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Recurrent Neural Network Enabled Continuous
Motion Estimation of Lower Limb Joints From
Incomplete sEMG Signals
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Abstract— Decoding continuous human motion from
surface electromyography (sEMG) in advance is crucial
for improving the intelligence of exoskeleton robots. How-
ever, incomplete sEMG signals are prevalent on account of
unstable data transmission, sensor malfunction, and elec-
trode sheet detachment. These non-ideal factors severely
compromise the accuracy of continuous motion recogni-
tion and the reliability of clinical applications. To tackle
this challenge, this paper develops a multi-task parallel
learning framework for continuous motion estimation with
incomplete sEMG signals. Concretely, a residual network
is incorporated into a recurrent neural network to integrate
the information flow of hidden states and reconstruct ran-
dom and consecutive missing SEMG signals. The attention
mechanism is applied for redistributing the distribution
of weights. A jointly optimized loss function is devised
to enable training the model for simultaneously dealing
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with signal anomalies/absences and multi-joint continuous
motion estimation. The proposed model is implemented
for estimating hip, knee, and ankle joint angles of phys-
ically competent individuals and patients during diverse
exercises. Experimental results indicate that the estima-
tion root-mean-square errors with 60% missing sEMG
signals steadily converges to below 5 degrees. Even with
multi-channel electrode sheet shedding, our model still
demonstrates cutting-edge estimation performance, errors
only marginally increase 1 degree.

Index Terms— Surface electromyography (sEMG), con-
tinuous motion estimation, incomplete signals, recurrent
neural network.

. INTRODUCTION

OWER limb rehabilitation robot has evolved into
a promising alternative to promote brain neural
reorganization and compensation by performing repetitive
training for individuals with impaired locomotion, improving
rehabilitation outcomes [1], [2], [3]. However, lower limb
rehabilitation robots (LLRR) encounter challenges in catering
to user requirements and informational interactions. Interaction
techniques based on program control restrict the autonomous
adaptability of robots, which can result in human-robot
movement mismatches, rehabilitation inefficiencies, and even
safety issues, impeding clinical development [4], [5], [6].
A straightforward strategy to overcome this challenge involves
rehabilitation robots monitoring human motion intention in
advance to ensure flexible, stable, and safe control across
multiple joints. For this purpose, this paper seeks to investigate
the precise and robust recognition of the human lower limb
multi-joint continuous movements, enhancing the capability
of the LLRR to effectively monitor human motion status.
Human lower limb movement intentions are commonly
acquired by dissecting biomechanical or bioelectrical sig-
nals [7], [8], [9]. However, it is difficult to monitor
human neuromuscular status because biomechanical informa-
tion relies on external motion performance and measurement
of physical parameters. A more pivotal consideration is the
temporal latency that exists between biomechanical signals and
joint movement. It impedes the timely adjustment and opti-
mization of motion strategies in complex task environments
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[10]. As opposed to the former, bioelectrical signals generated
prior to limb movements with human behavioral information
can directly reflect human movement trends, demonstrating
potential in realizing seamless control of the LLRR [I11],
[12], [13]. Therein, the surface electromyography (SEMG) sig-
nals are bioelectrical currents generated during motion-related
muscle contractions detected from human skin, revealing the
neural control mechanisms underlying limb movements [14],
[15]. Inspired by this, many researches have utilized SEMG
signals to monitor human movement status [16], [17], [18].

Monitoring lower limb motion intention based on sEMG
signals typically involves discrete action modality classifica-
tion (DAMC) and continuous motion estimation [19], [20].
The DAMC commonly detects the transformation and switch-
ing of lower limb multi-modal motion states via machine
learning and neural network techniques [21], [22], [23], [24].
It is evident that the LLRR actuated via DAMC failed
to achieve continuous and smooth multi-joint cooperative
movement, typically realized with the assistance of external
control strategies. Conversely, continuous motion estimation
normally monitors joint motion variables (angles, angular
velocities, torque, etc.) in real time employing joint dynamics
models or regression techniques, with potential to enable
synchronized and proportional control in multiple degrees
of freedom [25], [26], [27]. Moreover, robust and precise
prediction of continuous motion can aid rehabilitation special-
ists in assessing the musculoskeletal and joint kinematics of
patients during training, offering valuable insights for targeted
electrical stimulation or assistive interventions. One feasible
strategy for human continuous motion prediction involves
employing muscle physiologic mechanics to construct mus-
culoskeletal model that can elucidate the mechanisms of joint
motion [28]. This approach boasts the advantage of extracting
relevant muscle activation levels, revealing the underlying
principles of human movement. However, such approach also
encounters challenges related to the complexity of the model
due to the difficulty in capturing physiological parameters.
Researchers have also attempted to simplify musculoskeletal
models recognizing continuous movement. Nevertheless, these
simplified models have inherent modeling errors that com-
promise predictive accuracy [29]. In light of this, numerous
researches have endeavored to establish regression mapping
models to achieve intended objectives by capturing the latent
relationships between SEMG signal features and continuous
joint motion variables [30], [31].

It is apparent that the quality of the sEMG signal is
essential for clinical evaluation and human movement inten-
tion recognition. In clinical practice, electrodes of diverse
shapes, sizes, and configurations are routinely affixed to tar-
geted muscles, detecting SEMG signals through wired/wireless
transmission [32], [33]. Regrettably, it is probable that the
signals from certain electrodes may exhibit low quality, likely
attributable to factors such as motion artifacts, power-line
interference, electrode disconnections, and temporal variations
in electrode-skin impedance [34]. Additionally, signals may be
absent for a period of time due to data transmission failures,
electrode sheet displacement/detachment [35]. These non-
ideal factors result in the emergence of outliers and missing

values within the acquired sEMG signals, posing significant
challenges for signal feature extraction and continuous motion
recognition [35]. Current researches typically involve multiple
experiments to acquire optimal sSEMG signals for assessing
the feasibility of models. Nevertheless, this methodology
conspicuously escalates the research expenditure while con-
currently diminishing the reproducibility and reliability of the
experimental outcomes. Thus, addressing intent recognition in
missing SEMG signals is a pivotal challenge that the LLRR
must surmount as it transitions from laboratory to practical
applications. One of the most straightforward solutions is to
drop the missing segments of the SEMG signals. Duan and
Yang designed data split reorganization solution to optimize
the feature set of missing data and weight-based multi-neural
network voting method for gesture recognition [35]. The
approach chose to discard the missing parts and utilized the
remaining signals to accomplish the gesture recognition. How-
ever, such operation inevitably disturbs the feature distribution
of the signal, reducing the recognition accuracy and failing
to handle consecutive missing data. Another method is to
reconstruct the sEMG signals based on residual data using
machine learning or deep learning [36]. Akmal et al utilized
a tensor decomposition method to restore SEMG signals with
60-95% missing rate, however, the repaired signals contain
more burrs, which may affect the recognition [34]. Ding et al.
employed marginalization or conditional mean interpolation to
fill in missing SEMG signals, integrating Bayesian decision-
making and high-dimensional Gaussian mixture model for
hand gesture recognition [37]. However, current research
typically considers signal imputation and motion intention
recognition as two separate tasks and addresses them with
divergent approaches.

Despite the promising performance demonstrated by these
methods for intention recognition on incomplete data, several
limitations remain. 1) The reconstructed signal may result
in data distortion, conveying incorrect information to the
physiotherapist. 2) Existing solutions commonly employ two
distinct models to address data missing and intent recognition
separately, which may not satisfy the real-time requirements
of the system due to it absorbs more time. 3) Predicting
continuous multi-joint motion with incomplete SEMG signals
is indisputably more challenging, but research in this area
remains relatively scarce.

This paper develops a multi-task parallel learning frame-
work based on the recurrent neural network (RNN) for
the simultaneous handling of sEMG imputation and multi-
joint continuous motion estimation. Inspired by the residual
network [38], a residual sum vector (RSV) is imported
into the RNN for integrating the information flow from the
hidden states of the model and interpolating continuously
missing sSEMG signals. In view of joint movements being
collaboratively controlled by multiple muscles with different
contributions, the weights are redistributed via incorporating
an attention mechanism. Beyond that, a joint optimization loss
function is developed to train the proposed model with the
backpropagation technique, which ensures that input interpo-
lation and prediction are completed in parallel. The presented
model is implemented for estimating hip, knee, and ankle
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Fig. 1. Schematic diagram of decoding multi-joint angles from defect sSEMG signals. (a) SEMG signals and joint angles acquisition during training (in
Section II-A). (b) Data acquisition equipment. (c) SEMG signals processing, involving denoising and abnormal/missing values detection and handling
(in Section 11-B). (d) Multi-joint angle prediction model with incomplete SEMG signals. Green cells represent intact inputs and yellow ones indicate
missing inputs, which are randomly generated and may even occur as consecutive missing; Blue cells denote RSV modules for approximating intact
signals and filling in missing values; Purple unit for the predicted multi-joint angle (in Section Ill).

joint angles of physically competent individuals and patients in
diverse missing rates. The multi-joint continuous movements
identified in this paper can serve as an intelligent decision-
making basis for the control system of the LLRR, enabling
real-time adjustments of motor drives and torque distribution
based on the subject’s motion status. The main contributions
of this work can be summarized as follows.

1) A parallel learning mechanism is designed to simulta-

neously dealing with input signal abnormal/missing and
multi-joint continuous motion estimation, enhancing reli-
ability of clinical evaluation, assisting physiotherapist to
identify motor function weaknesses, and thus formulating
targeted rehabilitation solutions.
The developed strategy enables to reconstruct the missing
signals and accurately identify the multi-joint angles of
healthy individuals and patients in extreme conditions,
enhancing the intelligence and stability of the intention
recognition system.

The remainder of this paper is as follows. Section II
describes the acquisition and processing of SEMG signals. The
design and optimization of the prediction model are introduced
in Section III. In Section IV, the prediction performance of the
proposed model with sSEMG signals missing is verified by a
large number of experiments. Finally, Section VI summarizes
the content of this paper.

2)

[1. DATA ACQUISITION AND PROCESSING

The designed multi-joint continuous motion prediction
framework is presented in Fig. 1, which encompasses three
main aspects: 1) acquisition of the sSEMG signals and joint
angles; 2) processing of outliers/missing values in sSEMG
signals; 3) design and optimization of prediction model with
incomplete SEMG signals.

A. Data Acquisition

Pedaling exercises and leg extensions are the two commonly
employed training modalities for rehabilitation. To acquire
convincing experimental data, seven healthy subjects (subject-
1 to subject-7, 7 males, age 2542 years, height 1.78+£0.02 m,
weight 7242.25 kg) signed informed consent and performed in

leg extension task and pedaling exercises. Additionally, based
on the Brunnstrom stages, three stroke patients (subject-8 to
subject-10, 3 males, age 60 & 2 years, height 1.76 &= 0.03 m,
weight 73 £ 2.25 kg) at stages 4 or 5 engaged in pedaling
exercises. The objective of this study is to facilitate the
information exchange between lower limb rehabilitation robots
and the human body while improving the transparency and
intelligence of the rehabilitation robot system. Therefore, the
patients involved in this study were those in the mid-to-
late stages of rehabilitation, who needed to actively engage
in their training tasks. Subject-8 is a patient with left-sided
hemiplegia resulting from an acute or subacute right frontal
subcortical infarction, classified as stage 4 on the Brunnstrom
scale, with a spasticity score of 0, an activities of daily
living (ADL) score of 45, and a treatment duration of two
months. Subject-9 has been diagnosed via head computed
tomography (CT) with bilateral lacunar infarction leading to
left-sided hemiplegia. This patient is classified as stage 5 on
the Brunnstrom scale, with a spasticity score of 0, an ADL
score of 60, and a treatment duration of two months. Subject-
10 has been diagnosed with acute or subacute infarction in
the right corona radiata and right basal ganglia according to
magnetic resonance diffusion imaging, resulting in left-sided
hemiplegia. This patient is also classified as stage 5 on the
Brunnstrom scale, with a spasticity score of 0, an ADL score of
85, and a treatment duration of four months. The experiments
were approved by the Local Ethics Committee of Second
Hospital Jilin University on September 11. 2023 (2023188).

The participant’s legs were required to be shaved and
cleaned ahead of the experiment to mitigate signal disturbance
from the external environment. During the experiment, SEMG
signals were collected from six muscles of the left leg,
including rectus femoris (RF), vastus lateralis (VL), biceps
femoris (BF), semitendinosus (ST), tibialis anterior (TA), and
medial gastrocnemius (MG), respectively. The hip, knee, and
ankle joint angles were obtained at the same time. Therein,
the SEMG signals acquisition equipment adopted a BIOPAC
system with a sampling frequency of 2 kHz, and the angle
sensor employed an inertial measurement unit (IMU) with a
sampling frequency of 100 Hz. The whole experiment can be
divided into two phases:



3580

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

BF

s HE
0‘3 H%WMM

IRF

0 15 30 45 60 75 90

Fig. 2.
exercise.

The raw multi-channel sEMG signals of subject 1 in pedaling

1) Leg extension exercise: In the initial state, the par-
ticipant’s thigh and shank were parallel and perpendicular
to the ground, respectively. The participant extended/flexed
after hearing the command, while the SEMG signals of six
channels as well as the angle of three joints were recorded
over periods of 90 seconds. A total of 12 repetitions were
performed in the experiment, with an interval of two minutes
for each group. One channel was manually disconnected after
60 seconds in each of the second through seventh experi-
ments, in the order MG, VL, TA, ST, BF, RF. Moreover,
the number of channels disconnected in each group increased
sequentially (2-5 channels) from the eighth to twelfth set of
experiments.

2) Pedaling exercise: After completing the previous phase
of the experiment, the participant rested for 20 minutes and
then performed pedaling exercises. The specific experimental
requirements were consistent with leg extension exercise.

Figure 2 illustrates the recorded raw multi-channel SEMG
signals while subject 1 performed the pedaling exercise.
The unprocessed sEMG signals of subject 2 during the leg
extension training are displayed in Fig. 3. Despite many
measures being utilized to reduce the interference of noise,
the raw sEMG signals are still contaminated. Additionally,
the acquired SEMG signals contain a large number of outliers
(inside the yellow solid circle in Fig. 2 and Fig. 3), which
may be caused by data transmission interruptions, signal drift,
and sensor malfunction. The amplitudes of the SEMG signals
instantaneously expand about 5 times due to the disconnection
of the BF, ST, and TA channels, which seriously compromise
the signal characteristics (The red dashed circle in Fig. 2 and
Fig. 3). Furthermore, the experiments revealed that the missing
rate of SEMG signals reached 16-25% without disconnecting
the electrode sheet.

B. sEMG Signals Processing

To eliminate the noise such as DC bias, baseline noise, and
industrial frequency interference, the following techniques are
utilized to process the raw sEMG signal.

s i _
S a1
5 | HHMWWW
e -
 HHHHHA - el

Fig. 3. The unprocessed sEMG signals of subject 2 during the leg
extension training.

1) A band-pass filter with a low/high cut-off frequency of
20/500 Hz is used to eliminate the noise in SEMG signals.

2) The full-wave rectification is employed to present the
process of SEMG signal amplitude change more clearly.

3) The sub-sampling is adopted to align the sampling
frequency of the SEMG signals with that of the joint angles.

However, we find that the outliers still exist in processed
data, which seriously impair the performance of recognition
model. To this end, the processed SEMG signals are further
treated using the following max-min and K-o discriminative
criteria, where outliers in the dataset are eliminated and
considered as null values:

_ ]S mi=Sij=v )
Y null vy < ;118 < wi

_ Sij Sij <Koy @)
Y null Sij > KOj

where §;; is the processed SEMG signal of the i-channel at
time j; w; and v; are the predefined thresholds associated
with channel i, respectively; o; is the standard deviation of
channel i; and « is a constant. The acquired and processed
SEMG signals will be used for modeling in Section III and
for experimental validation in Section IV.

[11. DESIGN OF PREDICTION MODEL WITH INCOMPLETE
SEMG SIGNALS

Therefore, this work aims to design a novel regression
model that can predict multi-joint angles from incomplete
SEMG signals. Firstly, we define the processed sSEMG signal
(collected in Section II) of lengthn as § = [S1,...8;,...Sx],
where §; € Re*! and ¢ = 6 denotes the total number of
muscle channels. Considering the incompleteness of processed
signal, a mask matrix M € R*" is defined to indicate whether
the sample S has missing values:

if S,’j = null

1
M;; = 3
Y {O otherwise )
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where M;; = 1 denotes that the i-channel SEMG signal at
time j is abnormal, and M;; = 0 means that the i-channel
SEMG signal at time j is exists. The attention mechanism-
based residual sum vector long short-term memory neural
network (Att-RSV-LSTM) model is presented in Fig. 1(d).
In this paper, the LSTM neural network (LSTMNN) is utilized
to monitor the past potential information of sEMG signals
and extract its deep features. The hidden output h]{ of the
LSTM unit at time j can be calculated from the current
input S; and the previous hidden state hljfl [39]. To fully
leverage the hidden state information H = [h]{, . hi . h'ﬁ]
from the LSTMNN, an attention mechanism is integrated
subsequently to highlight features that significantly contribute
to the prediction outcomes. This approach effectively mitigates
the impact of missing-value features on the model while simul-
taneously enhancing its robustness and predictive accuracy in
the presence of incomplete data. By implementing this strat-
egy, the model is able to prioritize salient information while
attenuating the influence of irrelevant features, optimizing its
overall performance. Therefore, this paper designs a simple
self-attention mechanism after the LSTM layer, which can be
defined as [40]:

g; = v(Wah +by) )

where g; corresponds to the score of the importance of

h]{, ¥ (-) is defined as the score function, hyperbolic tangent
function is adopted in this work. W, and b, are the weights and
bias matrices, respectively, that need to be learned through the
back propagation process. Consequently, leveraging error back
propagation optimization, equation (4) enables the assessment
of the importance of each vector within the LSTM hidden state
information H and accordingly assigns a score to each vector.
The features (non-missing signals) with high contribution to
the prediction results are given higher weights, while the oppo-
sites are given lower weights (missing signals). Furthermore,
after deriving the scores for each hidden state k!, it is essential
to normalize these scores to obtain the attention weights, i.e.,
exp(g )

- 5
* Z,’ exp(gj) ©)

Thus, the output of attention mechanism can be expressed as
hj=hi ®a (©)

therein, ® is element-wise product. Additionally, this paper
explores the temporal dependence among neighboring nodes.
A weighted residual connection mechanism is developed to
facilitate the effective integration of the current hidden state
with the historical information encapsulated in the RSV, and
is used to fill in missing values. The RSV can be expressed
as

j=1

j =

[ﬂh") )

Fhj+GWR;_)+by) j=2,3,....,n

where G(-) and F(-) represent the activation function; W, €
R™*™ means the connection weight of RSV at time j and
its time j — 1; b is threshold matrix to be learned. In this

work, G(-) and F(-) are defined as linear mapping function
and Sigmoid activation function, respectively.

R; focuses on the temporal dependence of neighboring
nodes and fuses the current output state k; of the Att-LSTM
with the prior history information R;_; of the RSV via using
the residual connection with weights, improving the temporal
modeling capability. Thus, the input of the sEMG signals at
the next moment is estimated using equation (7), i.e.,

A

Siv1=H(WiR; + b)) ®)

where H(-) denotes the activation function, which is adopted
in this paper as a linear activation function to minimize the
complexity of the model; W; and b; are the weight and
threshold transformation matrix to be learned, respectively.
If the next input signal is intact, the predicted value §;;
is used to approximate the value S;,i. Consequently, the
predicted S j+1 can also be utilized to interpolate the next
input value §; 41 (if $;41 is missing).

However, the learning mechanism of traditional RNN is
constructed depending on complete input data, which cannot
be directly applied to modeling learning from incomplete
datasets. For this reason, this paper designs the following
modeling mechanism for training the Att-RSV-LSTM model
to learn and predict with input data missing. The learning
mechanism of the Att-RSV-LSTM model is decomposed into
two steps.

1) Forward propagation: In terms of the forward propagation
mechanism, our model distinguishes itself from traditional
neural networks by encompassing two scenarios: approxima-
tion and filling processes. That is, the Att-RSV-LSTM model
is capable of concurrently estimating the output signal (multi-
joint angle) as well as the input value (SEMG signal) at the
next moment during the forward propagation process. As illus-
trated in Fig. 1(d), the forward propagation process of the
Att-RSV-LSTM model involves two situations: approximation
and filling processes. Specifically, the green dashed line in
the forward propagation represents the approximate process
of the input values. If the next SEMG input value §;i;
exists, the temporal dependence between S; 1 and historical
state vector is established to train the RSV’s output value to
approximate the real value S;,. Moreover, the solid yellow
line represents the interpolation process of the input values.
When the next sSEMG input S is missing, the model directly
fills the estimated § j+1 to S;41 forming the input at current
moment. Therefore, the input signal at time j contains the true
and filled value. According to the mask matrix M, the actual
input of the model can be defined as

i =M;®8;®U;—M)®S; 9)

where M ; represents the indicator vector at time j; I € R
is the unit matrix; ® and @ are element-wise product and
addition, respectively.

2) Error back propagation: The error of the Att-RSV-LSTM
model is composed of input approximation error and angle
prediction error. The input approximation error at time j
needs to be calculated based on whether §; is missing or not.
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Therefore, we design the following approximate loss function:
Lap =1(S; = Sp & U; — M]3 (10
Therefore, the total approximation error of the model can be

expressed as

c n—1

Liap= 2. > I(Sij—8ij) @ U; — M3

i=1 j=1

(1)

In addition, the angle prediction loss function is defined as

n—1

Lipe= D 10;—6)3

j=1

(12)

where, 6 ; and 0 j are the acquired and model-predicted multi-
joint angle at time j, respectively. The input interpolation task
is integrated with the temporal prediction task for parallel
optimization to avoid falling into suboptimal solutions. Thus,
the overall training loss function L, for the Att-RSV-LSTM
model can be obtained by combining equation (11) and (12):

L= Et_pre + )tLt_app (13)

where A is the weighting coefficient of the input interpolation
task, which is set to 1 in the following context.

Finally, combining the hidden layer update mechanism of
the LSTMNN, attention mechanism, and the real input # j of
the model, the update state of the hidden unit of the Att-RSV-
LSTM model can be described using a generalized activation
function § as

H;=3Fhj_1, @, W.b) (14)

where W and b are the weight and threshold matrices to be
trained in the model, respectively. Then, the output of the Att-
RSV-LSTM model is

A

0; = WoH, + b, (15)

where W, and b, are the weight and threshold matrices of the
model output layer, respectively.

In summary, combining the overall loss function (13) and
the generalized state update (14), the Att-RSV-LSTM model
can directly model incomplete SEMG data from the residual
information and the historical hidden states. Furthermore, the
Att-RSV-LSTM model enables simultaneous filling and pre-
diction via optimizing the input reconstruction and temporal
prediction tasks in parallel.

IV. RESULTS

In this section, a number of experiments are performed to
validate the performance of the developed Att-RSV-LSTM
model for recognizing lower limb multi-joint angle from
incomplete SEMG signals acquired in Section II. In the course
of the experiments, a cumulative duration of 90 seconds
of signals are collected, whereby the initial 50 seconds are
allocated for model training purposes, while the residual data
is earmarked for testing. Furthermore, the number of hidden
layer units of the Att-RSV-LSTM model is set to 5, and the
learning rate is 0.02. The number of iterations is 300, and

initial weights of the model are randomly selected from a
uniform distribution [0, 0.1]. The interpolation and prediction
performance of the Att-RSV-LSTM model is evaluated via
comparing with seven representative imputation methods. 1)
Outlier imputation (OI): Directly use the preprocessed sSEMG
signals containing outliers. 2) Zero imputation (ZI): Using
zeros to fill in missing values. 3) Mean imputation (MI): Using
the mean of non-missing SEMGs to fill in missing values. 4)
KNN imputation (KNNI): Calculating the Euclidean distance
and using the nearest value to fill the missing. 5) Previous
value imputation (PI): Filling in missing values via using the
previous intact values. 6) Linear interpolation imputation (LI):
Utilizing linear interpolation to fill in missing values. 7) Spline
interpolation imputation (SI): Employing spline interpolation
to fill in the missing values.

Considering the lack of predictive capability in conventional
imputation methods, combining them with the LSTMNN
model to predict lower limb multi-joint angle. The root mean
square error (RMSE), mean absolute error (MAE), coeffi-
cient of determinism (R2) and correlation coefficient (CC)
are employed to quantify the recognition performance of all
models, which are defined as:

Zl}:l ©; — éj)z

RMSE = v (16)
1 — R
MAE = _Z(ej —6)) (17)
n O
n A N\2
L (9. _9.)
R2 —1— Zi_l _] A] - (18)
Cov(8;, 6;
CC = M (19)

096y

where 6; and 0 ; are the measured and estimated joint angle,
respectively. 0_]- is the average of the measured joint angle
0;. Cov(-) is the covariance of 6; and 6 ;. 0p and &y are the
standard deviation of 6; and 6 ;, Tespectively.

Among them, RMSE is a commonly evaluated metric for
regression models, exhibiting greater sensitivity and imposing
harsher penalties for larger prediction errors, making it more
susceptible to the effects of outliers. MAE calculates the
average of the absolute values of prediction errors with-
out assigning differential weights to individual discrepancies,
thereby treating all variances equally. R? quantifies the pro-
portion of variance in the dependent variable that is explained
by the regression model, typically ranging between 0 and
1. Specifically, when R? approaches 1, it signifies that the
model effectively explains the variability in the observed
data, indicating a close correspondence between predicted
values and observed data. Conversely, R? tending towards
0 suggests poor model fit. Additionally, negative values of R?
indicate that the model performs worse in prediction than a
simple mean prediction. The correlation coefficient evaluates
the degree of correlation between model-predicted values and
actual observations, assessing the level of association between
the two variables.
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Fig. 4. The Att-RSV-LSTM model is utilized to estimate the hip, knee,
and ankle joint angles at SEMG abnormality rate of 18% (subject-1
performed pedaling training).

A. Without Channel Shedding

Figure. 4 illustrates the results of using the Att-RSV-LSTM
model to estimate the multi-joint angles of subject-1 during
pedaling training without channel disconnection. Despite the
SEMG channels are not disconnected, there are still outliers
(approximately 18.2%), which may be attributed to unstable
data transmission, inherent defects in the device, and skin
perspiration. Therefore, the outliers are treated as null values
using discriminative criteria (1) and (2). The results indicates
that the proposed Att-RSV-LSTM model can still successfully
learn and predict even if 18% of the input signals are missing.

Moreover, Table I demonstrates the RMSEs of different
methods for recognizing multi-joint angle with various missing
rates (30%, 50%, 70%, and 80%). It can be seen that the per-
formance of all imputation methods decreases as the missing
rate grows from 30% to 80%. The fact that the traditional
imputation methods are inadequate to address situations where
the missing rate exceeds 30%, which further proves that
the necessity of investigating the prediction of multi-joint
continuous motion with SEMG signals abnormal/missing. The
proposed Att-RSV-LSTM model can still efficiently predict
the hip, knee, and ankle joint angles with 30% — 80% sEMG
missing, the average RMSEs are 4.624+0.44, 2.87+£0.33, and
2.64 £ 0.33, respectively. Benefiting from the learning capa-
bility of neural networks, the Att-RSV-LSTM model utilizes
the distributional features of the residual signals to reconstruct
the missing data. Apart from that, the joint optimization
loss function also prevents the Att-RSV-LSTM model from
falling into suboptimal solutions, enabling it simultaneously
to take care of missing imputation as well as multi-joint angle
prediction. The results demonstrate that the proposed AT-
RSV-LSTM model maintains exceptional performance even
with 80% sEMG signals missing, showcasing its potential for
motion evaluation and clinical applications of the LLRR.

B. Different Channels Shedding

This section discusses and analyzes the performance of
Att-RSV-LSTM model for predicting lower limb multi-joint
angle of subject-2 during leg extension with different channels

TABLE |
COMPARISON OF RMSES OF VARIOUS IMPUTATION METHODS FOR
PREDICTING MULTI-JOINT ANGLE OF SUBJECT-1 AT DIFFERENT
MISSING RATES (SUBJECT-1 PERFORMED PEDALING TRAINING)

Ml‘;;t‘:g Irﬁ;‘fﬁ;‘c‘l’“ Hip (°) Knee (°)  Ankle (°)
Att-
RSV.LSTy 3:32£0.22 1.90+£0.18 1.82+0.23
o1 9.374£0.92 5514077 6.15+0.63
Z 853+ 0.88 520+0.78 4.75+0.65
30%  KNNI  651+0.79 4.08+0.69 4.92+0.58
PI 7.08+0.66 3.83+042 4.80 £ 0.50
MI 7284079 534+0.69 629 +0.76
LI 7.03+£0.61 5.26+0.53 5.74+0.49
SI 6.17+0.70 523+046 567 +0.53
Altt-
RSV.LSTy 415£0.41 2.154£0.25 1.92+0.21
o1 10.024+1.01 8364099 7.21+0.98
71 9.66 £ 0.97 5.23+0.75 5.73 +0.64
50%  KNNI  847+092 5424065 5.38+0.51
PI 810£0.92 4.84+0.56 5.01+0.66
MI 8.86+£0.91 6.48+0.88 7.13+0.86
LI 756 £0.63 6.15+0.62 6.02+0.54
SI 6914051 543+059 5.67 +0.67
Att-
RSVLSTM 515 £0.51 3.68+0.38 3.28+0.40
oI 14.34+2.02 10.00£1.12 10.86 %+ 1.18
71 1020 +1.04 851+£1.08 7.58+0.98
70%  KNNI  8.89+089 6.38+074 6.62+0.72
PI 8974091 6.96+0.84 6.44+0.76
MI 952+£1.01 7.27+0.88 7.36+0.76
LI 9.06 £ 0.87 5.79+0.60 6.44 £ 0.62
SI 7244076 6.58+0.52 6.03+0.71
Att-
RSV.LSTM 585 £0.62 3.73+0.51 3.55+0.46
o1 16.07 +£2.68 14.15+1.65 13.60 +2.16
Z 15.06 £2.03 9.50+1.00 10.11 %+ 1.06
80%  KNNI  13.23+1.11 7.72+1.01 7.32+0.99
PI 13744129 8.46+£0.97 7.45+0.84
MI 1122+ 1.31 8364098 7.72+6.13
LI 11.34£1.22 852+1.03 8.44+0.93
SI 12.84+275 9.83+1.02 9.01+0.98

* Best results are shown in boldface. Two digits after decimal point are
preserved by rounding.
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Performance of the Att-RSV-LSTM model in predicting hip,
knee and ankle joint angles under different channel shedding (subject-2
performed leg extension).

shedding, the results are shown in Fig. 5. It concludes that the
Att-RSV-LSTM model can accurately predict the hip, knee,
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TABLE Il
PERFORMANGCE OF VARIOUS IMPUTATION APPROACHES IN PREDICTING MULTI-JOINT ANGELS WITH DIFFERENT CHANNEL SHEDDING
(SUBJECT-2 PERFORMED LEG EXTENSION)

Missing Imputation MAE (°) R? cC
Channel Method Hip Knee Ankle Hip Knee Ankle Hip Knee Ankle
Att-
RSV-LSTM 2.0040 1.8243 1.5809 0.9140 0.8939 0.9319 0.9563 0.9680 0.9743
OI 6.7770 3.7448 4.3087 0.0112 0.4939 0.5152 0.5361 0.7481 0.7372
71 5.5585 2.9631 3.2144 0.4217 0.7549 0.7047 0.8398 0.9443 0.9460
No KNNI 5.3948 3.3984 3.8106 0.5243 0.6850 0.5802 0.9108 0.9221 0.9054
PI 4.6279 2.9743 3.2941 0.6355 0.7413 0.7044 0.9196 0.9555 0.9551
MI 4.8911 4.1855 4.5656 0.5883 0.4634 0.4388 0.9072 0.9094 0.9612
LI 5.8584 2.9235 3.5860 0.3973 0.7564 0.6421 0.8901 0.9485 0.9471
SI 4.7990 2.7829 3.1644 0.5639 0.7853 0.7316 0.8800 0.9581 0.9654
Att-
RSV-LSTM 2.8961 2.3087 2.5269 0.8615 0.8983 0.8545 0.9389 0.9390 0.9132
OI 6.9612 4.4630 5.1239 0.1182 0.4537 0.2718 0.6279 0.7509 0.7289
Z1 5.3278 3.2860 3.5912 0.4740 0.7179 0.6655 0.7206 0.8607 0.8373
BF KNNI 4.9157 4.1833 4.0900 0.5128 0.5144 0.5577 0.7405 0.7264 0.7498
PI 5.0158 3.8585 3.9865 0.4127 0.5917 0.5557 0.7542 0.7931 0.7769
MI 4.6695 3.7240 3.7937 0.5043 0.5828 0.5878 0.7718 0.8355 0.8076
LI 6.4688 8.4230 6.5984 0.0649 -1.5530 -0.4931 0.4487 0.3020 0.3450
SI 9.0203 7.8062 7.9428 -0.9067 -0.9759 -1.0561 0.3518 0.3970 0.4389
Att-
RSV-LSTM 3.3220 2.9825 3.4199 0.7989 0.7705 0.6886 0.8974 0.8756 0.8280
OI 7.4256 5.6201 5.9708 -0.0031 0.0181 0.0058 0.4129 0.4408 0.4659
71 6.0813 4.3694 4.6976 0.3207 0.4974 0.4125 0.5870 0.7101 0.6760
RF KNNI 5.6043 4.7056 4.2224 0.3759 0.3479 0.5271 0.7793 0.6759 0.6900
PI 5.7383 4.6312 4.6941 0.2790 0.3963 0.4186 0.7929 0.7129 0.7678
MI 6.0259 4.8980 4.7219 0.3216 0.3173 0.4476 0.7490 0.6690 0.7032
LI 12.8832 5.7214 7.5072 -2.0892 -0.0175 -0.8770 0.0353 0.5530 0.5049
SI 11.2285 6.1075 8.4092 -1.1762 -0.2499 -0.8969 0.3626 0.3705 0.4211
Att-
RSV-LSTM 3.2399 2.5288 2.7181 0.8022 0.8687 0.8470 0.8983 0.9201 0.9023
OI 7.3859 5.9885 6.0010 0.0104 -0.0540 -0.0103 0.4584 0.5362 0.4343
71 5.5176 4.1987 4.0144 0.3783 0.4939 0.5727 0.6534 0.7492 0.7917
TA KNNI 5.6042 4.7056 4.2224 0.3759 0.3479 0.5271 0.6759 0.6900 0.7793
PI 5.3312 4.2592 4.0181 0.4528 0.4606 0.5629 0.6886 0.6902 0.7545
MI 5.9201 4.7182 4.6639 0.2816 0.4091 0.4096 0.6488 0.6648 0.6834
LI 8.0895 4.5978 5.3183 -0.1125 0.2919 0.0595 0.6127 0.6547 0.6282
SI 10.4683 6.2240 7.5019 -1.0551 -0.0827 -0.5611 0.3027 0.4193 0.5018

* Best results are shown in boldface. Four digits after decimal point are preserved by rounding.

and ankle joint angles after different channels shedding, with
average RMSEs of 4.00 £0.30, 3.04 £0.24, and 3.21 £0.22,
respectively. The effect of shedding in different channels on
prediction accuracy is inconsistent due to the varying contri-
bution of each muscle during leg extension movements. It can
be inferred from Fig. 5 that the prediction accuracy of knee
joint angle is reduced by approximately 80% after channel-
2 (RF) shedding. Furthermore, the disturbance of channel-4
(TA) and channel-6 (MG) on the prediction accuracy of the
hip joint is relatively small (reduced by 20%), but the effect
on the knee and ankle joints is comparatively large (reduced
by 60% and 80%) because TA and MG are the shank muscle
groups that are primarily responsible for shank movement. The
BF, RF, ST, and VL all belong to the thigh muscles, and their
shedding greatly reduces the prediction accuracy of the hip and
knee joints, which validates the muscle-movement correlation.

Table II compares the performance of various methods for
predicting lower limb multi-joint angle with different channel
shedding. It showcased that the traditional imputation methods
can predict the multi-joint angle without missing all channels,
but the errors are relatively large. The performance metrics

(MAE, RZ, CC) of the AT-RSV-LSTM model outperform tra-
ditional methods, exhibiting an improvement in performance
of approximately 36.75% to 64.67%. Due to the channel
shedding being a large number of consecutive missing, the
accuracy based on LI and SI methods will be drastically
degraded. The results evidence that the Att-RSV-LSTM model
can efficiently predict the lower limb multi-joint angle with
channel shedding, the accuracy can still be stabilized within
5°, showing promising potential in clinical applications.

C. Multiple Channels Missing

Figure 6 demonstrates the results of Att-RSV-LSTM model
for predicting multi-joint angle of subject-3 in leg extension
while losing multi-channel information. It indicates that the
accuracy of Att-RSV-LSTM model gradually decreases with
the number of lost channels. However, even with five channels
missing, the Att-RSV-LSTM model can still maintain excellent
stability and accuracy, the RMSEs of predicted angles for hip,
knee and ankle are 5.11 +0.42, 3.58 +=0.34, and 4.06 & 0.28,
respectively. It infers that the Att-RSV-LSTM model can effec-
tively reconstruct the missing values based on the previous
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Fig. 6. The performance of the Att-RSV-LSTM model for estimating the
multi-joint angle under multiple channel shedding (subject-3 performed
leg extension).
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Fig. 7. Comparison of RMSEs of various imputation methods for

predicting hip, knee, and ankle angles with two channels (RF and ST)
shedding (subject-3 performed leg extension).

intact SEMG signal for lower limb multi-joint angle prediction.
Most of the collected signals belong to the thigh muscles,
which provide higher contributions to the hip joint movement.
Thus, outliers in SEMG signals have a substantial impact
on the prediction accuracy of the hip joint. Both thigh and
shank muscles contribute to knee joint movement. So, partial
channel missing interferes less with the prediction accuracy
of the knee angle. Fig. 7 demonstrates the performance of
various imputation methods for predicting multi-joint angle
in two-channels sSEMG signals missing. It derives that the
Att-RSV-LSTM model has superior filling performance and
prediction accuracy than the classical imputation methods,
with an improvement of about 39-56%. The results prove that
the conventional imputation methods are not suitable for the
multi-joint angle prediction with multi-channel missing.

The above-mentioned experiments demonstrate that the
Att-RSV-LSTM model can resolve the issue of lower limb
multi-joint continuous motion intention recognition with
abnormal/missing SEMG signals in practical rehabilitation,

Fig. 8. The results of Att-RSV-LSTM model for filling SEMG signals
of at 80% missing rate during leg extension (subject-3 performed leg
extension).
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Fig. 9. The results of Att-RSV-LSTM model for filling sEMG signals of
while five-channel shedding (subject-3 performed leg extension).

which strengthens the intelligence and stability of the intention
recognition system. Apart from that, the proposed methods
can guide the physiotherapists to monitor the strength of
corresponding muscles or joints signal at different stages of
lower limb movements, developing personalized rehabilita-
tion training tasks, and realizing the targeting, accuracy and
interactivity of motor function assistance, which provides a
theoretical basis for the flexible and smooth interaction control
of lower limb rehabilitation robots.

D. sEMG Signal Imputation

Benefiting from the proposed multi-task parallel learning
mechanism, the Att-RSV-LSTM model can be employed to
simultaneously resolve multi-joint continuous motion estima-
tion and sEMG signal reconstruction problems. For subject
3 to complete the leg extension task, the results of recon-
structing the multi-channel sEMG signals from residual intact
data using Att-RSV-LSTM model at 80% missing rate and
five-channel shedding are displayed in Fig. 8 and Fig. 9,
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respectively. The blue dotted line represents the signal after
processing the outliers in original data into missing values
adopting the max-min and K-o criteria, and the red real line
denotes the reconstructed SEMG signals using the Att-RSV-
LSTM model. The average RMSE, MAE, and CC of the
residual signal with respect to the estimated sEMG signal
features is 0.0548, 0.0331, and 0.5604, respectively. It infers
the Att-RSV-LSTM model can be utilized to reconstruct
missing features, which correlate with the residual sEMG
signals. Furthermore, Fig. 8 and Fig. 9 reveal that the recon-
structed signals exhibit periodic variations and demonstrate
enhanced smoothness, rendering them particularly conducive
for model training and learning processes. It shows that the
Att-RSV-LSTM model proficiently reconstructs the variation
and distribution characteristics of surface SEMG signals. Fur-
thermore, the estimation accuracy of multi-joint continuous
motion relies on the precision of SEMG signal completion.
Consequently, the intention recognition results indirectly in
Section IV-C (original manuscript) demonstrate the feasibility
and superiority of using the Att-RSV-LSTM model to fill
in missing SEMG signals. In clinical practice, applying the
AT-RSV-LSTM model to reconstruct the abnormal/missing
signals enables to more accurately reflect the muscles state
during training. It provides an assistant for physiotherapists to
evaluate the patient’s locomotion status and recovery progress,
preventing misdiagnosis or missed diagnosis.

E. Different Participants at Various Missing Rates

The recognition results for different participants in pedaling
experiment at various missing rates are presented in Table II.
For healthy individuals (sub-1 to sub-7), the proposed Att-
RSV-LSTM model exhibits a high tolerance for missing SEMG
signals. The MAE of recognition increases only slightly by
2°-3° as the missing rate rises from 30% to 80%, with average
MAE of 2.7317°, R? of 0.8572, and CC of 0.9237, respec-
tively. It suggests that the Att-RSV-LSTM model is applicable
to various healthy subjects in challenging environments where
80% sEMG signals are absent, enabling effective recognition
of multi-joint angles and offering a robust technological foun-
dation for human-robot interaction.

Moreover, the Att-RSV-LSTM model enables to estimate
continuous joint motion for patients under 30%-60% missing
SEMG signals, and the MAE converges to 3°-6°. For patients
(Sub-8 to Sub-10), under conditions where 30% to 60% of
the SEMG signals are missing, the model’s average MAE is
3.7162°, R? is 0.7930, and CC is 0.8784. Compared to healthy
individuals, the limited information embedded in the SEMG
signals due to partial muscle damage in the patients posed
a challenge to the performance of the model, with the error
increasing by approximately 1 degree. Analyzing the results
for Sub-8 and Sub-10 indicates that the prediction accuracy
picked up with muscle strength recovery. Furthermore, the
performance of the Att-RSV-LSTM model exhibits unstable
when the missing rate over 60%, due to the SEMG signals
presenting random and consecutive missing. The extensive
missing of high-quality sEMG signals is the primary reason
for the drastic decrease in model accuracy.

Apart from that, a comparison of the recognition results
across different patients reveals that Sub-10 consistently out-
performed the other two patients across various evaluation
metrics under different missing rates. This is attributable
to Sub-10 being at Brunnstrom stage 5, with activity of
daily living (ADL) score of 85, which denotes a higher
degree of independence and coordination in muscle control
and motor function compared to the other patients. The
refinement and autonomy in muscular movements allow Sub-
10 to demonstrate enhanced accuracy and effectiveness in
recognizing multi-joint angles. Conversely, Sub-8 being at
Brunnstrom stage 4 with ADL score 45, experiences greater
limitations in muscle control and motor coordination. It faces
more substantial challenges in the recognition of lower limb
multi-joint angles. Encouragingly, the Att-RSV-LSTM model
effectively harnesses the information from the residual signals,
utilizing a unique parallel processing framework and joint
loss function to achieve precise recognition of lower limb
continuous movements for patients. Furthermore, the average
MAE, R2, and CC for all subjects stand at 3.5315, 0.7901, and
0.8698 respectively. The results confirm the reliability of the
Att-RSV-LSTM model when dealing with different subjects
and signals missing, highlighting its potential for practical use
in rehabilitation and motion monitoring.

V. DISCUSSION
A. Discussion and Analysis

The technology for decoding continuous movements of the
lower limb from the sEMG signals has gained widespread
validation and recognition in various human-robot interac-
tion systems [6]. Previous researches have primarily been
conducted in ideal environments, focusing mainly on improv-
ing recognition accuracy. In reality, non-ideal factors such
as motion artifacts, data transmission failures, and electrode
displacement or shedding commonly result in abnormal or
missing values in the acquired SEMG signals, posing signif-
icant challenges for signal feature extraction and continuous
movement recognition. The raw SEMG signals illustrated in
Fig. 2 and Fig. 3 indicate that abnormal and missing values
are commonly present during data acquisition. To address this
problem, this paper employs RNN to extract features from
SEMG signals. Moreover, the residual network is incorpo-
rated to integrate the information flow of the model’s hidden
states for estimating the missing signal features and multi-
joint angles. Departing from the traditional approaches, the
proposed Att-RSV-LSTM model, due to its unique forward
propagation process and joint loss function, can concurrently
handle both signal missing and continuous movement recogni-
tion. It significantly reducing computational costs. Moreover,
the Att-RSV-LSTM model effectively mitigates the impact of
data missing on recognition accuracy through feature extrac-
tion and information reconstruction. The results in Table I
demonstrate that even with up to 80% signal missing, the
Att-RSV-LSTM model can accurately identify the multi-joint
angles, with average RMSE of 4.38 + 0.53.

More crucially, this paper conducts an intensive analysis
of the prediction results under varying muscle signal miss-
ing conditions to explore the mapping relationships between
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TABLE IlI
COMPARISON OF THE PERFORMANGE OF VARIOUS IMPUTATION METHODS FOR PREDICTING MULTI-JOINT ANGLE AT
DIFFERENT MISSING RATES (PEDALING TRAINING)

Physical Subject Missing MAE (°) R? CcC
condition Rate Hip Knee  Ankle Average Hip Knee  Ankle Average Hip Knee  Ankle Average
30% 1.7982 1.6807 1.4184  1.6324 | 0.9247 09129 09258 0.9211 | 0.9634 0.9640 0.9810  0.9695
Sub-1 60% 2.8922  2.0233 19338  2.2831 | 0.8730 0.9098 0.9013  0.8947 | 0.9199 0.9459 0.9590  0.9416
80% 4.0114 29494 28234 3.2614 0.7975 0.8192 0.8248  0.8138 0.8653 0.8992 0.9020  0.8888
30% 2.5414 1.8311 22743 2.2156 | 0.8829 0.9013 0.8895  0.8912 | 0.9423 0.9504 0.9231  0.9386
Sub-2 60% 3.2468 2.1379 23576  2.5808 | 0.8279 0.8716 0.8410  0.8468 | 0.9200 0.9371 0.9195  0.9255
80% 47494 37768 33676  3.9646 | 0.7999 0.8248 0.7951 0.8066 | 0.8581 0.8942 0.8727  0.8750
30% 27970 19896 1.8827  2.2231 | 0.8980 0.9057 0.9043  0.9027 | 0.9270 0.9573 0.9676  0.9506
Sub-3 60% 32194 25962 19631  2.5929 | 0.8525 0.8787 0.8791  0.8701 | 0.9096 0.9398 0.9502  0.9332
80% 43999 29146 3.2343 3.5163 0.7793 0.7925 0.7807  0.7842 0.8621 0.9351 0.9287 0.9086
30% 22822 1.3573 1.8853  1.8416 | 0.8896 0.9305 0.9017  0.9073 | 0.9529 0.9653 0.9707  0.9630
Health Sub-4 60% 3.5810 2.5014 1.4904  2.5243 | 0.8268 0.8728 0.9265 0.8754 | 0.9122 0.9582 0.9690  0.9465
80% 42200 32863 2.6860 3.3974 | 0.7776 0.7918 0.8206  0.7967 | 0.8836 0.8962 0.8947  0.8915
30% 1.9307 1.8573 1.3992 1.7291 | 0.9195 0.8987 0.9482  0.9221 | 0.9698 0.9617 0.9754  0.9690
Sub-5 60% 3.3460 2.7104 1.8365 2.6310 | 0.8647 0.8894 0.8963  0.8835 | 0.9047 0.9555 0.9554  0.9385
80% 43090 3.7769 3.0462  3.7107 0.7856 0.7914 0.8053 0.7941 0.8668 0.8541 0.8838 0.8682
30% 2.8924 1.5426 1.5531 1.9960 | 0.9005 0.9238 0.9315 0.9186 | 0.9403 0.9678 0.9715  0.9599
Sub-6 60% 3.1959 19754 1.8611 2.3441 | 0.8647 0.8834 0.9063  0.8848 | 0.9018 0.9483 0.9556  0.9352
80% 44508 2.8536 29601 34215 | 0.7732 0.7929 0.7807  0.7823 | 0.8510 0.8924 0.8673  0.8702
30% 3.0581 1.8330 1.7287  2.2066 | 0.8729 0.8934 0.9190  0.8951 | 0.9296 0.9564 0.9765  0.9542
Sub-7 60% 3.6164 25006 3.0138  3.0436 | 0.8002 0.8504 0.8571 0.8359 | 0.8523 0.9418 0.9476  0.9139
80% 49900 3.9818 3.7786 4.2501 | 0.7650 0.7779 0.7804  0.7744 | 0.8168 0.8593 0.8894  0.8552
Average 3.4061 2.4798 23092 2.7317 | 0.8417 0.8625 0.8674  0.8572 | 0.9024 0.9324 0.9362  0.9237
30% 3.6181 25044 4.4094 3.5106 | 0.8440 0.8773 0.8181  0.8465 | 0.9387 0.9510 0.8984  0.9294
Sub-8 60% 52051 3.8962 53083 4.8032 | 0.7560 0.7057 0.7339  0.7319 | 0.8583 0.8100 0.8065  0.8249
80% 7.0961 5.0518 5.6391 59290 | 0.5722 0.5709 0.5815 0.5749 | 0.6738 0.6545 0.6257  0.6513
30% 33769 24755 35948  3.1491 | 0.8046 0.8264 0.8263  0.8191 | 0.9284 0.9203 0.8984  0.9157
Patient Sub-9 60% 4.6317 32118 44598 4.1011 | 0.7383 0.7046 0.6936  0.7122 | 0.8234 0.8150 0.8017  0.8134
80% 6.2456 52921 6.3208  5.9528 | 0.5515 0.5645 0.5431 0.5530 | 0.6801 0.6988 0.6909  0.6899
30% 3.2535 1.9498 3.5456 29163 | 0.8603 0.8800 0.8379  0.8594 | 0.9261 0.9418 0.8998  0.9226
Sub-10 60% 42367 29974 42166 3.8169 | 0.7987 0.7889 0.7796  0.7891 | 0.8932 0.8736 0.8262  0.8643
80% 52051 3.8962 53083 4.8032 | 0.6360 0.6157 0.6093  0.6203 | 0.7683 0.7200 0.7065  0.7316
Average 4.7632 3.4750 4.7559 43314 | 0.7291 0.7256 0.7137  0.7229 | 0.8323 0.8206 0.7949  0.8159
Average 4.0847 2.9774 3.5326 3.5315 | 0.7854 0.7941 0.7906  0.7901 | 0.8674 0.8765 0.8656  0.8698

* Four digits after decimal point are preserved by rounding.

muscular signals and joint movements. It provides important
theoretical support and practical possibilities for develop-
ing personalized rehabilitation training programs. Figure. 6
confirm that the model maintains a high level of accuracy
under extreme conditions of multiple channel shedding, with
an average RMSE of 5.02 + 0.61. An additional significant
implication of this work is the application of the Att-RSV-
LSTM model for recognizing continuous movements of stroke
patients at different rehabilitation stages. Table III validate the
feasibility of using the Att-RSV-LSTM model to recognize
joint angles in various patients. It providing critical evidence
for formulating personalized rehabilitation plans. Furthermore,
the flexibility and superiority of the Att-RSV-LSTM model lay
the groundwork for monitoring patient recovery progress in
clinical practice, aiding in optimizing treatment strategies and
enhancing overall rehabilitation outcomes.

To further elucidate the contribution of this work, we com-
pare it with existing relevant representative researches. Indeed,
research on intention recognition under abnormal or missing
SEMG signals has garnered extensive attention. Particularly,

the necessity repairing missing signals has emerged as an
important discussion topic. Table IV lists the current rep-
resentative approaches for intention recognition with signal
missing. Duan et al. argued that repairing abnormal/missing
signals requires additional preprocessing operations, which
increases the complexity of the model. To this end, they
adopted a strategy of discarding missing segments and used a
data split reorganization (DSP) approach along with a weight-
based multiple neural network voting (WMV) to achieve
recognition of five gestures [35]. However, this approach may
be inadequate in handling significant continuous data loss.
Ghaderi and Akmal aimed to address the issue of sEMG
signals missing but did not consider the subsequent intention
recognition challenges [33], [34]. Furthermore, Ding et al.
utilized marginalization or conditional-mean imputation for
interpolating missing values in SEMG signals, incorporat-
ing this into a high-dimensional Gaussian mixture model to
classify five gestures. The results show that the scheme can
recognize gestures with an accuracy of 75% with 50% missing
SEMG signals [37]. However, the present researches have
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TABLE IV
COMPARISON WITH EXISTING REPRESENTATIVE RESEARCHES
Reference Model Subject Recognition type Missing rate Result
Duan et al. [35] DSP + WMV Nine healthy participants Five gestures <15% Accuracy: 91.9%
. Image inpainting methods . .. RMSE:
Ghaderi [33] based on partial differential equations Five healthy participants N/A 5-25% 8.7+ 6.1uVrms
Akmal [34] tensor decomposition Ten healthy participants N/A 60-95% Relamfe average
error: 0.1-0.6
Ding et al. [37] Cfﬁ:,ﬁg::ﬁ&i;gp;?;gn Four healthy subjects Five gestures < 50% Accuracy: 75%
Chen et al. [32] Myoformer Eighteen healthy participants Seven gestures < 80% Accuracy: 97.62%
Seven healthy participants Lower limb MAE: 3.5315
This Work Att-RSV-LSTM y partcp v < 80% R2: 0.7908
and three stroke patients multi-joint angles CC: 0.8698

* N/A: Not applicable, indicating that this model did not conduct intention recognition research, solely focused on sSEMG signals reconstruction.

fragmented the reconstruction of SEMG signals and intention
recognition into two independent problems. It undoubtedly
increases computational costs and poses challenges for the
clinical application of intention recognition systems. To miti-
gate this, Chen et al. proposed the Myoformer model based on
SEMG signals to simultaneously tackle data reconstruction and
gesture recognition. The results demonstrated that this strategy
enables the recognition of seven gestures with an accuracy
of 97% even at an 80% missing rate [32]. Existing works
primarily focus on addressing the classification of discrete
movements under SEMG signal missing, particularly in gesture
recognition. However, movements classification may only con-
centrate on specific actions, neglecting the dynamic changes
occurring during training. In contrast to discrete action classi-
fication, estimating continuous movements can capture subtle
variations during training, offering more flexible and dynamic
adjustment schemes for rehabilitation robots. It results in a
more seamless and natural movement experience for patients,
minimizing rigid movement transitions and facilitating their
integration into training.

To this end, this paper integrates the reconstruction of
missing SEMG signals with the recognition of multi-joint
continuous movements, introducing a parallel execution frame-
work for addressing the multi-joint angle prediction task with
incomplete SEMG signals. Unlike existing methods, our model
can concurrently handle signal missing and continuous move-
ment estimation without additional preprocessing operations
for refining SEMG signals, enhancing the feasibility of the
hardware.

B. Limitations and Future Works

Although the proposed model has demonstrated tremendous
potential in dealing with the problem of multi-joint continuous
motion recognition with SEMG signal missing, there are still
some limitations in this study. 1) The model can estimate
a patient’s multi-joint continuous movements with 80% of
the sSEMG missing. Combining the clinical experience of the
rehabilitation physician the method can be applied to assess
the patient’s movement status. However, the stability and
accuracy remain unsatisfactory. Therefore, future work will
focus on further optimizing the model structure to enhance its
precision and robustness. 2) This study emphasizes continuous
movement recognition under abnormal/missing SEMG signals,
overlooking the impact of non-ideal factors such as abnormal
movements and muscle fatigue. For the next stage, we will

explore lower limb continuous movements under the fusion
of multiple non-ideal factors. 3) The human-robot interaction-
based LLRR is an exceptionally complex system. This work
solely focuses on its preliminary task, that is, decoding
the lower limb multi-joint active movement intention from
incomplete SEMG signals. To this end, we will explore the
integration of the model with the LLRR system in future
research, aiming to fulfill the specific requirements of its
practical applications.

VI. CONCLUSION

This paper aimed to estimate lower limb multi-joint contin-
uous motion from incomplete SEMG signals. For this purpose,
we designed a new multi-task parallel learning framework
by fusing LSTMNN with RSV. An attention mechanism
was incorporated to prioritize the weights of the input data.
The Att-RSV-LSTM model demonstrated excellent parallel
execution with 20-80% missing data, which simultaneously
reconstructed the sEMG signals and accurately estimated
the multi-joint angles for healthy individuals and patients.
It showcased cutting-edge performance in continuous motion
estimation problems with multi-channel signals missing, rein-
forcing the intelligence and stability of the intent recognition
system. Beyond that, this paper further explored the impact
of different muscle signal missing on joint motion prediction,
assisting physiotherapists in deeper profiling of the coopetition
relationship between muscle and joint motion in specific tasks,
providing potential for personalized rehabilitation training.
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