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ABSTRACT 1In this study, an autonomous robotic polishing system leveraging sensor signal processing
and control technology is developed. It utilizes a primary-secondary configuration with machine vision
and force sensors for intelligent defect detection. The system processes force sensor data to obtain an
accurate contact force assessment and performs precise polishing using proportional integral derivative and
impedance-based control strategies. It supports remote teaching operator control and autonomous operation
of intelligent polishing. Experimental results show that the maximum error between the measured and true
values is 0.36 mm. In arc detection, the maximum measurement error between the measured and true values
is 1.02mm, and the average error is 0.33mm. This level of accuracy is considered sufficient for the specific
applications targeted in this study, such as precision manufacturing, where high accuracy is essential but
variability in measurements can be adapted to within a certain range. In actual polishing experiments,
the roughness values of the designed industrial robot on pipes and wood were 0.491 um and 0.487 pm,
respectively. Most of the polishing of defective locations is completed. Overall, the designed automatic
polishing industrial robot is effective and can be applied to polishing operation in industrial production.

INDEX TERMS Visual control algorithm, six-dimensional force sensor, industrial robots, polishing

homework, measurement error.

I. INTRODUCTION

In modern manufacturing, the use of industrial robots has
become the key to improving production efficiency and
product quality. Especially in the polishing operation, the
introduction of robots can significantly reduce the intensity of
manual labor, while surpassing traditional manual operations
in terms of consistency and precision. However, although
industrial robotics technology has made great progress, exist-
ing systems still face a series of challenges in practical
applications [1], [2], [3]. The research motivation stems from
a deep understanding of the limitations of existing industrial
robot polishing systems. Traditional robotic systems often
rely on pre-programmed paths and simple tactile feedback
when performing polishing tasks, which limits their ability
to adapt to changes in the workpiece surface. For example,
when there are irregularities or tiny defects on the workpiece
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surface, traditional systems may not be able to accurately
identify and adapt to these changes, resulting in uneven
polishing quality. In addition, traditional systems also have
deficiencies in controlling the precise application of polishing
force, which directly affects the fineness and consistency of
the polishing operation [4], [5]. The main difficulties include
but are not limited to: accurate identification and location
of surface defects on the workpiece, especially in the pres-
ence of complex geometries and diverse surface properties;
difficulty in achieving precise control of the polishing force
to maintain a constant contact force and adapt to different
conditions; workpiece material and surface conditions; lack
of autonomous learning and adaptability, leading to poor
performance of robots in the face of unknown or changing
working environments [6]. To overcome these difficulties and
promote the development of industrial robot polishing tech-
nology, an autonomous polishing system based on machine
vision control algorithm and six-dimensional force sensor
is proposed. The system is designed to address the above
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challenges by integrating advanced visual recognition tech-
nology and force control strategies to achieve intelligent
detection of workpiece surface defects, precise positioning,
and precise control of force and position during the polishing
process. The innovation of the research is that by obtaining
the surface morphology and position information of the work-
piece in real time, combined with the feedback from the force
sensor, the robot can plan the polishing path more flexibly and
accurately to achieve high-quality polishing effects.

The research is divided into four parts. The first part
is a summary and discussion of the current research on
the automation control of polishing operations in polishing
industrial robots. The second part is to design an industrial
robot polishing control system using machine vision and the
relevant force sensors. The third part is to verify the visual
detection and polishing system in the system. The fourth part
is a summary of the entire article.

Il. RELATED WORKS

The polishing process is an essential part of industrial pro-
duction, and is the key to ensuring product quality and
controlling production costs. In the research of industrial
robots, the automation control of polishing operations for
industrial robots has always been a focus of many schol-
ars [7], [8], [9]. Zhou et al. [10] proposed a novel control
strategy to address the issue of smooth contact force in faucet
polishing operations, which uses position control as the inner
loop and tolerance control as the outer loop. To prevent
excessive polishing, parameter sensitivity analysis was also
introduced in the study. The study first established a system
model, calculated parameter sensitivity, and analyzed the
impact of allowable parameters on the system output. The
position control and allowable control were verified through
simulation, and the results showed that the new strategy can
improve the position control accuracy by 3.0% and ensure
that the contact force is close to the expected value. The
polishing experiments conducted on industrial robots further
confirmed the effectiveness of the control strategy, which
can effectively control the contact force during the polishing
process. In the field of industrial robot precision polishing,
due to high mechanical rigidity, traditional robots are dif-
ficult to achieve perfect polishing. Li et al. [11] precisely
controlled the contact force by installing an active compliant
force control device at the end of the robot. However, the
hysteresis non-linearity between cylinder air pressure and
output force, as well as the random interference during the
polishing process, may affect the accuracy of contact force,
thereby affecting the polishing effect. To address this issue,
a dRNN-PI model was designed to compensate for cylinder
hysteresis non-linearity and calculate the air pressure required
to maintain stable contact force. Meanwhile, the PSMC strat-
egy is adopted to quickly track the required air pressure
and avoid overshoot. The stability of the controller was ver-
ified through the Lyapunov method, and the experimental
results confirmed the accuracy of the hysteresis compen-
sation model and the effectiveness of PSMC. This study
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provides a new control strategy for improving the precision
and stability of robot polishing, which helps to overcome
cylinder hysteresis non-linearity and random interference,
and achieve high-quality workpiece surface treatment. Ochoa
and Cortesao [12] proposed a new impedance control (IC)
method on the ground of the optimized end effector in
industrial robot polishing IC, which effectively improved the
effectiveness of robot polishing and enhanced the generaliza-
tion of applications. Fan et al. [13] developed a novel adaptive
belt tool system for precision machining of turbine blade
blisks. A pneumatic servo system was adopted to control
polishing force, and the nonlinear control of the pneumatic
system was optimized through a two-dimensional fuzzy Pro-
portional Integral Derivative (PID) controller. Compared with
traditional PID, fuzzy PID controller significantly reduced
steady-state error and overshoot. The experiment showed that
the polishing process is stable and the roughness is controlled
below 0.4 microns, which verifies the effectiveness of the new
system and controller.

In addition, in robot machining, the accuracy of workpiece
positioning is crucial for machining quality. Traditional con-
trol methods are difficult to achieve fast edge tracking and
stable tool contact simultaneously. Therefore, Lloyd et al.
[14] proposed the Simultaneous Registration and Machin-
ing (SRAM) framework, which combines force and position
feedback to optimize workpiece positioning and path correc-
tion in real-time. SRAM can dynamically adjust controller
damping based on positioning accuracy, quickly correct
errors, and maintain machining stability. Through robot
deburring testing verification, SRAM significantly reduced
path and force tracking errors, improved machining quality,
and reduced tool wear. This framework reduced the depen-
dence on initial positioning accuracy, helped to reduce costs
and shorten production cycles, and provided new ideas for
the advancement of robot processing technology. Pan et al.
[15] proposed a vibration suppression method for enhancing
the damping ratio of the industrial robot polishing system,
on the ground of dynamic modeling of the polishing system,
to address the vibration impact problem. This effectively
improved the quality of polishing processing while sup-
pressing vibration. Ding et al. [16] proposed a parameter
learning algorithm for IC of industrial robots by utilizing
reinforcement learning to address the issue of maintaining
the contact force stability of actuators in automatic polishing
of industrial robots. This improved the stability of polish-
ing contact force on the basis of predicting the distribution
of output states. Accurate and stable force control is cru-
cial for ensuring material removal rate and surface quality
in robot grinding tasks. However, traditional methods are
difficult to maintain constant force control due to various
interfering factors. To address this challenge, Wu et al. [17]
developed a dual PID adaptive variable impedance con-
trol (DPAVIC) strategy, which compensates for force errors
through PD control, uses PID to update damping parameters
to reduce interference, and uses a nonlinear tracking differ-
entiator to smooth the expected force and reduce overshoot.
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FIGURE 1. Schematic diagram of the remote sensing force feedback teaching

polishing system framework.

The effectiveness of DPAVIC was verified through theoret-
ical analysis, simulation, and experiments. Compared with
CIC and AVIC, it significantly improved the force control
accuracy in thin-walled workpiece grinding experiments,
controlling the force tracking error within & 0.2 N and
increasing the surface roughness to Ra 0.218 um. This indi-
cated that DPAVIC provides an effective control strategy for
precision robot polishing.

In the existing literature, although a variety of methods
have been proposed for the automated control of indus-
trial robot grinding operations, these studies mostly focus
on grinding tasks under specific conditions, and have lit-
tle regard for workpiece surface adaptability, force control
accuracy, and grinding quality. There are limitations in con-
sistency. To address these shortcomings, the study proposed
an autonomous polishing system based on machine vision
control algorithms and six-dimensional force sensors. The
contribution of the research is: introducing a high-precision
Mask Region-based Convolutional Neural Network (Mask
R-CNN) to significantly improve the detection and position-
ing accuracy of workpiece surface defects; designing a pol-
ishing control strategy based on PID controller and positional
IC to optimize the force and position during the polishing
process precise control; constructing a primary-secondary
system that integrates machine vision and force sensors,
which enhanced the autonomy and adaptability of the system;
verifying the effectiveness of the system through experi-
ments, and demonstrating its potential in practical applica-
tions. These contributions not only promote the development
of industrial robot polishing technology, but also provide new
perspectives and methods for future research.

Ill. DESIGN AND CONTROL OF AN INDUSTRIAL ROBOT
POLISHING SYSTEM WITH INTEGRATED VISION AND

FORCE FEEDBACK
In the construction of the control structure module, the

research integrated machine vision and six-dimensional force
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sensor feedback to improve the accuracy and efficiency
of industrial robot polishing. Capturing workpiece images
through a high-precision camera system and using deep learn-
ing technology such as Mask R-CNN for defect identification
can ensure accurate planning of the grinding path. At the same
time, real-time processing of force sensor data provides the
necessary force feedback for the control system, allowing the
robot to dynamically adjust polishing parameters.

A. DESIGN OF ROBOT POLISHING SYSTEM BASED ON
MACHINE VISION AND FORCE FEEDBACK
The research and design of a robot large-scale system using
machine vision control algorithms and six-dimensional force
sensors mainly consists of a primary-secondary system con-
sisting of a vision system, a database, a hand controller,
and a robotic arm. Therefore, the framework of the remote
sensing force feedback teaching polishing system is shown
in Figure 1.

Figure 1 shows that the main end of the controller includes
a Phantom Premium 6-degree-of-freedom force feedback
device, a client upper computer, and so on. The operator first
calibrates the initial position of the hand controller and moves
it, and obtains the terminal position of the operator’s move-
ment through forward kinematics solution. Simultaneously,
the relative position deviation of the controller is transmitted
to the robot server through Socket communication, and then
the server controls the robot’s actions on the ground of the
position information. The function of the client personal com-
puter is to provide visual, mechanical, and other information
during the polishing process to the operator’s hand and dis-
play it on the operator’s arm, thereby improving the realism of
the operation. In addition, the upper computer receives force
and torque information from the six-dimensional force sen-
sor, and controls the mechanical arm to output corresponding
force and torque, enabling operators to perceive the tac-
tile sensation during polishing processing. This can achieve
force feedback-based remote control polishing. In the field
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FIGURE 2. Schematic diagram of camera perspective projection model.

of industrial robot polishing, traditional technologies mainly
include pre-programmed control methods, basic tactile feed-
back systems, non intelligent visual systems, open-loop
control systems, single sensor applications, manual teaching
methods, simple PID control strategies, non real-time data
processing capabilities, and a lack of remote operation func-
tions. These systems typically have low levels of automation,
require manual monitoring and intervention, and have lim-
itations in adapting to environmental changes and handling
complex tasks. In contrast, the industrial robot autonomous
polishing system proposed in the study achieves precise
remote control of the robot by the operator by integrating a
Phantom Advanced Edition 6-degree-of-freedom force feed-
back device and a six-dimensional force sensor. The system
adopts forward kinematics and real-time Socket communi-
cation, ensuring the accuracy and flexibility of operation.
The client computer provides visual and mechanical infor-
mation feedback to the operator, enhancing the realism of the
operation.

In the autonomous polishing vision system of industrial
robots, traditional object detection and positioning have prob-
lems such as long time consumption and low accuracy, while
the polishing process in industrial production also has defects
such as size deviation and spot rust. Therefore, to solve these
problems, the research first achieves precise positioning and
size measurement of the workpiece by calibrating the camera.
Secondly, the Mask R-CNN is utilized for locating the cat-
egories of defects, and the defects are semantically divided
and accurately labeled to achieve automatic localization of
grinding points. When industrial robots perform polishing
processing, they first need to obtain visual information from
the surrounding environment, then determine the specific
position and defects of the processed object, and then con-
trol the polishing tool to a position close to the machining
point. Therefore, it is essential for corresponding the spatial
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coordinates of the image to the real space Coordinate System
(CS), which requires calibration of the camera and establish-
ing corresponding relationships between each CS [18], [19],
[20]. The concept of real space CS is crucial in automated
polishing systems, as it ensures precise mapping of the robot
to the actual position of the object. Calibrating the camera
to the real space CS is crucial for integrating sensory data,
performing precise mathematical transformations, ensuring
operational consistency, and achieving multi-sensor data inte-
gration. Innovation is reflected in improving the accuracy
and dynamism of calibration through advanced algorithms,
as well as the ability to drive automation of complex tasks.
Among them, the industrial robot vision system designed
for research includes two cameras. The remote camera is
installed in front of the robot arm to capture the actual polish-
ing process, and the end camera is installed at the end of the
robot arm for forming the hand eye system. The camera per-
spective projection model without considering lens distortion
is shown in Figure 2.

In Figure 2, o, o/, and O all represent the origin of the
CS. X, Y and Z, represent the three-axis coordinates
of the world CS. Xj, Y, and Z, represent the three-axis
coordinates of the camera CS. x and y serve as the hori-
zontal and vertical axes of the image plane CS. u and v
represent the horizontal and vertical axes of the image CS.
QO and g represent the camera matrix. Figure 1 shows that
the perspective projection model includes the world CS,
camera CS, image plane CS, and image CS. The function
of the world CS is to reflect the actual spatial position of
the camera and the object being measured. The origin of
the camera CS is the optical center of the camera, and the
z-axis coincides with the actual optical axis of the camera.
Its purpose is for describing the position of objects from the
camera [21], [22], [23]. The image plane CS is the plane on
which the camera’s photosensitive components image. The
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image CS is the CS of the actual observable image, which
can be regarded as a matrix. Each value in the matrix is the
actual grayscale value of each pixel [24], [25], [26]. The
transformation from the world CS to the camera CS is a
rigid transformation of translation and rotation, as expressed
in equation (1).

T T
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In equation (1), 91 represents the rotation matrix. L repre-
sents the translation matrix, and [ is its internal element. i
represents pitch angle. y represents yaw angle. ¢ represents
the rolling angle. The second equation in the third row of
equation (1) is the homogeneous coordinate form of the
transformation formula. The camera CS converts coordinate
points in three-dimensional space into two-dimensional plane
coordinate points in the image plane CS through a perspective
model. Therefore, converting the Q point in the camera CS to
the Q' point in the image plane CS, the relevant expression
obtained on the ground of the theorem of triangles is shown
in equation (2).

o] = 2 1% ¥,].2 x5 1]

e000
=10e00|[Xp Y2 1] )
0010

In equation (2), the second equation is the homogeneous
matrix form of the first equation. e serves as the camera focal
length. On the ground of this, calibrating the actual focal
length of the camera can determine the conversion relation
in the camera CS and the image plane CS. In the image CS
shown in Figure 1, the relationship between the planar CS
and the image CS is expressed in homogeneous matrix form,
as shown in equation (3).

T )
[Mk Vj] Z[CX—X-HLO %y+\10]

1 0
[Mk le]Tz /()CX l/cyl:(;) [xyl] ®
0 0 1

In equation (3), 1« and v; represent the pixels in the k-th
row and j-th column of the image CS. o and vy represent
the main points of the digital image. ¢, and ¢y represent
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the actual distance per unit pixel in the u and v directions.
The formula for converting the world CS obtained through
combining equations (2) and (3) to the image CS is illustrated
in equation (4).
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In equation (4), W; serves as the camera intrinsic matrix.
W, serves as the camera extrinsic matrix. Q serves as
the coordinates of objects in the real world. W represents
the camera projection matrix. In real life, due to factors
such as materials and processing, camera lenses exhibit dif-
ferent magnifications on the focal plane, leading to image
distortion and geometric distortion. This reduces the accu-
racy of position detection. Lens distortion can be divided
into two categories: radial distortion and tangential distor-
tion. On the ground of camera calibration, it began to use
Mask R-CNN for defect classification. This network struc-
ture is on the ground of Faster Region Convolutional Neural
Network (Faster R-CNN) and incorporates a branch for
semantic segmentation. It can achieve good instance seg-
mentation on multiple samples without limiting image size.
This network takes standardized high-resolution industrial
workpiece images as input, with image sizes standardized to
224 x 224 pixels. The output of the network is the instance
segmentation of surface defects on the workpiece, which
includes the category and location of defects (determined
by the Bounding Box coordinates), as well as the mask for
each defect instance. The network utilizes Residual Network
101 (Resnetl01) as its backbone network, which consists
of 101 layers, including multiple convolutional layers, batch
normalization layers, and ReLU activation functions. The
Feature Pyramid Network (FPN) further refines the feature
map, generating 5 feature layers with different resolutions
and number of feature channels. In terms of special structure,
the network integrates Mask R-CNN, which includes Region
Proposal Network (RPN) for generating candidate regions,
Region of Interest (ROI) align layer for aligning candidate
regions with feature maps, and outputting the final classifica-
tion and segmentation results through a fully connected layer.
The schematic diagram of the Mask R-CNN architecture is
showcased in Figure 3.

Figure 3 shows that the Mask R-CNN architecture con-
structed in the study mainly uses Resnet101 and FPN as the
skeleton of the actual network to extract relevant image fea-
tures and obtain corresponding feature maps. On this basis,
the RPN uses a 3 * 3 convolution method to reduce the dimen-
sionality of the feature map, and uses a 1 * 1 convolution
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FIGURE 3. Schematic diagram of the overall architecture of Mask R-CNN.

as two paths. A path is used to binarize candidate frames to
determine their foreground and background. The other group
performs regression operations to find the coordinates of
candidate boxes. Finally, Mask R-CNN proposed an ROI dis-
tribution model to replace the quantization operation of ROI
points in Faster R-CNN. Then it uses bilinear interpolation
to elevate the candidate frame coordinates to floating-point
positions, thereby achieving matching in the original image
and the feature image. The final candidate area is further
divided into three branches to perform N-classification, fur-
ther localization, and Mask instance segmentation on the
candidate objects. The Mask R-CNN algorithm was chosen
due to its high efficiency and accuracy in object detection and
instance segmentation. This algorithm can accurately iden-
tify and segment individual instances in the image, which is
crucial for automatically planning the polishing path of work-
pieces with complex defects. It provides powerful feature
representation capabilities through deep learning, generalizes
various defects, and predicts framework coordinates for pre-
cise localization. The integration of Mask R-CNN and robot
systems enables automated polishing without the need for
manual teaching, and improves polishing efficiency and qual-
ity through intelligent decision-making based on historical
data.

In addition to conventional accuracy, the evaluation indica-
tors for Mask R-CNN networks in the experiment also need
to consider the Intersection over Union (IoU), which is the
core evaluation indicator for object detection and instance
segmentation networks. The relevant expressions are shown
in equation (5).

_NING
T NIUG

In equation (5), & represents the intersection union ratio.
NI represents the predicted result. G represents the true label.

&)
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B. ROBOT SENSOR SIGNAL PROCESSING AND
POLISHING CONTROL TECHNOLOGY

On the basis of optimizing the visual inspection system of
industrial robots, corresponding polishing experiments can be
carried out. However, to achieve good contact force control
during the actual polishing process, it is necessary to process
the actual collected signals from the six-dimensional sensors
accordingly. The process includes data filtering, gravity com-
pensation, and data decoupling. Among them, a second-order
digital Butterworth low-pass filter was designed to digitally
filter the signal of a six-dimensional force sensor, and its
related expression is shown in equation (6) [27].

) 1 Y (2)

H(iQP=—— H@=—

|H, (i2)] 1+(Qﬁ)2 () X0
Y odii"

= =Y FT 6
1+ Z]/:]:O acz® ©

In equation (6), H, (i€2) represents the low-pass mode
squared function of the Butterworth filter. 2 represents the
cut-off angular frequency of the filter. i represents the fre-
quency coefficient. H (z) represents the transfer function of
the Butterworth filter. N represents the order of the filter.
Gravity compensation mainly considers the influence of the
sensor’s own gravity and the load’s gravity on the measured
force/torque. The actual values of the compensated force and

torque in the experiment are expressed as equation (7) [28].

[F'M'] = z]—[F F} ™)

In equation (7), F and F’ represent the forces before and
after compensation, and f is its internal element. M and
M’ represent the compensated front and rear pose moments,
and m 1is its internal element. In data decoupling research,

[ A f il m
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static decoupling algorithms on the ground of coupling
error modeling are used to decouple six-dimensional sensor
data [29].

After three steps, research began on the control strategy
for the actual polishing effect of industrial robots. Traditional
six-dimensional force sensors are also affected by inertial
forces during high-speed motion. In research, when the robot
does not come into contact with the workpiece, there is no
need to control its force. During the demonstration period, the
operator can press the button on the power feedback handle
and inform the system whether to enter the polishing state on
the ground of the input signal. Due to the slow teaching speed
and the movement speed of the robotic arm during polishing,
the influence of inertial force is ignored, thus simplifying
the mathematical model of the control algorithm. In the
teaching method, the operator uses a six-dimensional force
sensor for controlling the force/torque. The end robot system
records all teaching positions and force/torque information.
In autonomous mode, the robot arm moves according to the
teaching position, divided into non-polishing period and pol-
ishing period. During the non-polishing period, PID control
is used according to the teaching position without applying
any force. During the polishing period, position impedance is
used to control the adhesive force/torque information, achiev-
ing autonomous force position control during the polishing
period.

Due to the generally good repeatability of research on
robotic arms for established movements, only slight motion
control is required during the free following stage to ensure
the trajectory of the robotic arm. Therefore, the study chose
incremental PID control, whose architecture is shown in
Figure 4 [30].
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Figure 4 shows that the first step is to input the posi-
tion at time v, and then use a PID controller to control
the expected position error at time 7, thereby outputting the
control variable. After the operation of the actuator, its final
output position is determined. Among them, the actual output
expression of the controller at the 7-th sampling time is shown
in equation (8).

T 0: — 6,
¢. = Bp [Bf T ijo 6 + TDT} 8)

In equation (8), ¢, represents the actual output value at
the t-th sampling time. Bp represents the proportional coef-
ficient. T is the sampling period. T; and Tp represent integral
and differential coefficients. 6; represents the error between
the expected position and the actual position. The expected
position is given by the teaching data, and the actual motion
position can be calculated by feedback data from the robotic
arm encoder. The output expression at the sampling time of
T — 1 is shown in equation (9).

T -1 Or—1 —0:2
brr =0 S gm0

By combining and subtracting equations (8) and (9), the
actual output control quantity of the PID control method can
be obtained. Its expression is shown in equation (10).

&)

T
A¢r = (br - ¢r—l =Bp |:¢r - ¢r—l + T_¢r
1

+TD¢T - 2¢r—1 + ¢r—2i|
T
(1421 I2Y g (14 22)
=Bp T, T )¢ B T -1
Tp
+BP?¢I—2 (10)

In addition, the position impedance used during the polish-
ing period to control the adhesion force/torque information
follows the expected position and expected force/torque dur-
ing the polishing control. In the polishing control process, due
to the lack of passive flexible components such as hydraulic
cylinders and springs, it is necessary to actively and smoothly
control them. IC is mainly divided into force feedback type
and position type IC. The ideal IC model in force feedback IC
can be regarded as a spring damping model. The mathemat-
ical modeling analysis of this model can be expressed using
second-order differential equations, which have three forms
of expression as shown in equation (11).

MV + UgV + g (V = Vyg) = —L
MgV + Uy (V = V) + = (V = V) = —L
My (V= Va) + Ua (V= Va) +a (V= Vg) = —L
(1D
_ Inequation (11), My represents the expected inertia matrix.
V and V represent the actual speed and acceleration. Uy

represents the expected damping matrix. —x; represents the
expected stiffness matrix. V and V; represent actual motion
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and expected motion positions. £ represents contact force. V;
and V, represent the expected speed and acceleration. When
introducing force deviation into the impedance mathematical
model and using the third impedance representation model,
the actual expression of the model is shown in equation (12).

My (V= Va) +Ua (V= Va) +ka (V—Vg) =0 (12)

In equation (12), v, represents the force deviation.
The expected impedance equation obtained by changing
equation (12) using Lagrange is expressed as equation (13).

D(s) 1
T 0 () Mgs? + Ugs + g

(13)

In equation (13), A (s) represents the expected impedance.
s represents the domain, which is an extension of the fre-
quency domain. The calculation difficulty of force feedback
IC is relatively high, while position type IC does not have
a force feedback loop, and there is no need to solve spe-
cific dynamic models, making the control relatively simple.
Therefore, the study utilizes positional IC to control the
following motion of robotic arm polishing. For positional
IC, there is always fluctuation in the relevant data of the
six-dimensional sensor during the actual teaching polishing
process, so it is necessary to pre-process the teaching force
data in advance. This study selected 100 teaching points as
sliding windows and calculated the average teaching force.
Then it removes irrelevant discrete points that deviate by
80% from the average value due to small protrusions on the
processed surface or offline sampling, and uses neighborhood
interpolation to interpolate the removed points. When the
change in force/torque does not exceed 10%, the control sys-
tem will not change the required force/torque value. This can
maintain the force at a certain level as much as possible during
the polishing process, avoiding system instability caused by
frequent adjustment of posture, which can affect the actual
polishing results. Among them, the positional IC architecture

combined with the six-dimensional force sensor is showcased
in Figure 5.

Figure 5 shows that the position-based IC architecture
mainly consists of a combination of IC outer loop and PID
position control inner loop. In the position-based IC method,
the theoretical motion position of the robotic arm is calcu-
lated by subtracting the position deviation from the teaching
position. Then, on the ground of this, it uses the inverse
kinematics of the robotic arm for getting the actual relevant
rotation angles of each joint, which is essentially the control
pulse. The control pulse is transmitted to the relevant position
control loop and PID control is applied to the position of
the industrial robot arm, so that the arm can reach the given
target position. At this point, one cycle of position IC can be
completed. When constructing a position-based IC method,
the impedance model needs to be discretized first. This study
utilizes bilinear transformation to transform the s domain
in equation (13) into the 7' domain, and the transformed
expression is shown in equation (14).

Ao 26 TR
Z = =
Or (2) a1 +ond + a3
o) = 4My + 22U, T + *gT2, o = —8My + 23, T2,

o3 = 4My — 2U,T + —%4T?

(14)

In equation (14), 7' represents the extension of the s
domain, i.e. the delay operation in the s domain. a1, oz, and
a3 represent angular frequencies. The differential expression
of the IC obtained from this is shown in equation (15).

5 () = Z‘? (9 () + 20 (1 — 1) + O (' —2))

=1 =Ly (=
alﬁ(n 1) alz?(n 2) (15)

In equation (15), ¢ (n/ ) represents the differential expres-
sion of the IC. Due to the fact that My, Uy, and —xy
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FIGURE 5. Schematic diagram of positional IC architecture combined with six-dimensional force sensors.
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are all semi positive definite diagonal matrices, the IC
method actually provided can control various methods in
three-dimensional space accordingly. In response to the
demand for improving the intelligence of the system, the
research aims to automatically plan the path for workpieces
with defects but good substance in the end robotic arm sys-
tem on the ground of the results of Mask R-CNN visual
inspection, and complete autonomous polishing without the
need for teaching. Therefore, for defects such as scratches,
stains, and rust on the surface of the processed workpiece, the
study first locates the external rectangle of the Mask, which
is the predicted frame coordinate, on the ground of the defect
recognition results. Next, it slowly lowers the robot arm at a
speed of 1mm/s, gently lifts it when there is a sudden change
in contact force in the z-domain, and considers it as the
defect location. Finally, the Mask R-CNN algorithm is used to
extract the polishing force data of similar materials with the
same defect, and it is used as the required force energy for
polishing. Regarding the defects such as burrs, defects, and
residual glue that appear at the edges during the processing,
this study first determines the location of the defects, and
then obtains the boundaries and rotation angles of the defects
through a measurement system. Then it approaches the defect
point 45 degrees from the tangent direction of the robot arm,
and finally achieves force controlled polishing on the ground
of the data in the database.

IV. VISUAL CONTROL AND POLISHING EXPERIMENTAL
VERIFICATION

To verify the effectiveness of the robot polishing system
designed in this study, which utilizes machine vision control
algorithms and six-dimensional force sensors, the visual sys-
tem validation and overall polishing system validation were
conducted in this section.

A. VERIFICATION OF SURFACE DEFECT DETECTION ON
WORKPIECES

In visual system validation, it is necessary to configure and
train the Mask R-CNN. Research utilized PyTorchl as a deep
learning architecture to build a substantial network, with the
COCO dataset pre-training the main backbone network. This
database was provided by industrial partners and was widely
collected from the surface of workpieces in actual production
environments, containing images of various material types
and different defect categories. During the database construc-
tion process, images were pre-processed by a professional
team, including denoising, contrast enhancement, and size
standardization, to ensure data quality. The data annotation
work was the responsibility of domain experts, who use
annotation software to classify and locate each defect instance
in the image, and accurately annotate pixel level masks.
The entire database contained over 10000 images, covering
5 main materials and at least 15 types of defects. To verify
the generalization of the model and evaluate its accuracy, the
database was reasonably divided into a training set (account-
ing for 70%), a validation set (accounting for 15%), and a
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testing set (accounting for 15%). In the experimental envi-
ronment, Intel (R) Core (TM) i5-7500 was selected as the
processor, Windows 7 was selected as the system, 16GB of
memory was selected, and 8GB of memory was used for
the graphics card. The results of the loss changes during the
training process of Mask R-CNN network are showcased in
Figure 6.

Figure 6 (a) shows that the classification loss of the RPN
network in Mask R-CNN converged around 20000 itera-
tions, and the predicted regression loss showed a fluctuating
decrease. Figure 6 (b) shows that both the classification loss
curve and the prediction box regression loss curve showed
a decreasing trend in volatility, but neither showed a zero
value. Figure 6 (c) shows that the overall loss curve of the
Mask R-CNN network was basically consistent with the trend
of the predicted box regression loss curve. On the ground
of the training results, the performance and size detection of
the Mask R-CNN were analyzed, and the indicators selected
were mean IOU (mIOU), Average Precision (AP), and Mean
Average Precision (mPA). The outcomes are showcased in
Table 1.

In Table 1, L1~L3 represent the length of wood in linear
detection. R1 and R2 are the radii of circles in arc detection.
Table 1 shows that the network mAP value proposed in the
study reached 91.54%, with an average detection time of
3fps. This indicates that it can satisfy the requirements of
defect detection in small workpiece polishing operations, and
the segmentation accuracy meets the requirements of use.
The error between the measured value and the true value in
straight line detection did not exceed Imm, with a maximum
error of 0.36mm. The maximum measurement error between
the measured value and the true value in arc detection was
1.02mm, with an average error of 0.33mm, which meets the
actual measurement requirements.

According to Table 2, in comparative evaluations, Mask
R-CNN achieved an accuracy of 91.54%, surpassing Faster
R-CNN by 2.45% and YOLOvV4 by 3.27%. It also exceeded
Faster R-CNN by 3.10% and YOLOv4 by 5.00% in Recall,
with a corresponding F1 score of 90.87. Training time for
Mask R-CNN was 4 hours, which was 33.33% shorter than
Faster R-CNN’s 6 hours and 20% less than YOLOv4’s
5 hours. Mask R-CNN’s testing time was 30 minutes, 33.33%
faster than Faster R-CNN and 16.67% faster than YOLOv4.
It contained 40 million parameters, 33.33% fewer than Faster
R-CNN’s 60 million and 20% less than YOLOv4’s 50 mil-
lion. Additionally, Mask R-CNN operated with moderate
hardware requirements, unlike the high requirements of
Faster R-CNN and YOLOV4.

To further validate the superiority of Mask R-CNN,
this study introduced the use of Improved Particle
Swarm Optimization (IPSO), Adaptive Control (AC), and
Binocular Vision Algorithm (BVA) to compare polishing
errors under visual detection. The experimental materials
selected included rusted alloy, alienated alloy, and cop-
per plated thin plate, and the outcomes are showcased in
Table 3.
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FIGURE 6. Results of loss changes during Mask R-CNN network training.

TABLE 1. Performance and size detection results of mask R-CNN network.

Performance Analysis

of Mask R-CNN Network

- AP mAP mloU Training time Mean time to detect

Resnet101+FPN 92.74% 91.54% 90.91% 40.5%h 3.00fps

Resnet50+FPN 86.66% 85.61% 84.46% 28.4%h 5.00fps
Comparison between measured and true values in size detection

- L1 L2 L3 L4 R1 R2

Measurement value  80.22mm 80.14mm 50.32mm 50.58mm 49.28mm 59.34mm

True value 80.55mm 80.44mm 50.15mm 50.22mm 50.30mm 59.95mm

Table 3 shows that the polishing errors under the visual
detection guidance of the proposed network were 8.9mm,
8.5mm, and 8.3mm in width, and 1.0mm, 1.2mm, and 1.5mm
in depth, respectively, among the three materials, which are
lower than the comparison algorithms. Overall, Mask R-CNN
is effective in visual inspection of polishing and can effec-
tively avoid abnormal damage during polishing.

B. SIGNAL PROCESSING ANALYSIS OF SIX-DIMENSIONAL

FORCE SENSOR
On the basis of visual detection verification, this study began

to process the signals collected by six-dimensional sensors.
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Due to the more intuitive visualization effect of data filtering,
data filtering was analyzed separately in the research exper-
iment. During the actual polishing process, the force/torque
waveform changes obtained by starting the electric grinding
without load are shown in Figure 7.

Figure 7 (a) shows that under no load, the range of force
variation on the z-axis after the start of the electric mill was
larger than that on the x-axis and y-axis, ranging from —1.0N
to 1.5N, and the other two axes were both between —0.5N and
1.0N. Figure 7 (b) shows that the range of three-axis torque
variation was between —0.005 and 0.005N e cm, with the
y-axis having the lowest range of variation. Overall, due to
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TABLE 2. Comparative performance metrics of mask R-CNN with faster R-CNN and YOLOv4.

Improvement over
Improvement over

Metric/Algorithm Mask R-CNN Faster R-CNN YOLOv4 F astez ;BCNN YOLOV4 (%)
Accuracy (%) 91.54 89.30 88.65 +2.45 +3.27
Recall (%) 90.20 87.50 85.80 +3.10 +5.00
F1 score 90.87 88.40 87.10 +2.79 +4.25
Training time (h) 4 6 5 -33.33 -20.00
Testing time (min) 30 45 35 -33.33 -16.67
Parameter count
40 60 50 -33.33 -20.00
M)
Har.dware Moderate High High / /
requirement
TABLE 3. Comparison of polishing errors under visual inspection.
- BVA AC IPSO Mask R-CNN
- Width error  Depth error  Width error  Depth error  Width error  Depth error  Width error  Depth error
Rusted alloy 10.9mm 9.6mm 10.1mm 8.5mm 12.1mm 5.1mm 8.9mm 1.0mm
S%ge;ated 11.2mm 8.4mm 12.4mm 8.5mm 13.0mm 4.8mm 8.5mm 1.2mm
Copper plated 15 5,y 7.5mm 11.1mm 10.2% 11.5mm 3.5mm 8.3mm 1.5mm
thin plate

the significant fluctuations in the vibration influence/torque
data of the electric mill itself, the peak force could reach 1.8N.
Therefore, numerical filtering operation was required. Before
verifying the effectiveness of the research method, the actual
vibration signal was first subjected to Fourier transform oper-
ation to analyze the frequency spectrum of noise. The results
are shown in Figure 8.

Figure 8 shows the force/torque vibration spectrum of
the six-dimensional force sensor during no-load starting
of the electric mill through Fourier transform. In Figure 8 (a),
the vibration spectrum of the X-axis showed a significant
peak at a specific frequency, with an amplitude of approx-
imately 0.045, while the Y-axis and Z-axis had three and
two significant fluctuation regions, respectively. This may be
related to the physical characteristics and operational vibra-
tion modes of the electric mill. Figure 8 (b) shows that the
main energy of the three axes in the torque vibration spec-
trum was concentrated in the frequency range of 200Hz to
300Hz, indicating the resonance frequency of the equipment.
These pieces of information are crucial for understanding
the dynamic behavior of the system during the polishing
process and guiding subsequent signal processing strategies,
such as using low-pass filters to reduce high-frequency noise
and improve measurement accuracy. Therefore, the research
method was used to perform digital filtering on it. The
six-dimensional sensor signal changes after low-pass filter
processing are shown in Figure 9.
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Figure 9 shows the time-domain curve changes of the
six-dimensional force sensor signal after being processed by
a low-pass filter. In Figure 9 (a), the three-axis time-domain
curve of the force showed a significant reduction in fluctu-
ations after data filtering, maintaining a stable range within
0.1N, indicating that the filtering process effectively reduced
high-frequency noise in the signal. Figure 9 (b) depicts the
three-axis time-domain curve of the torque signal, which also
showed a more stable change after filtering, with fluctua-
tions controlled within 0.00IN-cm. This indicates that the
filtering method has successfully removed high-frequency
fluctuations in the torque signal, providing high-quality data
for precise force control in experiments.

C. ANALYSIS OF POLISHING EXPERIMENT RESULTS
On the basis of visual inspection and data processing
results, research was conducted to verify the designed auto-
matic polishing system through practical experiments. Firstly,
a comparison was made between the results of system demon-
stration polishing and autonomous polishing. Four materials
were selected in the experiment, namely web plate material
corresponding to 1, weld material corresponding to 2, pipe
material corresponding to 3, and wood corresponding to 4.
The comparison results are shown in Table 3. The comparison
outcomes are showcased in Table 4.

In Table 4, A to C represent the X, Y, and Z axis directions.
D to F represents the force in the x, y, and z-axis directions.
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FIGURE 8. Spectral analysis results of force/torque vibration in the three-axis direction.

G to I represents the torque in the x, y, and z-axis directions.
Z represents the maximum error, and P represents the aver-
age error. Table 2 showed that the control methods used in
the automatic polishing system could effectively follow the
teaching results in the polishing of all four materials. The
actual level following error was less than 1mm, and it could
quickly respond to changes in polishing contact force and
adjust the posture. Overall, the industrial robots studied and
designed had good results in polishing, which can meet the
polishing needs of small workpieces. To further verify the
effectiveness of the constant force control of the position
controller used in the study, the contact force data with and
without constant force control were compared, and the results
are shown in Figure 10.

VOLUME 12, 2024

Figure 10 shows the experimental results of applying a
position type constant force controller to control the output
force of industrial robots during the polishing. This figure
verified the effectiveness of the constant force controller
by comparing the contact force data under two conditions:
constant force control and no constant force control. The
force control curves from different perspectives are shown in
sections (a) and (b) of the figure. In the case of constant force
control, the controller could dynamically adjust the output
force of the robot based on the preset force target value, so as
to maintain the contact force within a stable range. This con-
trol method could effectively avoid workpiece damage caused
by excessive force, while also ensuring the uniformity and
consistency of the polishing process. Through constant force
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TABLE 4. Comparison between teaching position/force and following position/force.

control, the robot could process the surface of the workpiece
more finely during the polishing, improving the polishing
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FIGURE 9. The change results of the six-dimensional sensor signal after low-pass filter filtering.

- A B C D E F G H I
Z(1) 2.53mm 2.34mm 4.80mm 0.72N 3.1IN 6.03N 0.53N-cm 0.13N-cm 0.20N-cm
P(1) 0.21mm 0.34mm 0.55mm 0.07N 0.3IN 0.68N 0.03N-cm 0.03N-cm 0.03N-cm
Z(2) 2.25mm 2.03mm 3.93mm 0.56N 2.56N 491N 0.16N-cm 0.12N-cm 0.14N-cm
P(2) 0.05mm 0.17mm 0.44mm 0.11N 0.33N 0.45N 0.03N-cm 0.03N-cm 0.04N-cm
Z(3) 0.94mm 0.96mm 4.04mm 0.2IN 411N 2.93N 0.05N-cm 0.02N-cm 0.04N-cm
P(3) 0.28mm 0.40mm 0.83mm 0.02N 0.40N 0.31IN 0.01N-cm 0.01N-cm 0.01N-cm
Z4) 1.55mm 1.47mm 4.56mm 0.90N 2.66N 2. 71N 0.29N-cm 0.13N-cm 0.09N-cm
P(4) 0.23mm 0.34mm 0.60mm 0.18N 0.22N 0.49N 0.02N-cm 0.05N-cm 0.02N-cm
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FIGURE 10. Contact force data results with/without constant force control.

(a) Changes under non constant force controller

(b) Changes under constant force controller

quality. In contrast, in the non-constant force control, the
output force of the robot fluctuated greatly, making it difficult
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FIGURE 11. Comparison of polishing effects on interface roughness of four materials.
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FIGURE 12. Actual automatic polishing effect.

to maintain within an ideal range. This instability may lead
to inconsistent polishing quality and even cause unnecessary
damage to the workpiece. To verify the effectiveness of the
designed industrial robot, a study was conducted to compare
its interface roughness with four materials artificially pol-
ished. Nine points were selected for two measurements in the
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experiment, and the average value was taken. The result is
shown in Figure 11.

In Figure 11, Y represents before polishing and N rep-
resents after polishing. Figure 11 (a) shows that the stable
roughness values of manual polishing on materials 1 and
2 were 0.475pum and 0.561m, while the roughness values

137939



IEEE Access

K. Liu: Contact Force Control of Robot Polishing System Based on Vision Control Algorithm

(a) Before grinding the four workpieces

(b) After grinding the four workpieces

FIGURE 13. Comparison of four types of workpieces before and after
polishing.

on Material 3 were 0.522um and 0.515m, respectively. The
system designed for research was applied to industrial robots
for automatic polishing, and the stable roughness values on
Materials 1 and 2 were 0.321um and 0.489um, while the
roughness values on Materials 3 and 4 were 0.491m and
0.487um. Overall, the research-designed automatic polishing
industrial robot has effectiveness and practicality, effectively
reducing the roughness of the material surface. On this
basis, to further verify the substantial polishing effect of the
designed industrial robot, the study would be applied to the
actual polishing of mobile phone cases, and the results are
shown in Figure 12.

Figures 12 (a) and 12 (d) show that the autonomous polish-
ing has completed most of the polishing of the defect location,
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but there are still a few residues. Multiple polishing could
complete the autonomous polishing of simple workpieces.
The overall design of industrial robots had a good polish-
ing effect and strong practicality. Figures 12 (b) and 12 (c)
show that the variation trend of the y-axis and z-axis of
the automatic polishing force curve was the same, while the
x-axis showed a relatively stable fluctuation. The variation
trend of the automatic polishing torque curve on the x-axis
and z-axis was the same, but completely opposite to the
y-axis.

As shown in Figure 13, the workpiece was generally
polished accurately, which reflects the effectiveness of the
control algorithm proposed in the study. Through visual
inspection, the system could obtain the morphological infor-
mation of the workpiece surface in real time, thereby planning
the grinding path more accurately. The use of historical pol-
ishing data provides experience for the system, allowing it
to make more intelligent decisions based on past polishing
experience.

V. CONCLUSION
In response to the lack of contact force control and poor

polishing effect in traditional industrial robots during actual
polishing operations, a new autonomous polishing system
for industrial robots was proposed in this study using visual
control algorithms and six-dimensional force sensors, and its
effectiveness was verified. Experimental results proved that
the system performed well in visual defect detection. The
mAP value of the Mask R-CNN reached 91.54%, and the
average detection time was 3fps, which met the detection
needs in small workpiece grinding operations. The improve-
ment of the six-dimensional force sensor signal processing
significantly improved the accuracy and stability of force
control, and the three-axis time domain curve fluctuation of
the torque was controlled within 0.001N-cm. Actual polishing
experiments showed that the system had excellent perfor-
mance in following performance and contact force control,
with an average following error of less than Imm, and could
respond quickly to changes in polishing contact force. Com-
pared with manual polishing, the surface roughness of the
material after automatic grinding was significantly reduced,
proving the effectiveness and practicability of the system.
In addition, mobile phone case polishing experiments fur-
ther demonstrated the potential of the system in practical
industrial applications. Despite the use of visual control algo-
rithms and six-dimensional force sensors, the adaptability and
robustness of the algorithms may need to be further improved
to cope with a wider range of environmental and workpiece
surface conditions. Secondly, the depth of data processing and
analysis needs to be strengthened, especially in improving the
resistance of signal processing algorithms to noise. Future
research needs to deepen algorithm optimization, integrate
multi-modal sensing technology, explore the application of
AR/VR in user interaction, integrate innovative solutions
across disciplines, and evaluate the performance stability of
the system in changing environments.
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