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ABSTRACT The swift advancement of electric vehicle (EV) technology enhances the focus on sustainable
energy storage and underscores the crucial significance of lithium-ion batteries. This research primarily
presents the techniques of forecasting the Remaining Useful Life (RUL) of lithium-ion battery using
advanced Machine Learning (ML) methods such as Random Forest (RF) and Support Vector Machine
(SVM). This research centres around the thorough preprocessing of a detailed dataset received from
the NASA Ames Prognostics Center of Excellence. The One-way ANOVA method is employed to find
the optimum set of features. The exhaustive hyperparameter-tuning (HPT) was performed to boost the
performance of the ML models. An important component of this study is its pragmatic methodology, which
considered real-time variables such as temperature changes and usage cycles to analyses the effect on battery
capacity (cap). The proposed system helped to understand the behaviors of battery deterioration trends more
comprehensively. The effectiveness of the system is decided based on the R2 score and Mean Squared Error
(MSE). The RF model has shown R2 score of 0.83 and MSE of 1.67. The result enhances lithium-ion battery
safety and efficiency by establishing new predictive models. Thus, it provides a better battery management
system for electric vehicles. As a result, it promotes the development of more sustainable and economical
energy solutions.

INDEX TERMS Artificial intelligence (AI), electric vehicle batteries, machine learning (ML), remaining
useful life (RUL), random forest (RF), support vector machine (SVM).

I. INTRODUCTION management system (BMS) contains functions such as

This era of electrification progresses, characterised by
the rapid expansion of renewable energy-based electrical
vehicles. The significance of energy storage systems has
increased considerably due to the increase in renewable
energy-based systems. Li-ion batteries are considered supe-
rior to other energy storage technologies because they have
a high energy density, robust power output, and low self-
discharge rates [1], [2]. The increased relevance of this issue
mandates more demands and obstacles for the progress of
battery management technologies. A well-rounded battery
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data gathering, status analysis and forecasting, control over
charging and discharging, safety mechanisms, thermal man-
agement, balancing power, and communication systems [3].
The efficiency of a BMS is assessed by its accuracy in
state estimate. A BMS that operates exceptionally ensures
the energy storage system’s stable functioning and prolongs
battery life [4].

Anideal BMS should have multitasking skills and combine
a real-time operating system for constant monitoring and
rapid modifications.

Despite their advantages, Lithium-ion batteries have con-
straints, particularly their lifespan and cost, which prevent
their larger deployment [5]. Battery performance deteriorates
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over time due to calendar ageing and cycle ageing, leading
to numerous degradation events [6], [7]. Ageing not only
raises operational costs but also reduces the lifespan of equip-
ment and impairs safety [8], [9], [10]. A battery is generally
deemed to have reached its end-of-life when its capacity
decreases to 80% of its initial value [11]. The Remaining Use-
ful Lifetime (RUL) is the predicted operational length from
the current moment until the battery hits its end-of-life [12],
[13], [14].

The composition of the battery and the chemical changes
that occur within it throughout charge-discharge cycles deter-
mine its longevity. This ageing process is intricate and
non-linear, which is further affected by parameters includ-
ing temperature, charge/discharge rates, and the surrounding
environment [15], [16], [17], [18]. Accurate prediction of
RUL in complex situations is a major task. In industrial envi-
ronments, correct RUL predictions may minimise investment
costs and enhance profitability [19], [20]. It also helps in
energy storage systems, boosting safety, stability and extend-
ing battery life [21], [22].

RUL has three prediction strategies: model base, data-
driven, and hybrid methods [23], [24]. In the model base
approach, the mathematical description of the internal bat-
tery physical and electrochemical reaction formulated for
generate predictive models to know the current status of the
battery [25], [26], [27]. The formulation of these models is
a complex method and faces the problem of computational
intensity because parameterizing electrochemical models
follows the battery disassembly method, which is very chal-
lenging in practical application. However, it proves excellent
accuracy once the model is prepared [28], [29]. At the same
time, data-driven methods are formulated based on historical
data. Therefore, these data-driven methods are more practical
than the model-based approach due to the complicated nature
of the Li-battery [30], [31], [32].

The prediction of Remaining Useful Battery (RUL) is
very important for optimizing both performance and safety
of the electrical vehicles. Therefore, this study predicts the
remaining useful of electrical vehicle batteries more accu-
rately by modelling historical data using supervised learning
such as Random Forest (RF) and Support Vector Machine
(SVM). The historical battery data is taken from NASA Ames
Prognostics Center of Excellence (PCoE). The accuracy of
the models is enhanced by techniques like feature selection.
Various methods of feature selection, like one-way ANOVA
and hyperparameter tuning, are applied in the research. The
effective models are decided based on the value R2 and
MSE of the models. The novelty of the study is getting the
real-time data of battery capacity decline and temperature
fluctuations as a result of the study. It also provides the associ-
ation between the number of battery consumption cycles and
the battery decline capacity percentage. This investigation
was conducted utilizing Google Colab and a 12GB NVIDIA
Tesla K80 GPU to support hardware acceleration. The dataset
is split into training and testing groups for pre-processing
and extracting essential features. The predictive models
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are finalised based on a comparative study of the prior
research.

Zhu et al. [33] proposed an improved hybrid neural net-
work, combining a bi-directional Long Short-Term Memory
(Bi-LSTM). It provides a new method for forecasting Li-ion
battery health using deep learning. The methods help in
monitoring the complete health of the battery and its lifecycle
from charging to discharging. Yang et al. [34] applied HPCC
test to extract the battery related features. After that, the
extracted features are given to the Back propagation neu-
ral network (BPNN) to predict the state of health of the
batteries. Mitra et al. [35] used different machine-learning
models to predict the battery life of Lithium batteries. The
support vector Regressor (SVR) has shown the lowest error
rate among all algorithms. Chun et al. [36] enhanced the
reliability of the Li-ion battery by monitoring the health of
the battery and capacity prediction by applying a Generalized
Regression Neural Network (GRNN). The usability of the
battery is further improved by forecasting its Remaining Use-
ful Lifetime. Wu et al. [37] used the particle swarm optimizer
with Random forest (PSO-RF) to predict the battery life.
The feature optimization was not performed in this case.
Ren et al. [38] merged an autoencoder with a deep neural net-
work (DNN), adopting a 21-dimensional feature extraction
technique using the autoencoder to represent battery health
decline. The DNN model, trained on a real-world dataset from
NASA, demonstrated excellent in multi-battery remaining
cycle life estimation. A few drawbacks of the above literature
are discussed in the following table-1.

TABLE 1. Literature survey.

Ref. No. | Method Drawback

33 Bi-LSTM Slow training, Resource
expensive

34 BPNN Suffers with overfitting

35 SVR Absence of model tuning,
inefficient feature selection

36 GRNN Prone to overfitting, difficult
to tune

37 PSO-RF Absence of feature selection

38 DNN Needs a large amount of
data and slow convergence
due to deep structure

Il. PROPOSED SYSTEM

This research provides an intricate model aimed at forecasting
the Remaining Useful Life (RUL) of electric vehicle (EV)
batteries. The methodology, as represented in the workflow
diagram, begins with painstaking data pre-processing, involv-
ing the imputation of missing values from a comprehensive
dataset acquired from the NASA Ames Prognostics Centre
of Excellence. Afterwards, the Feature selection and training
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of machine learning models such as Random Forest and
Support Vector Regressor was performed. The performance
enhancement of the models was achieved by adjusting the
Hyperparameter as shown in figure-1.

Data Processing

Data set leveraged from)

a custom-built battery Capacity Percentage is

Data for 28 batterles| |0\ ;oo ion has| [being calculated for sach

B NAEA Ao inthe form of amat | |00 img | | g sycie sna
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Training Model
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Effect of
temperature on Eifect of cycle on
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ecrease method used for this.

purpose.

Effect of m:
features on
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FIGURE 1. Methodology flowchart.

A. COLLECTION AND STRUCTURE

The dataset used in this work is acquired from a custom-built
battery prognostics laboratory at the NASA Ames Prognos-
tics Center of Excellence (PCoE). The data set is structured in
cycles for 29 batteries in.mat file format, each having charge,
discharge, and impedance operations. The data comprises
multiple parameters, such as voltage, current, temperature,
and impedance, acquired during different battery operations,
as shown in Table 2.

TABLE 2. Battery data structure overview.

Data Type Description
Cycle Array of structures at the top level that
Includes impedance, charge, and
Discharge processes.
Operation type impedance, charge,

or discharge
Ambient temp (degree C)

Ambient temperature

Time The beginning and ending timestamps of
The cycle, as a MATLAB date vector
Data Structure of data offering measures

Volts measured
Amps measured
Temp measured
Amps charge
Volts charge

Battery Terminal voltage (in volts)
Battery Output current (Amps)

Battery Temperature in Celsius

Measured current at the charger (in amps)
Measured voltage at the charger (Volts)

Time Cycle time in second

Capacity 1 Battery discharge capacity in Ahr up to 2.7
\Y

Sense amps Amps of current in the sense branch

Battery amps
Current ratio

Amps flowing through the battery's terminals
Combined current ratio

Battery impedance Battery impedance in Ohms

Rectified impedance The battery's impedance has
adjusted and flattened in Ohms

Re Electrolyte resistance in Ohms

Rcet Charge transfer resistance in Ohms
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B. DATA PREPROCESSING

The originally iterated through each.mat file, representing
individual battery cycles, to extract pertinent data. Then, this
data was methodically formatted into a CSV file, boosting
ease of handling and analysis. The missing values in the
important features, including voltage, current, and temper-
ature, were imputed with the mean value, for assuring the
dataset completeness. The main objective of this investigation
is to determine the capacity percentage of age (%age) for each
cycle, using the formula in Equation (1):

Joage = ((C; — C2)/C1)*100 (1)

where C; is the maximum available capacity of the current
cycle, and C2 is the maximum available capacity of the next
cycle. This computation is essential for understanding the
degradation patterns in EV battery life over multiple cycles.

Correlation Matrix Insights: The correlation matrix gives
substantial insights into the relationship between various fea-
tures and battery health. Temperature change and discharge
indicate a considerable association with battery capacity,
affirming the decision to do regression tasks on these vari-
ables, as shown in Figure 2.

Correlation Matrix
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FIGURE 2. Correlation matrix.

C. FEATURE SELECTION

Selecting the most important features is essential for con-
structing precise predictive models. The study applies the
One-Way Analysis of Variance (ANOVA) method as a cred-
ible statistical method to find features that have a substantial
impact on battery degradation. In this process, the important
features of battery life deterioration are selected carefully
for analysis. It minimised the complexity of the model
and enhanced the overall accuracy of prediction using the
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ANOVA (Analysis of variation) method. The process is based
on comparing the variation within groups to the variance
between groups [39] based on F-statistic calculation using
Equation (2):

2 2
F= (GBtn grps)/ (UWithin grps) @)

where o2 represents the variance. The importance of the
feature is decided by the F-value, as shown in Figure 3. The
more important feature has a higher F-value. The impact of
these features is more on the dependent variable.

4
Features

FIGURE 3. F-value using ANOVA.

D. TRAIN TEST SPLIT

The datasets are split into two parts for analysis using
machine learning. 70% of datasets are allocated for training
the model, and 30% of datasets are allocated for testing the
model finalised based on accuracy during the training.

E. MACHINE LEARNING MODELS

There are many machine learning techniques that are used
for data analysis. The model is decided on the basis of the
type of dataset. RF and SVM are more suitable models for
battery Remaining Useful Battery robust prediction. These
models can handle high-dimensional data and capture com-
plex relationships. Hyperparameter tuning is used to improve
the model’s performance.

1) RANDOM FOREST

It is a composite learning method utilized for regression or
classification tasks. It creates a group of decision trees T
during training. While making the prediction, it finds the
mean regression outcome made by each decision tree. While
creating the decision trees, a random subset with f-number
of features is considered out of total features F. Due to this,
diversity is added when constructing different decision trees.
Different subsets of the original dataset are created with
replacements for training each decision tree of the same size
as the original dataset. Few records get repeated in each
subset, whereas few are completely unique. In every node,
branching occurs only if the number of samples contained
by each node is more than the threshold value set for the
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minimum sample count hyperparameter. Setting a very high
value for this hyperparameter mostly results in underfitting,
and lower leads to overfitting of the decision tree. The aim
of branch decision at any node in a decision tree is mainly to
reduce the mean squared error e in the target feature, as shown
in equation 3.

N
e= % D 0= 3)
where y; is the actual value, y is the predicted value, and N is
the number of samples in the node.

During the tree creation, it generally goes to any level of
depth without pruning, often leading the model towards over-
fitting. The decision tree aggregation will start after all the
decision trees are constructed. During this phase, the average
of prediction results produced by all trees is calculated as
shown in equation 4.

N R
Y=g @

where y; the prediction of the t-th tree, and T is the total
number of trees.
Algorithm for Random Forest-
Given a training Instance D = {(A;, B))}"_,, where A; are
the input features and B; is the target value:
1. Training Phase:
> For each tree t in the forest (total T trees):
. Draw a bootstrap sample D, from D.
. Grow a decision tree T; on D; by:
% Ateachnode, select arandom subset of features.
++ Split the node using the feature that minimizes
the MSE.
+« Continue splitting until stopping criteria are met
(e.g., maximum depth or minimum samples per
leaf).
1) PREDICTION PHASE:
> For a new input x, each tree 7; provides a prediction
i (x).
> The final prediction J;(x) is the average of all indi-
vidual tree predictions.

a: RF OPTIMIZATION

The different hyperparameters of Random Forest are tuned
for optimum performance. The ‘random state’ parameter is
a numerical value that dictates the specific random arrange-
ment used to divide the training and test data. In one instance,
the chosen values by GridSearchCV for these parameters
were: ‘max depth’ as [None, 10, 20, 30, 40, 50], ‘n estimators’
as [50, 100, 150, 200, 250, 300, 350, 400, 500], and ‘min
samples split’ as [2], [5], [10], [15], [20] among which the
best parameters were { ’max depth’: 30, min samples split’:
2, ’n estimators’: 400} [40].

2) SUPPORT VECTOR MACHINE
It is a type of machine learning algorithm used for classifi-
cation as well as for regression. It performs the regression by
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drawing a bestfit line and 2-marginal planes in each side of
the best-fit line having an equal distance from the bestfit line,
as shown in equation 5.

Fx)=w! xx+¢€ (5

where w = slope of the bestfit line, x = input vector,
€ = distance between bestfit line and marginal plane. Out
of multiple possible marginal planes around the bestfit line
the model selects a specific set of 2 lines having maximum
distance between them. These lines can be created by drawing
a line passing through the points closer to the bestfit line
in both sides. The loss function can be minimized by min-
imizing the value of slope ‘w’ intercept ‘b’ and regulating
the hyperparameters. The different hyperparameters of the
support vector regressor are the number of points adjusted
outside the marginal plane and the total distance of those
points from the marginal plane. The different kernel functions
are used for transforming the non-linear relationship between
input features and target into a linear one. The detailed steps
of SVR are depicted in the following algorithm [23].

Algorithm

Step 1: Define the Dataset

Suppose a dataset with n samples {(x;, y;)}i_;

Where x; is the independent feature vector, y; is the contin-
uous target variable. To find a function f(x) that can predict
the value of y; with lesser error.

Step-2: Create a bestfit line with following equation. y =
wT % x + b Where w = slope of the bestfit line, x = input
vector, b = y-intercept, Let us assume b = 0 for simplicity

Step-3: Create equal distance marginal plane in both direc-
tions of bestfit line. w! xx + €

Step-4: Find the best set of marginal planes around the best
fit line by maximizing the distance between them.

2

max
wb | |wl]

where | |w| | is the magnitude of the slope of the line
Defining constraint for the function

_[+1 wlsx+b>+1

-1 wlhsx+b<-1

Step-5: Calculate the cost function by minimizing w, b

o wl ]
in——
w,b 2
Step-6: Regulate the cost function by introducing the
hyperparameters. (Linear problem)

n
| 1wl |
min +cx &;
n 2 ¢
i=1
where
¢ = Number of points adjusted outside
marginal plane

&; is the sum total of all points lying outside
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marginal plane
Constraint = |y; — w; x x| < € + &;
Where

€ = Distance between Bestfit line and marginal plane

&; = Distance between the point and marginal plane

Step-7: Find the optimal value for Lagrange multipliers «;
and ] (in the non-linear problem).

Step-8: Perform the final output prediction.

o Linear Problem: f (x) = w! «x + b
e Non-Linear Problem: f (x) =
K (xj,x)+b

Where K = Kernel function

The Kernel in SVR, comparable to SVM, is a measure
of similarity, dictating the shape of the hyperplane in the
higher-dimensional space. Common choices for the Kernel
HP include linear and RBF (radial basis function). In the
context of SVR, these Kernels help in transferring the data
points into a higher dimension where a linear fit is possi-
ble. The RBF Kernel, for instance, is popular because of
its effectiveness in handling non-linear correlations, offering
a versatile method to accommodate a wide range of data
patterns [41].

iy (i —af) *

ko) =ep[-(m =2l /2] @

where o denotes variance, and |x; — x| is the Euclidean
distance between two points, x; and x, in equation (6).

a: SVR OPTIMIZATION

Here, the two important hyperparameters such as ‘C’: [6],
[71, [8], [9], [10], [11], [12] and ‘Kernel HP’: [’linear’, rbf’]
are tuned to achieve the best performance of the model. ‘C’
tells about the count of points outside the marginal point. The
job of Kernel functions is to transform the points with lower
dimension space to higher. Using the GridSearchCV method,
the best value for ‘C’ is found as ‘10’, and the Kernel function
is selected as rbf.

Ill. RESULTS

A. PREDICTION OF CAPACITY PERCENTAGE DECREASE
DUE TO TEMPERATURE OF THE BATTERY

The Random Forest Regressor model is applied to predict the
percentage decrease in battery capacity due to temperature
change and discharge. The R2 score [42] obtained is 0.83,
indicating a strong correlation between the predicted value of
the dataset and actual values. The Mean Squared Error (MSE)
[43] is 1.67, which signifies the value of the model accuracy
in capturing the capacity decrease as shown in figure-4.

B. PREDICTION OF CAPACITY PERCENTAGE DECREASE
DUE TO THE NUMBER OF CYCLES

Regression tasks employing the Support Vector Regressor are
performed to predict the battery’s capacity based on the num-
ber of cycles. The R2 scores fall within the range of 0.90 to
0.99, showcasing the model’s effectiveness in capturing the
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FIGURE 4. Capacity percentage vs. temperature (Actual - Predicted).

relationship between number of cycle and the battery’s capac-
ity as shown in figure 5, 6, 7, 8.

Model performance for Battery BO005

~

Battery Capacity
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FIGURE 5. Battery-Cap vs. cycles for battery B0005.

C. PREDICTION OF CAPACITY PERCENTAGE DECREASE
WITH MULTIPLE FEATURES

The Random Forest Regressor predicts battery capacity
percentage decrease, considering multiple features such as
voltage, current, and temperature. In total, seven such features
are used. The R2 score is 0.73, and the Mean Squared Error is
1.9. This analysis provides insights into the combined impact
of various factors on battery health.
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IV. COMPARATIVE ANALYSIS

After investigating the different literature, a detailed com-
parative analysis is discussed in this section. Table 3 shows
the prediction error of lithium-ion battery life using dif-
ferent Al-based methods. The proposed approach, utilising
ML techniques like RF and SVM, outperforms others with
an impressive R2 score of 0.83 and a Mean Squared Error
(MSE) of 1.67. This higher accuracy stems from the focused
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feature selection using one-way ANOVA, which narrows to
seven crucial features, that is lesser than other studies. Other
studies have either used extensive feature sets or needed more
robust feature selection that is potentially leading towards
overfitting. The proposed feature selection method and Grid-
SearchCV based Hyperparameter tuning contribute to the
model’s precision, avoids overfitting and enhancing accu-
racy through optimal Hyperparameter value selection. Most
of the studies employed deep learning techniques like Bi-
LSTM [33], BPNN [34], GRNN [36], and DNN [38] for
Li-ion battery health and RUL estimation. These methods
are effective, but they are computationally intensive, leading
to slower algorithm speeds. The reason behind the higher
error percentage, shown by the DL models, is due to the
use of less important features. Utilizing suboptimal features
often leads to a decline in performance. Apart from this,
most of the time, deep learning models suffer from the issue
of vanishing gradient problems when the sample count is
less. In SVR [35], feature selection was performed using the
F-test, which is not always as efficient as an ANOVA test.
The F-test provides a limited view by only comparing two
groups simultaneously. ANOVA, on the other hand, evaluates
the overall variance between multiple groups, giving a more
comprehensive understanding of the relationships among the
groups. In RF [37], the model hyperparameters are tuned
using a particle swarm optimizer (PSO). The PSO method is
not efficient enough as compared to GridSearchCV when the
parameter space is not too large. The GridSearchCV method
is most preferable when the numbers of Hyperparameters
are not so high. Even though the PSO is faster many times,
it does not guarantee the optimal value while searching for the
global minima. The feature selection was also not conducted
using this method. Hence, the model has shown a higher error
percentage than the proposed model.

TABLE 3. Comparative analysis.

Ref Method Error

No.

33 Bi- LSTM 2%

34 BPNN 5%

35 SVR 10.9%

36 GRNN 4.3%

37 PSO-RF 3%

38 Deep Neural Network (DNN) 6.66%
Proposed System (Tuned RF) 1.67%

V. CONCLUSION

This study indicates a substantial leap in estimating the RUL
of Li-ion batteries in EVs, applying ML models like RF
and SVM. The methodology comprised rigorous data pre-
processing, where specific parameters affecting battery life
were meticulously separated. Using One-way ANOVA, the
research revealed seven key factors out of 10 significantly
influencing the battery’s RUL. The RF model earned an
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exceptional R2 score of 0.83 and an MSE of 1.67, indicating
its accuracy in predicting capacity decline due to tempera-
ture fluctuations. These discoveries are pivotal for enhancing
battery management systems in electric vehicles and offer
a framework for future study in predictive modelling. The
research continues by emphasizing the potential of expanding
this strategy to embrace more diverse data sets and exploring
the integration of deep learning techniques to refine forecast
accuracy further. The work can be enhanced by including dif-
ferent sensors and Internet of Things (IoT) based devices for
collecting real-time data on electrical vehicle batteries. The
RUL of different EVs can be improved to a greater accuracy
by applying hybrid machine learning-based analytics on the
real-time data collected using sensors.
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