (l6d)
where x;i, = [x,TkO, cee xiTk0+N]T and  pig, =
(Mikgs - - - Mikg+N—11T, Xjx denotes the set defined by

constraints (10)-(12), and W; ; represents the set defined by
constraint (9).

The optimization problem (16) is a nonlinear nonconvex
optimization problem. Solving (16) at time step ko results in
the optimized input sequence [L:»k’ko = [/,L;k’ko, ces 'U“;k,ko+N—1];
only the first value u; ko is implemented in the system and the
procedure is repeated under a moving horizon scheme.

From (16), we formulate a nonlinear model predictive
controller, and the stability can be analyzed based on relaxed
dynamic programming. The stability condition can be stated
as follows.

Theorem 1 (Lyapunov Stability [37]): Considering
system (14) with x; ;. € X; «, let X x be forward invariant,? and
let 7;(-) be an admissible control law, i.e., m;(x;x) € Wiy,
Vxix € Xix such that f;(x;x, mi(xix)) € X;k41. Then,
the closed-loop system x;iy1 = fi(xix, wi(xig)) is
asymptotically stable on X;; with the equilibrium point xz (}(
if

TN (k) = oy (xige, pif ) + TN (R + 1), (17a)
Billxix —x;¢ll2) < IN (k) < Ba(llxix — x;3112).  (17b)
€ (i ks k) = B3(Ixik — x;l12), (17¢)

where Jl.N (k) represents the optimized value of J; (k) at time
step k with prediction horizon N, for some « € (0, 1], and
B1(-), B2(-), and B3(-) are of class Koo.

Remark 2: Note that Jl.N (k+1) in condition (17a) requires
the control law in time step k + 1, which is not available at
time step k. In the MPC scheme, given the optimized control
variables at time step k as g}, = [“:'F,L o “T,LFN]T’ we can
directly build a sequence of feasible control variables for time
step kK + 1 as

= T ~T ~T T
Wiker = L8 jqps oo oo B gy vs B gy 1]

T, (18)

*T ~T T
Mg ns Bigpng]’s
~T ~T . . % ~
where R jq1s - o oo gy are the inputs in B g and [t k4+N+1

" The

can be any admissible control law, e.g., Wi x+n = — v
’ i,p

3A family of sets X j is forward invariant if there exists u; j such that
Xik+1 = Ji(%i ks i k) € X g41 holds for all x; ; € X; g.
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cost function for f; s is represented by PiN (k + 1). Thus,
we can obtain optimized decision variables at time step k + 1,
such that JZ.N k+1) < PiN (k + 1). Then, the implementable
version of (17a) becomes

TN () > al; (i, i) + PNk + 1), (19)

B. Nonconvex Cooperative Distributed MPC

With the bidirectional communication as in Fig. 1(a), trains
in a platoon of virtually coupled trains can compute control
inputs in parallel and exchange information several times to
achieve cooperative control. The alternating direction method
of multipliers (ADMM) is an efficient distributed optimiza-
tion approach for problems with coupled constraints [38].
Therefore, we adopt ADMM to solve the resulting distributed
optimization problem in each step of distributed MPC.

For the MPC optimization problem of train i, (16c)
and (16d) collect constraints for x; x and p;k, and we can
write (16¢) and (16d) compactly as:

hi (Yi—1,k> Yiks Yi+1.k) < E1,i ks (20)

where yi—1 & = [0 o i1 x]Ts ik = [T i kT, yiv1x =
[x,'T+1’k’/Li+l,k]T’ and Ep;; is a constant. We can observe
from (16) that different subproblems are coupled through
constraint (20). The coupled constraints can be relaxed by
introducing n; x > 0 as follows:

hi (Vi—1,k» Yiks Yi+1,k) + ik = E1i k- 210

Then, in ADMM, the objective function for train i becomes

L;(ko) = Ji(ko) +
kotN -1
+ Z ()\Zk(hi(yi—l,k,yi,k,yi+1,k)+fli,k—E1,i,k)+
k=ko

P
+ EHhi()’i—l,ka Yiks Yit1,k) + ik — El,i,k||§)s
(22)

where y; o = [3 s ¥ gorn_11T> p > 0 is the augmented
Lagrangian parameter, and \;; represents the Lagrangian
multipliers, which are updated by

+1 +1
Affk )=A§f,3 + p(hi(yi(il,k), Viks yl-(_?l,k)—i-m,k - El,i,k),

(23)
where z represents the iteration index, and >‘1(Z/3 and yi(’zk)
are the values of \;x and y;; after iteration z, respec-
tively. For more details about ADMM, we refer the
readers to [38] and [39].

In each iteration, a nonlinear nonconvex optimization prob-
lem should be solved. We can use gradient-based approaches,
e.g., sequential quadratic programming, to find a solution.
ADMM is a distributed optimization approach, and a stop-
ping criterion that can be applied in a distributed manner is
required when implementing ADMM in the distributed control
scheme.
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Lemma 1: If ﬁlN (k) represents the optimized value of
L;(k), one sufficient condition for (17a) in the distributed

control scheme is
LY (k) = i (xig. i) + PNk + 1), (24)

where a € (0, 1].
Proof: Based on the weak duality theorem, we have

£l (k) < 7N ). (25)
Then, according to (19), we have
TN () = at; (e, ) + PNk +1). (26)
Hence, we can conclude that (24) implies
TN = i (i, ) + I (K +1). 27)
O

In each iteration loop, trains minimize their objectives
sequentially. The iteration of ADMM for N-CDMPC stops
when either the stability condition represented by (24) is
satisfied, or the maximum number of iterations zmyax 1S reached.
Based on the aforementioned stopping criteria, ADMM
may terminate before reaching its (local) optimal solution.
To ensure safe operations, the safety coupled constraint (11)
and (12) can be directly incorporated as a constraint when opti-
mizing (22), and the coupled constraint (13) is relaxed by (22).

Lemma 2 (Recursive Feasibility): If a feasible solution that
satisfies the stopping criterion (24) is found at time step k, the
feasibility for the optimization problem (16) of each agent at
time step k 4+ 1 can be found.

Proof: The proof is based on finding a feasible solution
for time step k+ 1. For a solution ;L;." ¢ at time step k, a feasible
solution at time step k+ 1 can be found as stated in Remark 2.

]

Theorem 2 (Lyapunov String Stability): If a feasible solu-
tion that satisfies the stopping criterion (24) can be found,
then the platoon of virtually coupled trains is Lyapunov string
stable.

Proof: 1f a feasible solution that satisfies the stopping
criterion (24) can be found, according to Theorem I, we can
show that the equilibrium point of each train is Lyapunov
stable. Then, the Lyapunov string stability for the platoon
of virtually coupled trains can be obtained following the
procedure in [33]. O

Algorithm 1 elaborates the procedure for implementing the
cooperative distributed MPC algorithm, where 7 is the iteration
index, and xi(zk) and ,ugzlz represent the values of x; x and p; &
after iteration z, respeétively.

C. Convex Cooperative Distributed MPC

The problem (16) formulated in Section IV-A is a nonlinear
nonconvex optimization problem. In the N-CDMPC approach
developed in Section IV-B, we cannot ensure the convergence
of ADMM and the optimal solution to the optimization
problem easily. Moreover, solving nonlinear nonconvex opti-
mization problems typically requires a larger computational
burden than its convex counterpart.

There are two nonconvex components in the N-CDMPC for-
mulation, i.e., the nonlinear model (16b) and constraints (21).
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Algorithm 1 Cooperative Distributed MPC for Virtually Cou-

pled Trains

Input: xi,k()’ Mi,p’ N? Umax? BSb? Beb’ Itrain, Dsafe, DdeSa L7
Kend> Zmax»> P> )\533 , a; recommend speeds vo k, S0,k;

Output: control input u; i

1: k < ko

2: repeat

3 7«0

4 repeat

5 fori =1,..., Iin do

6: minimize objective (22) subject to (5)-(12)
7 send obtained xl.(f,:“]) and MI(Z: D to neighbours
8 update /\E’Zkﬂ) subject to (23)

9: end for

10: z<z+1
11: until z = zax or (24) holds for each train i

12: apply control decision u; x to each train i

13: k<—k+1
14: until k£ = kepg

By using Taylor expansion at the prior estimate state of
the train, we can linearize dfb(vi,k) and del(vi_Lk) in (12)
and (13). The prior estimate state of train i at time step
k + 1 can be calculated according to the current speed v; x+1,
the current position s; x+1, and control inputs in (18) [5],
[15]. The nonlinear model (16b) can also be linearized at
each time step based on the prior estimate state by using
Taylor expansion. Other settings are exactly the same as the
N-CDMPC approach Hence, we can simplify the N-CDMPC
approach to develop a convex cooperative distributed MPC (C-
CDMPC) approach for the platoon of virtually coupled trains.

D. Nonconvex Serial Distributed MPC

For the unidirectional communication in Fig. 1(b), each train
only communicates with its neighbors once in one control step.
In this context, each train computes control inputs sequentially
based on the information received from its predecessor train.
Specifically, train i calculates control inputs based on the speed
Vi 1.k, position s;_1 x, and control input fi; 1 x received from
train i — 1, where v;_1k, Si—1k, and ft;—1  are the results
of the optimization problem in train i — 1. Thus, the safety
constraints in (12) are replaced by

A5 (vi g, Dim1 k) = d5° (vig) — d (Di—1.k) + L + Dae,
(28a)
d7*" (vi k. Bi-10) = L+ Dsate. (28b)

Furthermore, the relative distance with its predecessor train
becomes

ek =581 k—Sik— diSb(Ui,k) + d,'eEl(Tji—l,k)- (29)
Then, the cost function becomes
€ (i g i g) = lxik — X 3llp, + wikllz.  (30)

T
—eq _ [-eq —eq
where Xip = [vi’k, €k

with ;% = Di—1.x and &} = L + Dyes.

is the equilibrium state of train i,
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Therefore, in nonconvex serial distributed MPC (N-
SDMPC), each train solves the MPC optimization problem
as follows

ko+N—1
minJ; (ko) = D ik, tik) (31a)
Rikg k=ko
sit. Xik+1 = f(Xik, Mik), k=ko,...,ko+N—1, (31b)
& i—1k> Yik) <E2ik, k=ko,...,ko+N—1, (3l¢c)

where (31c¢) is the compact form of constraints corresponding
to yik = [xlTk, Wi k1T, i.e., constraints (9)-(11) and (28).

The MPC optimization problem (31) is a nonlinear non-
convex optimization problem, and we can use gradient-based
approaches, e.g., sequential quadratic programming, to find a
solution. At each MPC step of N-SDMPC, each train calcu-
lated its control input w; ; for implementation by solving (31)
with received X;_1 x and ji;—1, and then send the obtained
xik and p; k to its succeeding train.

Remark 3: As each train only communicates with its neigh-
bors once per control step in the unidirectional communication
case, the global optimal solution to the overall problem cannot
be guaranteed. The serial distributed MPC approach follows a
first-come first-serve fashion for the coupled constraint (31c),
i.e., the predecessor train calculates and sends states and
control inputs to its follower train, and the follower train then
calculates states and control inputs that satisfy the coupled
constraint (31c) based on the received information.

E. Convex Serial Distributed MPC

To reduce the computational burden of solving the nonlinear
nonconvex optimization problem (31) for each train, (31) can
be approximated to develop convex serial distributed MPC (C-
SDMPC) for the platoon of virtually coupled trains based on
the prior estimate state [5]. See also Section IV-C for detailed
information on the convex approximation using the prior
estimate state. Then, we can obtain the convex counterpart
of (31) by linearizing d:° (v;x) and d% (v;—14) in (28a)
and (29). Other settings of the C-SDMPC approach are exactly
the same as the N-SDMPC approach in Section IV-D.

FE. Nonconvex Decentralized MPC

The virtually coupled train control approaches should
be able to ensure safe operation when the communication
between trains is lost, i.e., the case in Fig. 1(c). In this
context, each train should compute control inputs based on the
relative speed and position of its predecessor train measured
by onboard sensors, e.g., radars or LiDARs, assuming the
predecessor train brakes with the maximum braking force. This
leads to a nonconvex decentralized MPC (N-DMPC) approach
elaborated in this section.

For train i, the relative speed and position with respect to its
predecessor train, i.e., train i — 1, at time step k are represented
by Awv; and As;k, respectively, which can be obtained by
onboard sensors. At time step k, the estimated speed 0;_p
and position §;_1  of train i — 1 are

Vi—1,k = Uik + Avig, (32a)
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Sic1k = Sik + Asik. (32b)

Then, the predicted state of train i — 1 is estimated by

eb

i—1
M, Thus, the

assuming the control value as fj_jx =
safety constraints in (12) are replaced by

d¥ (i g, Dim1k) = dE° (vik) — d2 (Di—1k) + L + Daae,
(33a)

d5 (v; g, Di—1.4) > L + Dyafe. (33b)

Furthermore, the relative distance with its predecessor train
becomes

eik = Si—1k — Sik — dCik) +dP (D1 p). (34)

To ensure the safety operation, train i should follow the
. ~eq ~eq  Aeq T .. aeq ~ ~eq
desired state Xig = [vi’k, €k with Uip = Vi-1,k and eix =
L + Dges. Then, the cost function for N-DMPC is

~eq

€ (i i) = |xik — £ 411G, + iikllz- (35)

Hence, the optimization problem of train i for N-DMPC
becomes

ko+N—1
minJ; (ko) = > i i) (362)
Rikg k=ko
s.t. Xik+1 = f(Xiks Hik), k=ko,...,ko+N—1, (36b)
8i Gi—1.k» Vi) < E3 ik, k=ko,....ko+N—1, (36c)

where (36¢) collects constraints (9)-(11) and (33). The
optimization problem (36) is also a nonlinear nonconvex
optimization problem. At each MPC step of N-DMPC, each
train calculated its control input u;x for implementation by
solving (36) with estimated x;_1 .

G. Convex Decentralized MPC

Similarly, we can obtain the convex counterpart of (36),
named as convex decentralized MPC (C-DMPC) by linearizing
d®(vix) and d° (d;—1x) in (33a) and (34). Then, the non-
linear model (36b) can be linearized at each time step based
on the prior estimate state. Other settings of the C-DMPC
approach are exactly the same as the N-DMPC approach.

V. CASE STUDY

In this section, we conduct simulations to validate the devel-
oped distributed MPC approaches. We first introduce general
settings for simulations. Then, we perform simulations for a
platoon of trains with uniform masses. Finally, we explore
simulations involving trains with varying masses.

A. General Setup

The simulations are conducted based on the real-life train
operation data of trains on the Beijing Yizhuang Line from
Station YH to Station CQ. The values of the main parameters
are provided in Table II. The value of p is set as 0.5, and
the initial value of /\ff)k) is set as 1. The values of the safety
distance and the desired distance are the same as those in
papers [15], [16]. The distance from Station YH to Station
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TABLE I
PARAMETERS FOR THE CONTROLLER DESIGN

Parameter Symbol  Numerical value
Prediction horizon N 5
Sampling time T 0.2s
Number of trains ILirain 4
Average train mass M; p 60 t
Resistance parameter co 0.0078
Resistance parameter c1 0.00085
Resistance parameter c2 0.000076
Maximum traction force umax 60000 N
Maximum service braking force be 48000 N
Emergency braking force be 60000 N
Safety distance Dgate S5m
Desired distance Dges 10 m
Train Length L 10 m
Weight of tracking error Q1 100
Weight of relative speed error Q2 1

Weight of control variable R 1

RDP parameter « 0.5
Maximum iterations gmax 5

n
S

o

Slope (%)

>
Speed limit (m/s)

- 0
0 500 1000 1500

Position (m)

Fig. 3. Line information from Station YH to Station CQ.
g x10¢
7
6
=5
ES
:‘_g 4
&
3
o [mmmEs Traction characteristics
Emergency braking characteristics
1 Service braking characteristics
0 . . . .
0 20 40 60 80

Speed (km/h)

Fig. 4. Traction and braking characteristics of the simulation model.

CQ is 1398.6 m, and the slope and the speed limit information
along the line are shown in Fig. 3. Model mismatches exist
between the control model and the simulation model. The
controller design considers the prediction model with the
values of the maximum traction and braking forces U"**, B,.Sb,
and Bf‘b given in Table II, while the assessment experiments
use the simulation model considering the traction and braking
characteristics given in Fig. 4 (see also [40]).

Sequential quadratic programming (SQP) is an efficient
gradient-based algorithm for solving nonlinear programming
problems [41] and has also been applied to solve the opti-
mization problem of virtually coupled trains [5]. Similar to [5],
in each MPC step, the resulting optimization problem is solved
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by SQP through the fmincon function in the MATLAB
optimization toolbox. All simulations are implemented in
MATLAB (R2019b) on a computer with an Intel Xeon W-
2223 CPU and 8GB RAM.

B. Control Performance With Uniform Train Masses

This case study is conducted to evaluate the performance
of the distributed MPC approaches in the case that trains in
the platoon have the same mass. The parameters are provided
in Section V-A. We consider a platoon of 4 trains in the
simulation, and all trains weigh 60 t. The simulation results
are presented in Table III, wherein the relative distance is cal-
culated as defined in (13), and the speed difference represents
the velocity error between a train and its predecessor train.

Note that the relative distance represents the distance
between two trains, assuming that the predecessor train per-
forms emergency braking and the succeeding train performs
service braking. As the train length is set as 10 m and the
safety distance Dgyfe is 5 m, the relative distance should be
larger than 15 m to ensure safe operation. Furthermore, since
the desired distance is 10 m, the ideal relative distance should
be 20 m considering the length of the train (i.e., 10 m).

It can be observed from Table III that convex coopera-
tive distributed MPC (C-CDMPC), convex serial distributed
MPC (C-SDMPC), and convex decentralized MPC (C-DMPC)
exhibit a performance that is comparable to that of their
nonconvex counterparts in terms of the relative distance and
the speed difference. The average CPU time is reduced
when the underlying problem is convex, with a reduction
of 64.25%, 17.86%, and 17.86% for C-CDMPC, C-SDMPC,
and C-DMPC, respectively, compared with their corresponding
original approaches, indicating that a computational burden
reduction is achieved by transforming these problems to their
corresponding convex problems. As the performance, in terms
of the relative distance and the speed difference, of the original
approaches is comparable with their corresponding convex
counterparts, we will focus on C-CDMPC, C-SDMPC, and
C-DMPC to compare the performance of different distributed
control schemes in the following for brevity.

Table III shows that all approaches can ensure safe operation
when trains have the same mass with a minimum relative
distance larger than 15 m. The average relative distance
of C-CDMPC and C-SDMPC is close to the ideal relative
distance (20 m), while C-DMPC has the largest average rel-
ative distance. Furthermore, C-CDMPC exhibits the smallest
fluctuation, with the relative distance fluctuating within the
range [18.47 m, 22.62 m] and the speed difference fluctuating
within [-1.1071 m/s, 1.3886 m/s].

For further demonstration, the speed profiles obtained by
C-CDMPC, C-SDMPC, and C-DMPC are provided in Fig. 5,
Fig. 6, and Fig. 7, respectively, where we include the speed
difference between a train and its predecessor train. For
the first train, the speed difference denotes the difference
with the reference speed. It can be observed from Fig. 6 that
due to the speed limit, train 4 cannot accelerate, causing a
rapid change in speed difference. Thanks to the bidirectional
communication as represented in Fig. 1(a), the rapid change
is avoided in Fig. 5, i.e., by using C-CDMPC, a train can
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TABLE III
SIMULATION RESULTS FOR DIFFERENT APPROACHES WITH UNIFORM TRAIN MASSES

Approach RDP Total cost Relative distance (m} Speed difference (m/s) CPU time (s)
max average min max average min max average
N-CDMPC yes 2.1506 - 10% | 22.63 19.89 18.50 | 1.3927  0.0099 -1.1059 | 4.74 4.00
C-CDMPC yes 1.8412-10% | 22.62 19.91 18.47 | 1.3886  0.0083  -1.1071 | 1.62 1.43
N-SDMPC no 2.8826 - 10* | 27.64 20.02 19.35 | 1.6091  0.0025  -1.2273 | 0.40 0.28
C-SDMPC no 2.8825 - 10% | 27.64 20.02 19.35 | 1.6091  0.0025  -1.2273 | 0.30 0.23
N-DMPC no 9.1687-10° | 31.50 2191 19.08 | 1.7582  0.0035  -1.3627 | 0.37 0.28
C-DMPC no 9.2349 - 10° | 31.64 21.92 19.08 | 1.7488 0.0035  -1.3778 | 0.30 0.23
25 25
20 20
215 --------------- 215 --------------
8 speed limit 3 speed limit
S_ 10 reference speed g 10 reference speed
L2 7 (. (2] i
55 55
III —train 4 I|' - — —train4
0 1 n n 0 1 n n
0 500 1000 1500 0 500 1000 1500
Distance (m) Distance (m)
2 2
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@ -train 1 > train 2 - train 1
E1r - train 2 = T train 3 - train 2
; train 3 ; — —train 4 - train 3
o o
15 : 15
s on L s 0n
5 P 5
3 3
g1 g
2] 2]
2 ! ! 2 . .
0 500 1000 1500 0 500 1000 1500
Distance (m) Distance (m)
Fig. 5. Speed profiles and speed difference of C-CDMPC (with the same  Fig. 6. Speed profiles and speed difference of C-SDMPC (with the same
mass). mass).
25
include the information of its follower train when calculating
its control input, thereby achieving a more homogeneous P S
speed profile via cooperative control. Table III and Fig. 7 _
show that C-DMPC exhibits the largest fluctuation in both reerencespesd
relative distance and the speed difference. As a train cannot Sl — rain 2
receive information from its predecessor train in Fig. 1(c), ¥ it
. . . i ‘ ‘
a train should al\fvays assume its prgdecessor train will perform 0 0 1000 1500
emergency braking. The decentralized control scheme tends Distance (m)
to be conservative; thus, the relative distance and the speed
difference of C-DMPC are larger than those of C-CDMPC T ain 1 votoronce )
and C-SDMPC. O I — van s van2 i
?u/ train 3
C. Control Performance With Heterogeneous Train Mass 3
=
In general, the masses of trains within a platoon are different 3
due to variations in the total passenger loads on each train. The a
mass of a train influences the acceleration and deceleration » ‘ ‘
(see (5), and determines the upper bound and the lower 0 ey 1900
bound of the control input. Therefore, the mass inconsistency ) )
will influence the control performance of the platoon. In this E:isz - Speed profiles and speed difference of C-DMPC (with the same

case study, we consider a platoon of 4 trains, where the weights
of the trains, from the leader train to the follower trains, are
60 t, 66 t, 57 t, and 66 t, respectively; so the heaviest train is
more than 15% heavier than the lightest train.

In order to show the importance of incorporating the infor-
mation on weights into the control design, we first conduct
simulations with all trains assumed to have the same mass in



LIU et al.: DISTRIBUTED MPC FOR VIRTUALLY COUPLED HETEROGENEOUS TRAINS

. C-CDMPC . C-SDMPC
E _l E .
40 i 40 TN
g 7 \'\, § ’ \’\,
g /'/' \'\ S /-/‘ \\
220 > L20 < ”
e N\~ \_~7
T o - T o0 < _-7
[5] (5] -
o o
0 50 100 0 50 100
Time (s) Time (s)
. C-DMPC
E s
g 40 / N train 1 - train 2
E /./' <~ | = train 2 - train 3
% 20 [yt = — — —tain3-tain4
© u/ safety distance
2 - desired distance
& 0 S~ -7
[5]
o
0 50 100
Time (s)

Fig. 8. Relative distance of different approaches (with all trains assumed to
have the same mass in the control design).
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Fig. 9. Relative distance of different approaches (with the true masses of
the trains used in the control design).

the control design. Then, we compare the results with the true
masses of the trains used in the control design. The simulation
results are provided in Table IV.

From Table IV, we can find that all approaches have compa-
rable performance in terms of the relative distance and speed
difference with their convex counterpart under both cases.
Therefore, in the following, we only use convex approaches
for the comparison between the two cases in which the mass
information is disregarded or included in the design.

In Table 1V, if we assume all trains have the same mass in
the control design, the minimum relative distance across all
approaches is less than 0 m, implying the potential collision
between trains, i.e., a train cannot ensure safety operation by
using service braking when the predecessor train performs
emergency braking. The relative distance between trains dur-
ing the operation process of each approach when assuming
all trains have the same mass in the control design is shown
in Fig. 8. Fig. 8 shows that the relative distance between
Train 1 and Train 2, Train 3 and Train 4 are lower than
the given threshold. As the follower train has a larger inertia
than its predecessor train, if the predecessor train starts to
perform emergency braking, the follower train cannot perform
braking with the same deceleration. Therefore, when a train
is heavier than its predecessor train, the required safe tracking
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Fig. 10. Speed profiles and speed difference of C-CDMPC (with the true
masses of the trains used in the control design).
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Fig. 11. Speed profiles and speed difference of C-SDMPC (with the true
masses of the trains used in the control design).

distance becomes difficult to ensure. Train 3 is lighter than
Train 2; thus, the braking distance of Train 3 is shorter than
expected and the safety distance between trains can be ensured.
However, the relative distance between Train 2 and Train 3 is
larger than the desired distance, with the maximum value being
more than twice the desired distance, which is unnecessary and
negatively influences the tracking performance.

The relative distance between trains of each approach when
considering the true masses of the trains is shown in Fig. 9.
From Table IV and Fig. 9, we can find that by including train
masses explicitly, the safety distance between trains can be
ensured, and the relative distance between trains is comparable
to the case of uniform masses in Table III.



20764

SIMULATION RESULTS FOR DIFFERENT APPROACHES WITH DIFFERENT TRAIN MASSES
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TABLE IV

Approach RDP Total cost Relative distance (m). Speed difference (m/s). CPU time (s)
max average min max average min max average
N-CDMPC yes 3.9359 - 107 | 44.26 16.34 -4.39 1.3943  0.0102  -1.1032 | 4.71 4.02
C-CDMPC yes 3.9348 - 107 | 44.26 16.35 -4.39 1.3902  0.0087  -1.1049 | 1.78 1.41
With all trains assumed N-SDMPC no 3.9198 - 107 | 44.26 16.44 -4.40 1.5643  0.0030 -1.2313 | 0.55 0.26
to have the same mass C-SDMPC no 3.9198 - 107 | 44.26 16.44 -4.40 1.5643  0.0030 -1.2313 | 0.30 0.22
N-DMPC no 3.7318-107 | 46.31 18.35 -2.66 1.7237  0.0041 -1.3598 | 0.47 0.26
C-DMPC no 3.7330- 107 | 46.31 18.35 -2.67 1.7254  0.0041 -1.3747 | 0.27 0.22
N-CDMPC yes 2.5846 - 10 | 21.96 19.86 17.86 | 2.2300 0.0126  -1.5705 | 5.04 4.35
C-CDMPC yes 1.9643 - 10* | 21.92 19.88 18.16 | 2.2387  0.0106  -1.5715 | 1.82 1.39
With true masses of trains | N-SDMPC no 3.0343 - 10% | 27.42 20.01 18.69 | 2.5732  0.0042  -1.6251 | 0.34 0.26
in the control design C-SDMPC | no | 3.0342-10% | 2742 2001  18.69 | 25732 0.0042 -1.6251 | 031 0.23
N-DMPC no 9.2421-10% | 31.33 21.87 18.18 | 2.7396  0.0057  -1.7608 | 0.35 0.27
C-DMPC no 9.3093 - 10* | 31.47 21.88 18.17 | 2.7339  0.0057 -1.7748 | 0.30 0.23
% of limited communication bandwidth and limited computation
power. Moreover, in the worst case when two neighbor trains
A b cannot communicate with each other, C-DMPC can be selected
=t seed it to control trains in a decentralized manner. Moreover, the
2 rlre spe simulation results also indicate that arranging heavier trains
at the front of the platoon can help to improve the control
i = = ~traind performance of the virtually coupled trains.
00 500 1000 1500
Distance (m)
D. Highlights of Results
3 .
.......... ain 1 - reference | 1) Convex Approximation: In Sections V-B and V-C,
O R N b we have conducted simulations for cooperative distributed
g = = Cteind-waind MPC, serial distributed MPC, and decentralized MPC under
3 both the cases of uniform masses and heterogeneous masses.
3 For all approaches and cases, we have tested nonlinear MPC
a- approaches and their convex approximations. The simula-
tion results indicate that MPC with convex approximation

1500

Distance (m)

Fig. 12.  Speed profiles and speed difference of C-DMPC (with the true
masses of the trains used in the control design).

The speed profiles obtained by C-CDMPC, C-SDMPC, and
C-DMPC considering the true masses of trains are provided
in Fig. 10, Fig. 11, and Fig. 12, respectively. The C-CDMPC
approach has the smallest fluctuation, with the relative dis-
tance fluctuating between [18.16 m, 21.92 m] and the speed
difference fluctuates between [-1.5715 m/s, 2.2387 m/s]. In the
cooperative control scheme, a subsystem can include the status
of its neighbors and try to reach consistency with its neighbors
regarding the relative distance and speed difference. Fig. 10,
Fig. 11, and Fig. 12 show that for all three control methods,
the speed difference between Train 2 and Train 3 is lower than
the speed difference between Train 1 and Train 2, Train 3 and
Train 4, implying that if the follower train is lighter than the
predecessor train, the tracking performance would be better.

From the above simulations, we can conclude that the
cooperative control approach has the best tracking perfor-
mance while requiring ample communication and computation
capabilities. Hence, C-CDMPC can be selected when suffi-
cient communication bandwidth and computation power are
available. The C-SDMPC approach can be selected in case

can achieve a speed tracking accuracy that is comparable
to that of the original nonconvex counterpart, while sig-
nificantly reducing the computation time. Therefore, using
convex approximation is an effective way to improve the
computational efficiency of MPC in virtually coupled trains.

2) Relaxed Dynamic Programming (RDP): Sections V-B
and V-C provide case studies for uniform and heterogeneous
masses, respectively. The simulations indicate that cooperative
distributed MPC, when accompanied by RDP, can achieve
better performance with lower speed and distance tracking
differences. By using RDP, we can develop a stopping criterion
for the string stability of the platoon, which, in general, cannot
be achieved with serial distributed MPC and decentralized
MPC. Overall, RDP is an effective approach to analyze the sta-
bility of MPC approaches. Moreover, sufficient computational
capacity should be ensured to support the efficient implemen-
tation of the RDP-based stopping criterion developed.

3) Heterogeneous Masses: Train masses influence the
dynamics of trains and should be considered explicitly
in the controller design to improve control performance.
In Section V-C, we have conducted simulations for cases
with and without true masses of trains. The simulation results
indicate that incorporating the true masses of trains in the
controller design ensures safety and achieves the desired
tracking performance while significantly reducing the total
costs for all the mentioned MPC approaches. In this context,
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TABLE V
CHARACTERISTICS OF INCLUDING DIFFERENT ELEMENTS

Characteristics

Reduce computational burden while maintaining
tracking accuracy

Incorporate a stopping criterion into cooperative
distributed MPC for string stability

Improve tracking accuracy and ensure safety

Elements
Convex approximation

RDP

Heterogeneous masses

we conclude that, in general, detailed train information should
be included to improve control performance when designing
control approaches for virtually coupled heterogeneous trains.

To summarize, the advantages of considering convex
approximation, relaxed dynamic programming, and heteroge-
neous masses are listed in Table V. In this paper, we consider
communication between two consecutive trains (as stated in
Fig. 1). In this context, each train only needs to consider the
status of its preceding and succeeding trains when calculating
its control decision. Thus, the approaches can be extended
to larger train platoons without increasing the computational
burden for each individual train.

VI. CONCLUSION

In this paper, cooperative distributed MPC, serial dis-
tributed MPC, and decentralized MPC have been compared
and assessed for controlling virtually coupled trains, consid-
ering the nonlinear train model and changes in the masses
of trains. We introduced the relaxed dynamic programming
approach into the train control field, and a distributed stopping
criterion with a stability guarantee has been developed for the
cooperative distributed MPC approach. We have also proposed
and assessed convex approximations of the above control
approaches to make a balanced trade-off between compu-
tational burden and accuracy. The three control approaches
and their convex counterparts have been evaluated considering
their distance tracking error, speed tracking error, and CPU
time. Simulation results indicate that: 1) the convex approaches
can achieve a performance that is comparable to that of their
original nonconvex version, while the computational burden
is reduced; 2) the cooperative control approach has the best
tracking performance while requiring ample communication
and computation capabilities; 3) by considering heterogeneous
train masses explicitly, the safety distance between trains and
the desired tracking performance can be ensured while the
total objective function value is significantly reduced.

Future research could explore uncertainties related to resis-
tances and train dynamics to enhance the performance of
the control methods. Additionally, distributed control under
conditions of intermittent communication is also promising,
which can be achieved by designing appropriate self-triggered
or event-triggered control strategies to address communication
latency. Furthermore, future work could involve extending the
research into other types of rail transportation modes, such as
freight and heavy haul trains.
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