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Abstract— Model Predictive Control (MPC) is a popular con-
trol strategy that relies on the availability of a prediction model
to estimate future system trajectories over a finite time horizon.
Recently, researchers have introduced Neural Networks (NNs)
into the MPC framework for the development of data-driven
prediction models. In MPC, the control actions are computed by
solving iteratively, at each time-step, an optimization problem
subject to state and input constraints. Finding the optimal
solution to such a problem is a crucial challenge in the data-
driven setting, due to the complexity and black-box nature of
data-driven models such as NNs. This paper addresses this
challenge by proposing a hierarchical deep NN formed by a set of
cascading one-step NN predictors whose combination constitutes
an interpretable prediction model over the entire prediction
horizon. Thanks to the proposed NN architecture, it is shown
that the resulting optimal control problem is tractable, as it
can be solved by employing efficient iterative algorithms, and
interpretable, so that input and state constraints can be enforced
seamlessly. The effectiveness of the proposed method is validated
through numerical simulations.

Note to Practitioners—Model Predictive Control (MPC) is a
widely used methodology in the industry which typically relies on
the availability of a model in the form of step response, transfer
function or state-space models. In some cases, the explicit model
might not be available or its accuracy may be not sufficient for the
required closed-loop performance. This paper aims to develop a
simple and practical framework for deploying a model-free data-
driven MPC solution based on deep learning. This objective is
pursued by suggesting a novel approach using simple neural
networks in a cascading interpretable structure. Such networks
are used to predict the one-step evolution of the system, and
their cascade represents the MPC prediction model over an
arbitrary long prediction horizon. We characterize such a neural
model focusing on its interpretability and tractability, deriving
the resulting optimal control problem to be solved in a receding
horizon strategy. We then show that the MPC optimization can
be solved efficiently using highly efficient iterative algorithms that
can be implemented in practice. Numerical simulations involving
the use of the Alternating Direction Method of Multipliers
(ADMM) algorithm show its effectiveness for both linear and
nonlinear systems.
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I. INTRODUCTION

ODEL Predictive Control (MPC) is a paradigm capable
of combining closed-loop stability with performance
optimization and input/state constraint satisfaction [1]. MPC
relies on a so-called receding horizon procedure to iteratively
solve an optimization problem over a finite prediction horizon
to determine a state-dependent control action that uses a model
to evaluate the future behaviour of the controlled system.
Being a model-based control scheme, in MPC the quality and
effectiveness of the determined control directly depends on
the available prediction model, as constraint satisfaction and
performances are evaluated on its predicted system trajectories.
For this reason, in order to implement an MPC controller,
it is first necessary to conduct an adequate identification
study to develop a suitable model that correctly captures the
dynamics of the controlled system. In the typical setting, the
understanding of the physical/logical phenomena governing
system dynamics is combined with a parameter identification
procedure based on the observation of the real system. Over
the years, a significant effort has been spent in developing
solutions that rely solely on data-driven analysis [2], [3] or
pair it with a simplified modelling process [4], as extracting
knowledge — or learning — from data allows for compen-
sation for model uncertainties, restrictive model classes and
unaccounted disturbances. The advantages of learning typi-
cally come at the cost of reduced guarantees of closed-loop
properties such as stability, safety and robustness and/or lower
performance, as it is common to rely on locally optimal
solutions [5], [6].

In general, the quality of a model is proportional to its com-
plexity, as a complex model, involving for example nonlinear
functions and a large number of parameters, is more capable
of accurately capturing complex system dynamics. In MPC,
as the controller is required to solve optimization problems in
real-time, the trade-off between the model complexity and its
accuracy becomes critical. In fact, several applications have to
settle for a sub-optimal control law due to the unavailability
of a tractable model, requiring to resort to linearized and/or
local models.

The call for complex, yet computationally tractable, models
has led several studies to explore the combination of deep
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learning and MPC. In fact, thanks to their nonlinear structure
and large number of parameters, deep Neural Networks (NNs)
proved to be one of the most powerful approximation tools cur-
rently available, finding application in many control systems
domains.

The present work introduces a data-driven approach to
implement a neural MPC controller in which the prediction
model is composed by a series of cascading deep NN-based
one-step predictors. This approach has several advantages over
using a single deep NN as the prediction model, in terms of

« Interpretability. The output of each one-step predictor is
the (predicted) system state, as a function of the NN input
(i.e., the previous state-control pair). Therefore, the state
predictions explicitly appear in the MPC optimization
problem over the whole prediction horizon. Furthermore,
including the state and control action constraints of the
MPC problem is simply achieved by defining constraints
on the input and output of the single one-step predictors.

o Optimization. The resulting MPC optimization problem
structure is favourable for the employment of efficient
iterative optimization algorithms (such as the Alternating
Direction Method of Multipliers (ADMM) [7], already
used in the context of model-based MPC [8]) with a
parallel implementation.

o Tractability. In the case in which the one-step predictor is
modelled by a deep NN with ReLU and linear activation
functions, the MPC optimization one can be cast as a
Mixed Integer Convex Programming (MICP) problem
without approximations. Furthermore, the algorithm com-
plexity does not depend on the linearity or nonlinearity
of the underlying system.

o Training. The training of the whole deep NN prediction
model reduces to that of the single and much smaller deep
NN modeling the one-step predictor.

In the remainder of the paper, Section II presents a review
of the state-of-the-art on the use of deep NN within the MPC
framework; Section III states the required definitions and exist-
ing results; Section IV describes the proposed learning-based
MPC scheme; Section V shows the ADMM implementation;
Section VI illustrates the results of numerical simulations to
validate the proposed approach on linear and nonlinear sys-
tems; finally, Section VII draws the conclusions and outlines
future work.

Notation: Standard notation is used in the paper, with %
denoting the value of x predicted by the NN, x(t + k|t)
denoting the future value of x, k time-steps ahead, computed
on information available at time ¢, and f(-; #) denoting that
the function f is parametrized by 6. The matrices I, and 0, x,
denote the n x n identity matrix and a n x m matrix of zero
elements, respectively. R>o denotes the set of non-negative
real numbers. The indicator function with respect to a set A

0 ifxeA

is defined as I (x) = .
o0 otherwise.

II. RELATED WORKS AND PROPOSED INNOVATIONS

Originally introduced in the 1970s for the industrial con-
text [1], over the years MPC has been extended to handle
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not only linear, but also nonlinear and multi-variable systems
in the presence of constraints, disturbances and model uncer-
tainties [1]. The popularity of MPC is mostly due to its high
performance in the industrial setting, as its receding horizon
procedure allows to combine the benefits of both open-loop
and feedback control schemes by pairing a finite horizon
optimization with an iterative state/feedback measurement.

Most of the recent studies on the use of deep NNs in
MPC schemes can be mapped onto one of three categories:
(i) works that use a NN to approximate or augment the system
dynamics, thus using the NN as the MPC prediction model,
as in this work; (ii) works that use a NN to approximate an
MPC controller to directly implement a control law, similarly
to Reinforcement Learning schemes; (iii) works that employ
a NN to obtain the estimation of the future values of exoge-
nous disturbances/references (see e.g., [9], [10], [11], [12]),
typically in black-box fashion.

Interestingly, several of the first works [13], [14], [15], [16]
use neural networks to develop prediction models, whereas a
significant portion of the later works present in the literature
either use deep NN to mimic/implement an MPC controller or
enhance standard MPC solutions with data-driven predictions.
In particular, the authors of [13] used a fairly simple neural
network to approximate the dynamics of a nonlinear chemical
reactor and derive a control action using an extended version
of the Dynamic Matrix Control (DMC) algorithm, surpassing
the performance of a PID scheme without assuming any
particular structure for the system dynamics; in [14] the
authors test various deep NN architectures, including recurrent
neural networks, to predict the behaviour of an underwater
vehicle, whereas the authors of [15] proposed a variant of
the Generalized Predictive Control (GPC) algorithm [17] for
settings in which the plant prediction model is constituted by
a multi-layer feedforward neural network. A first survey of the
various architectures used in the nineties is provided in [16].

A complementary approach has been followed in other
studies (e.g., [18], [19], [20], [21], [22], [23], [24], [25]),
where the deep NNs has been used to synthesize the controller
directly. In works such as [20], [21], [22], [23], [24], and [25],
this is done by training the deep NNs off-line to replicate an
MPC controller so that the iterative optimization is replaced
by a much faster inference of the deep NN that also makes use
of the generalization capabilities of deep NNs. We mention the
approach followed in [23], in which the authors approximate
an explicit MPC control law starting from a given state
by means of a feedforward neural network with Rectified
Linear Units (ReLUs), which is then forced to generate
feasible control inputs by projecting its outputs onto convex
constraint regions derived from the maximal control invariant
set of the system via the Dykstra’s projection algorithm. The
work in [23] differentiates our study as this work avoids the
need for projecting the control actions on any kind of safe
set, as the MPC constraints are included in an optimization
problem.

Regarding works that use deep NNs to capture the system
dynamics — as in the present paper — the recent literature
has focused on developing more refined architectures and
exploring the conditions under which some formal analysis
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of the properties of the resulting neural controller can be
carried-out. Several studies, including works such as [26], [27],
[28], [29], [30], [31], and [32], explored how various kinds
of recurrent NNs (e.g., Long-Short Term Memory (LSTM)
and Gated Recurrent Units (GRU) networks) can be used as
models in the context of MPC. In fact, recurrent NNs are
dynamical systems themselves, as they are characterized by
evolving internal states and have been tailored to analyze time
series and sequence data (e.g., control or state trajectories).
Recurrent NN have hence been studied extensively in the
scope of system and control theory [33], [34], [35] for their
ability to learn complex nonlinear dynamics. On the contrary,
feedforward deep NNs, which have a significantly simpler
and non-dynamic architecture, have been used as prediction
models in works such as [9], [36], [37], and [38], offering
the advantage of a much simpler training and optimization
processes. Among the various recurrent NNs, LSTM have
likely found the most applications in the context of MPC
(e.g., see [26] and the references therein), as their architecture,
specifically designed to capture both long and short-term
dynamics, allows them to produce accurate predictions even
when employing fairly small networks. The present paper
focuses mostly on using feedforward deep NNs as prediction
models, but, as we will discuss, our general architecture
and approach can accommodate for different NN predictors,
including LSTMs, at the cost of reduced tractability (i.e.,
increased complexity) and interpretability.

One of the main limitations that affects the majority of
the works available in the literature is the fact that NN-based
prediction models are often treated as black boxes, with only
some recent works exploring how analytical properties of the
deep NN (e.g., the Input-to-State Stability (ISS) of the LSTM
model [31]) can translate into properties of the closed-loop
system (e.g., offset-free tracking of constant references [32]).
As a consequence, many studies have relied on numerical
methods and gradient descent-like procedures to solve the
MPC optimization, even in cases in which the NN architecture
has been designed to be easily interpretable as in [30]. Indeed,
several recent results rely on worst-case approaches such as
tube-based MPC [39], [40] to integrate neural predictors in
classic control schemes while maintaining some assurance
in terms of performance and stability, restricting the role
and capabilities of neural predictors and leading to more
conservative control laws (e.g., by limiting the neural network
to estimate only an additive term of the nominal control law
to compensate for model mismatches). On the contrary, the
present work aims to develop an ad-hoc deep NN architecture
that allows for the seamless interpretation of its structure and
requires minimal training and optimization efforts.

For our work, we take inspiration from the procedure
introduced in the recent study [41], where a novel operator
splitting method is proposed, relying on ADMM [7], for the
problem of neural network verification in terms of output
performance satisfaction in the presence of input perturbations.
We mention that the authors of [41] make use of convex
relaxations of the NN activation functions, which would not
be suitable to assure the feasibility of the solutions of the
constrained optimization problems found in MPC, while in
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this work we develop a procedure that relies on the exact
reformulation of ReLU activation functions.

III. PRELIMINARIES
A. Preliminaries on Model Predictive Control

We consider a discrete-time model x(t + 1) = f(x(¢), u(z))
of a controlled dynamical system, where x € X C R™ is the
state, u € U € R™ is the control action and f : R™ x R™ —
R": is a Lipschitz function. At a given instant of time 7, the
MPC controller task is to find the control sequence over a
prediction horizon of N, time-steps.

Let x(1) = [x(t + 1]#),...,x( + N,|t)]" and u(t) =
[u(tlt), ..., u(t+N,—1 |)]7 be the vectors of the future states
and control actions over the prediction horizon, respectively,
computed at time f. By defining a cost function and by
introducing state and input constraints, an optimal control
problem at time ¢ is then defined:

Problem 1: Let x(t) € X be the system state at time ¢, let
J 1 RN 5 RNo™ — R U {400} be a function convex in both
arguments and let X € X and U! € U be closed convex sets.
The convex optimization problem to be solved at time ¢ in an
MPC setting is

(rr)lir} )J (X(t), u() |x(t)) (1a)
st x(t+ilt) = f(x@+i— 1), u@+i—1[)), (1b)
x(t+ilt) € X, (1c)
u(t+i—1 eV, i=1,...,Np; (1d)
x(tlt) = x(t), (le)

where (1c) and (1d) are the state and input constraints.

The optimal solution is denoted by u*(z) = [u*(¢|t), u*(t +
1), ..., u*(t + N, — 116)]7; only the first optimal control
action is fed to the controlled system, i.e., u(t) = u*(t|t).
At time 741, the optimization problem is solved again, starting
from the measured state x (4 1) (receding horizon approach).’

Typically, as assumed in the remainder of the paper, the cost
function (1a) is separable into N, independent terms J fx(t+
i|t), u(t +i — 1]t)), one per time-step.

B. Preliminaries on Neural Networks

A feedforward deep NN can be thought of as an approxima-
tor of a nonlinear function, and is constituted by the weighted
connection of a set of neurons, typically organized in arrays
called layers so that the neurons of a given layer feed their
output to the neurons of the following layer. Each neuron is
characterized by an activation function producing an output
that depends on the weighted sum of the neuron inputs.

Let us consider a NN composed by [ layers; the first and
final layers are the input layer and output layer, whereas the
others are the hidden layers. Let ¢ : R — R be the activation
function of the k-th neuron of the j-th layer with n; neurons,
and let s; = [o1, ..., ojnj]T € R" be the vector collecting

'In Problem (1), the control horizon is equal to the prediction horizon N p-
The case N, < N, can be tackled by adding N, — N, constraints u(t+i|t) =
u(t+i—1|t), foralli =Ny, ...,N, — L.
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the output of the n; neurons of layer j. Neuron k output is
then

Ojk = @jx(WjkSj—1 + bji), 2

where wj; € R"~' is the row-vector of weights and bj; € R
is an additional parameter known as bias. Let 6; collect the
parameters (weights and biases) of the neurons of layer j.
The layer function ¢; : R"~' — R" is then defined as the
vector-valued function, parameterized by 6;, such that

pj1(wjisj—1 +bj1)
sj=¢;(sj-1:0)) = ' )

@jn;(Wjn;Sj-1+ Djn;)

The NN parameters 6 = {6;};—,..; define the func-
tion approximator and their values are identified through a
data-driven optimization process known as fraining. In the
typical setting, all the neurons belonging to a layer share the
same activation function, (e.g., ReLU, sigmoid, fanh or linear
functions).

Given a function f : R™ — R™ and a dataset D =
{{xn, Yutuzt,.ipt|yn = f(xa)}, the training task is to learn
an approximating function from data. The NN is represented
by the function fyy : R — R™, parameterized by 0, defined
as

v 0) = gi(d—1 (.. (P1(x;00)...;0-1);6). D)

with x € R™, n; = n, and n; = ny. The training task is to
learn the best parameters 6 for fyy to approximate f.

The number of layers, the number of neurons per layer and
the choice of activation functions are directly related to the
performance of a NN. Generally, the approximation capability
of a NN increases with the number of hidden layers and of
neurons (universal theorem of approximation [42]).

In this paper, NNs with ReLU activation functions for the
input and hidden layers and with linear output activation
functions are considered. This kind of NNs is widely used
in regression problems as the ReLLU functions allow to train
deep NN with a large number of layers minimizing the effects
of training-related practical issues such as vanishing gradients.

C. Preliminaries on ADMM

The Alternating Direction Method of Multipliers (ADMM)
[7] is an operator splitting method suitable to solve convex
optimization problems.

Leveraging on the decomposability of dual ascent algo-
rithms and converge properties of the method of multipliers,
it solves problems in the form:

H}llzn Sy () + J1.(2) (5a)

st. Ay+Bz=d (5b)

with y € R™, z € R*, d € R", where n, is the number
of constraints, and with convex cost functions J, : R" —
R U {oo} and J; : R"* — R U {oo}. Note that the optimization
variables have been split into y and z, with the objective
function assumed to be separable across this splitting.
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Similarly to the method of multipliers, the augmented
Lagrangian is considered, defined as

L,
= Jy(y) + J.(2) + m" (Ay + Bz — d) + %IIAy + Bz —d||5
(6)

where m is the vector of the dual variables and p > 0 is the
penalty parameter.

As in dual ascent algorithms, the problem is solved in an
iterative way, for k =0,1,...:

yk+1 = argminpr (y, Zk, mk)7 (73)
= argminzL,,(yk“, z,mb),, (7b)
m* T = m* + p(AY*TT + B — d). (7c)

The stopping criterion relies on the computation of the primal
and dual residuals, defined as r* = Ayk + Bz¥ —d and s* =
,oATB(zk —zk’l), and of two thresholds, i.e., the absolute and
relative tolerances, denoted by &,,; > 0 and ¢,,; > 0 (see [43],
[44] for details). Other algorithm parameters are 7 > 1 and
@ > 1, used to update the penalty parameter p as

b i |Irf > wllst .
P =1 ok it 15K > wllr L, ®)
ok otherwise.

The convergence of the algorithm is guaranteed under two
assumptions: 1) the functions J, and J, are closed, proper,
and convex; 2) the augmented Lagrangian has a saddle point.
Practically, the algorithm works well even in problems which
do not meet the convergence assumptions, with on-going
research on ADMM for mixed-integer programming problems
[45], [46].

IV. PROPOSED MODEL PREDICTIVE CONTROL WITH
ONE-STEP NEURAL NETWORK PREDICTORS

In this section, we consider the problem of controlling a
system with unkown or unmodeled dynamics. To synthesize
a suitable control law, we resort to identifying through a
data-driven analysis a neural representation of its dynamics.

The section is organized as follows: Section IV-A presents
the prediction model built from the one-step predictors;
Section IV-B formalizes the MPC optimization problem with
the developed prediction model; Section IV-C details the case
of NNs with ReLU and linear activation functions.

A. Prediction Model With One-Step Neural Networks

As introduced in Section III-A, MPC requires a model of the
process dynamics f : R" x R"™ — R"r to predict the trajectory
followed by the state of the system along a prediction horizon.
This section describes the feedforward NN that has the task
of approximating the function f. With reference to an MPC
problem with a prediction horizon of N, time-steps, the NN,
denoted by fuy, is referred to as one-step neural predictor.

Definition 1: The one-step neural predictor is defined as the
function fyy : R"™ x R™ — R™ such that, at time ¢,

X+ 1) = fan (x(@), u(@); 0), &)
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O lu(®) . 5 . S2 .. S 2e+1) =5
Fig. 1. Graphical representation of the feedforward neural network fyn

playing the role of a one-step predictor. The sizes n; of the inner layers, i.e.,
the number of neurons, are project choices, whereas the size of the input layer
is ny +n, and the size of the output layer is n,.

where X(¢ 4 1|¢) is the estimated value of the system state x
predicted at time ¢ and 6 collects the NN parameters.

As described in Section III-B, the NN relies on the acti-
vation functions. Let / the number of layers of the one-step
predictor. The output of the k-th neuron of layer j is denoted
by Ojr = (pjk(wjkajk + bjk), for k = 1,...,I’lj and [ =
1,...,1, where n; is the number of neurons in layer j,
and the weights wj; and the bias bj; are parameters whose
values are the result of the training phase. The input of the
NN is 59 = [xT(t),uT(t)] € R™ x R™ and the output is
X(t+1|t) = s; € R™. The total number of neurons is denoted

’’’’’ ,nj, and the one-step neural predictor is
depicted in Fig. 1.

A common choice for activation functions in regression
problems is the use of a linear function for the output layer,
as it does not restrict the output space to any specific interval,
and ReLU functions for all other layers.

The ReLU activation function of neuron k of layer j is

gpjk(wjksj,l +bjk) = max {0, WirSj—1+ bjk}. (10)

The linear activation function of the neuron k in the output
layer [ is

(1)

Remark 1: As the trained one-step predictor is set up, i.e.,
as the neural network weights w;; and biases b;; are found,
it is possible to identify upper- and lower-bounds for the input
of each neuron by feeding the one-step predictor with the
available data and checking its inner signals. Considering all
the input pairs of the neural network in the training set X, let
M j and M jx be positive constants such that

o (wiksi—1 + bi) = wiesi—1 + bi.

—M < @i(wioji+bj) < My, Vix,ul" € . (12)

These bounds will be useful in the following Sections.

The NN in equation (9) is used in the prediction model as a
one-step predictor. To obtain the overall prediction model, i.e.,
the trajectory predictions over the whole prediction horizon,
N, one-step predictors are concatenated.

Definition 2: The neural prediction model at time ¢ is

X(t) = Fyn (x(1), u(2); 0),

where X(1) = [£( + 1]1), ..., X(r + N,,|t)]T is the vector of
the states predicted by the NN and Fyy : R™ x R™ — RNe

13)
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2(t+1)t)
x(t) . () = l 2(t+2|t) ]
_.u(t) NN 2(t + Nplt)
x(t)
I 2(t+1]t)
u(t|t)| faw 2t +2|t)
- we+ip| fov T 2(¢+ N, —1]t)

2(t+ Ny|t)

u(t+ N, —1t)| fan

\ . \ :
15t one-step predictor 2™ one-step predictor N,,'" one-step predictor

Fig. 2. Graphical representation of the deep NN Fy y, built from the one-step
predictor fyxy and constituting the prediction model.

is a vector-valued function built from the concatenation of the
one-step predictors (9):

Fyy (x(0), u(t); )=

S (x(0), u(]t); 6)
Suw (fun (x@), u(t]r); ), u(t — 1))

Fun (P (- (o (0, w(210): 0). u(t — 110 9).
. )ut+ N, —1]1); 0)

(14)

The prediction model is represented in Fig. 2, which high-
lights the interpretability of the deep NN since its structure
allows the identification of the state variables at each step of
the prediction horizon.

B. Optimization Problem With Neural Network
Prediction Model

If the neural pedictor fy is available instead of the function
f, the first constraints (1b) of the optimization Problem (1) is
substituted by

X +iln) = fun(FC+i =10, u@+i—1]0),  (15)

fori =1,..., N,. The resulting problem will be referred to
as NN optimization problem.

The inner structure of the one-step predictor fyy, described
by equation (14), can be made explicit in the constraints of
the NN optimization problem.

Problem 2: The NN optimization problem to be solved at
each time-step ¢ with initial state x () = x reads as

min J(s), Aush) (16a)
i=1,..,N,

st sh=@;(si_ ), j=1....1, (16b)
si e X, (16¢)
speX x U, i=1,...,Npy (16d)
Axsé =x, (16e)
Aush=s""i=2,...,N,, (16f)

with Ay = [1,,10, ] and A, =[Oy, |11, |-

In Problem 2, considering that s, and s;
and output of the i-th one-step predictor,

are the input
it holds that
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Aysh = R(t+i—1t), Aysi = u(t+i—1|t) and s} = R(t+i|1).
The constraints of Problem 2 recast the ones of Problem 1:

« constraints (15) are cast as constraints (16b), representing
the dynamics of each one-step predictor i, and (16f),
linking the input of the i-th one-step predictor to the
output of the (i — 1)-th one;

o (16e) states the initial conditions (le);

« constraints (16¢)-(16d) express the input and output con-
straints of each one-step predictor, i.e., the state and
control input constraints (1c)-(1d).

Remark 2: Problem 2 highlights the structure of the neural
prediction model, i.e., the fact that it is the concatenation of
one-step NNs, with constraints (16b) describing the dynamics
of each one-step predictor and constraints (16f) which are the
coupling constraints. The NN optimization problem at time
t can be thought as a set of N, smaller, “local” MICP sub-
problems, aimed at minimizing J/(£(t 4 i|t), u(t +i — 1|t))
subject to constraints (16b)-(16d), for i = 1,..., N,, with
initial conditions set by the coupling constraints (16f) and,
for the first sub-problem, by the initial state (16e). This
structure is favorable for the possibility to apply efficient
solution algorithms employing decomposition-coordination
procedures, in which the solutions to the local sub-problems
are coordinated to find a solution to the larger coupled
problem. Decomposition-coordination algorithms are iterative
algorithms alternating the decomposition step, in which the
local sub-problems are solved in parallel, with the coor-
dination step, in which the coupling constraints are dealt
with.

Remark 3: The convergence speed of the decomposition-
coordination algorithms is sensible to the initial guess.
Generally, the receding horizon approach of MPC is such
that a reliable initial guess at time-step ¢ + 1 is retrieved
from the solution of the optimization problem at time-step
t. A reliable initial guess can be computed by starting from
the partial feasible solution obtained by the optimal solution
at time ¢ (for instance, for the predicted state, we would
set the initial guess as x(t +i + 1|t + 1) = x(t + i|z), for
i=2,...,N,—1).

C. The Case of ReLU and Linear Activation Functions

The benefits of the proposed one-step predictor approach are
valid in case of general activation functions, since the related
constraints (16b) appear within the local sub-problems. How-
ever, depending on the activation functions, the constraints
might be non-convex and their handling require specific
optimization techniques — for instance, sigmoid or tanh func-
tions the constraints might require convex or piecewise linear
approximations. The use of ReLU activation functions (10) for
the input and inner layers and linear activation functions (11)
for the output layer is common in regression problems, as the
former exhibits sparsity for negative inputs and mitigates
the vanishing gradient problem, while the latter allows for
a direct interpretation of the NN’s output. With this choice,
Problem 2 becomes a Mixed Integer Convex Programming
(MICP) problem, since constraints (16b) are written as convex
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ones without the need of approximations:
U]l:k = max {0, wjksj-_] + bjk},
k=1,...,n;,j=0,...,0—1, (17a)
si = wisi—1 + b, (17b)
. T 71T T
with w, = [w/}, ..., w} | and by =[bn, ..., b ] .

By introducing a binary decision variable § € {0, 1},
a constraint of the type y = max{0, x}, where x and y are
two scalar unknowns, can be rewritten as the set of 4 linear
constraints:

y=0, yzx, y=Ms§ y=x+M1A-5), (18
where M is a “large” constant such that x < M for any value
of x. This kind of formulation is known in the literature as
“big-M” reformulation [47]. In general, the upper-bound M is
chosen as “large enough” based on the problem knowledge.
However, the performance of the solvers depends on the choice
of the upper-bound: if it is too large, it can lead to numerical
instability or slow convergence, whereas if it is too small the
accuracy of the solution might be affected. As discussed in
Remark 1, the NN modelling proposed in Section III-A allows
to derive a reasonable choice of the “big-M” constant for each
neuron of the one-step predictor.

For all neurons k, layers j and predictors i, a binary
unknown 8;,( € {0, 1} is then introduced to formulate the
optimization Problem 2 as a Mixed-Integer Convex Program-
ming (MICP) one - or Mixed-Integer Quadratic Programming
(MIQP) in case of quadratic cost functions.

Problem 3: The NN optimization problem with ReLLU input
and inner layers and with linear output layer is a MICP, written
as Problem 2 with constraints (16b) substituted by

ajy =0, (192)
ol = (wis’_ +bjr), (19b)
ojp < M8, (19¢)
O < (Wiksi_y +bj) + M ji(1 = 8;1), (19d)
8 €{0,1}, k=1,....n;,j=1,....,1—-1; (19e)
s = wisj_y + by, (19f)

In Problem 3, for each one-step predictori =1, ..., N, the

constraints are such that constraints (19a)-(19e) express the
dynamics (16b) of the ReLU neurons of the input and inner
layers under the “big-M” reformulation (see equations (18)),
with M j; evaluated as in Remark 1.

V. ADMM SOLUTION TO THE NN OPTIMIZATION
PROBLEM

This section describes how iterative decomposition-
coordination algorithms can be used to efficiently solve
Problems 2 and 3. Specifically, Section V-A shows that,
at each iteration, the proposed architecture enables parallel
optimization in the decomposition step, whereas Section V-B
shows that the constraints of Problem 3 can be recast as linear
equality constraints to apply the ADMM algorithm (5).
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So st = fun(sb) z' =y
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Use of identity layers to decouple the one-step predictors.

Fig. 3.

A. Step 1: Definition of Identity Output Layers

We now introduce an unknown vector z, collecting the proxy
variables z' € R™ acting as copies of sf, fori=1,...,N,—1L.
Introducing the variables z' is equivalent to introducing an
identity layer after the output of the i-th one-step predictor
(see Figure 3), with the aim of decoupling the inner dynamics
of the one-step predictors. With the introduction of the proxy
variables, Problem 2 is written as follows:

Problem 4: The NN optimization Problem 2 with decou-
pled dynamics of the one-step predictors is written as

min DTN Aush) (20a)
i=1,..,N,

st.osh=¢;(si_), j=1....1 (20b)
she X x U, (20c)
sieX, i=1,...,Np; (204d)
si—7'=0, i=1,...,N, -1 (20e)
Avsy = x, (20f)
Ash=7""i=2,...,N,. (20g)

In Problem 4, constraints (20b)-(20d) describe the inde-
pendent (decoupled) dynamics of the N, one-step predictors,
constraints (20e) describe the identity layers, and con-
straints (20f) and (20g) collects the initial conditions (16e) and
the coupling constraints (16f), respectively, written in terms of
the proxy variables. This approach is inspired by [41], where
identity layers are added between subsequent NN layers to
split the original problem into smaller sub-problems, one per
NN layer. Similarly, our proxy variables, added between subse-
quent one-step predictors, will allow to decompose Problem 4
into N, sub-problems (Section V-B).

Remark 4: In principle, the proposed approach can be
adapted for arbitrary NNs (e.g., LSTM), as the structure of
Problem 4 can be preserved by substituting constraints (20b)
with

st = fun (sd). (21)

where fyy represents the dynamics of each one-step predictor
independently from its architecture. However, constraints (21)

are generally not convex for most NN architectures and
activation functions.

B. Step 2: ADMM Formulation

To use the ADMM algorithm, the inequality constraints
must be re-formulated as equality constraints. As in Problem 3,
by using the layer models of Section III-B with ReLU and
linear activation functions, constraints (20b) of problem 4
are expressed by the linear constraints (19a)-(19e), with the
introduction of the vector of integer variables 6. We further
introduce the vector of non-negative slack variables & to
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write the 3 sets of inequalities (19b)-(19d) as equality ones,>

obtaining the following problem:

Problem 5: The NN optimization Problem 2, with decou-
pled dynamics of the one-step predictors, ReLU input and
inner layers and linear output layer, is written as Problem 4,
with constraints (20b) expressed by the following constraints:

% 20, (22a)
— o+ wisi_y +bj + &5y =0, (22b)
oy — Mjdji + &, =0, (22¢)
ol — Wity + ) — My(1 =8, + 8 =0, (22d)
Eip =0, p=12,3, (22e)
§,ef0 1), k=1,....n,j=1,....01-1 (22f)
Szi = wlsli_] + b;. (220)

By collecting the variables s’, 8’ and &' into the vector
y = [s’T, 8’T, S’T] , the optimization problem is written in
matrix form® as

min Ji(y' 23
lin. > TGN (23a)
i=l,...,N,

st. A'y'+B'z=d', i=1,...,N,p, (23b)

where:
« the cost function J(y') is defined as
T = T s7 Musy) + TRy (1) + e (69 +
0,1y (8 + b (s§) + b (s)), (24)

where ng = 3(n,, — ny), ns = n,, — n; and the indicator
functions are used to include the convex constraints (22a),
(22e), (22f), (20c) and (20d), respectively;

« constraints (23b) represent, in matrix form, the linear
equality constraints (22b)-(22d), (22g), and the initial
conditions (20f), if i = 1, or (20g), otherwise.

Problem (23) resembles the ADMM one (5). The augmented

Lagrangian (6) of the ADMM is now written as

L= Y (FoH+J0ham)). @)

i=l1,..., N,

where
J z,m) =m'(A'y' + B'z —d')+
+§||A"y"+B"z—d"||§ (26)

and the m!’s are the dual variables, collected in the vector m.
Algorithm 1: To solve Problem 5 by using the ADMM

algorithm (4), the following optimization problems are solved

iteratively, starting from an initial guess (yo, 70, m%):

ik+1 . Fiooi i ik
Y = argmin, (J' () + S 2 om')),

i=1,....N,, (27a)

2The constraint ay + bz < d can be written as ay + bz + & = d with slack
variable & > 0.
3See the Appendix for the definitions of the matrixes.
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= argmin, > HO" 2 m), (27b)
i=1,..,N,
i = ik +p(Aiyik+l 4 Big _giy,
i=1,...,Np, (27¢)
for k = 0,1,2,..., until the primal and dual residuals are

sufficiently small (see Section III-C).

Remark 5: In Step 2 of Algorithm 1, (27b) is a simple
unconstrained convex (or quadratic) program and, in Step 3,
(27¢) consists in straightforward computations. In Step 1,
(27a) describes N, MICP (or MIQP) problems which, thanks
to the developed prediction model structured with one-step
predictors, can be solved in parallel, improving the overall
algorithm complexity, run-time and scalability for large values
of the prediction horizon.

VI. NUMERICAL SIMULATIONS

This section presents some numerical simulation results
with two examples: a linear system and a nonlinear system,
in Sections VI-A and VI-B, respectively. The ADMM param-
eters were set as follows: g,p; = 1073, &, = 10~* and initial
value of the parameter p° = 10, which is updated by means
of residual balancing (8) with © = 10 and v = 1.2. The
simulations were carried out on a machine learning machine
equipped with an Intel Core 19 9900k processor with 128 GB
of RAM and a Nvidia GeForce RTX 3090 as GPU.

A. Example With Linear System
This section considers an unstable discrete-time linear sys-
tem, described by the function f(x,u) = Mx + Nu, with

1.1 0.5 1
—05 1.1] and N = [1:| A standard MPC

approach was implemented, with quadratic cost function

matrices M = [

NP
T, w) =" (lxt+illg+ llutt +i — 1) z)+
i=1

+ lx(@ + NplD)llp, (28)

' 10 15.2814 —0.9740
with 0 = [o 1}, R=10F= [_0.9740 5.1226] and

N, = 15. The input and state variables are bounded as
u € [—u,u], with u = 0.25 and xy,x, € [—x,x], with
x = 0.65. The matrix P was calculated in such a way
that the final cost, i.e. the last term of the cost function,
is equal the optimal cost of a LQR, according to the dual-
mode paradigm [48]: provided that N, is large enough, the
solution found by the MPC algorithm is then optimal for the
infinite-horizon constrained optimization problem.

The same linear system was then used to generate a database
of about 10° input-output pairs, with input [x u]” and output
x" = f(x, u), used, in turn, to train two NNs for implementing
the Neural Network One-Step Predictor fyy(x). The structure
of the first NN has one ReLU input layer, 2 ReLU inner layers
and one linear output layer; the other NN is a LSTM composed
of 128 units followed by a linear layer. Data were generated
by computing trajectories with length equal to 100 time-steps
with random initial state x € [—3x, 3x] and random initial
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Fig. 4. Linear system: control actions and state trajectories with upper- and
lower-bounds.
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Fig. 5. Linear system: state trajectories with feasible and terminal sets.

input u € [—3u, 3u], this last kept constant over the whole
trajectory (the NN dynamics was trained in broader conditions
with respect to the constrained one). The training set and the
test set were selected as 90% and 10% of the data, respectively.

The training of fyy(x) is done for E = 5 epochs consider-
ing a batch size b = 100, using Stochastic Gradient Descent
(SGD) as the optimizer. As is common in regression problems,
the Mean Squared Error (MSE) is chosen as both loss function
and performance metric. After E epochs, the Neural Network
One-Step Predictor was able to predict the state evolution with
a prediction error lower than 0.1%.

Figures 4 and 5 collect the simulation results with initial
conditions x(0) = [0.5 0.5]”. The “Lin” plots show the
solution u* of the MPC problem (1) with the linear model
f(x,u) = Mx + Nu and the resultant state trajectories.

The “ReLU” plots show the solutions of the neural MPC
problem 3, i.e., the sequences of control actions u*, and
the state trajectories predicted by the neural network model
fwnn(x), with ReLU activation functions for the inner layers.

The “LSTM” plots are obtained by using the LSTM neural
model as fyy(x) in Problem 4, with constraints (21) consid-
ered instead of (20b). The ADMM algorithm was then used



6748

gg T T — = Nonlin|
i NN
=15 o L |

30 35 40 45 50

S0l

Fig. 6. Nonlinear system: control actions and state trajectories with upper-
and lower-bounds; R = 0.1.
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Fig. 7. Nonlinear system: state trajectories; R = 0.1.

to solve the following problem:

min > T(s) Ausg) + xewr (5h) + Ixi () (29a)
S i=1..N,
st. Fis'+G'z=v, i=1,...,N,, (29b)

where constraints (29b) represent, in matrix form, the initial
conditions (20f), if i = 1, or (20g), otherwise. In the iterative
procedure (analogous to the one described in Algorithm 1),
the parallel problems of Step 1 had to be solved numerically.

The trajectories of the NN implementations are evaluated
using the various NNs at time O starting from the state initial
conditions x(0). Despite the use of a data-driven solution
without any prior knowledge of the system, the figures show
that the plots obtained with the neural MPC are close to the
plots obtained with the optimal control actions u*, meet both
input and state constraints and guarantee the system stability
by driving the state trajectories towards the final set.

Table I collects some key performance indicators of the
simulation. By calculating the optimization problem (OP)
dimension as the number of unknowns times the number of
constraints, the table also shows that the size of the MIQP
Problem 3 obtained with the ReLU NN is two orders of
magnitude larger than the original QP Problem 1. However,
by using the ADMM algorithm, the MIQP problem is recast to
the one of iteratively solving in parallel N, = 15 instances of
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TABLE I

LINEAR SYSTEM: SIZE OF THE OP PROBLEMS, NUMBER OF PROBLEMS
TO SOLVE, SOLVING TIME, NUMBER OF ITERATIONS AND COST FUNC-
TION VALUE OF MPC (QP), CENTRALIZED NEURAL MPC (MIQP),
ITERATIVE NEURAL MPC (ADMM)

Algorithm OP size N. of OP | Time Niter J
QP (Lin) 1.2-10° 1 0.02s — 5.462
MIQP (ReLU) 1.8-10° 1 ~ 1s — 5.462
ADMM (ReLU) | 0.9-103 15 0.01s 37 5.504
ADMM (LSTM) | 0.8-10° 15 0.05s 41 5.532
Nonlin [
NN |
o 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

35 40 45 50

25 30 35 40 45 50

Fig. 8. Nonlinear system: control actions and state trajectories with upper-
and lower-bounds; R = 0.2.

the MIQP Problem (27a), with smaller dimension and lower
solving time with respect to the original QP Problem 1. The
reduction in problem size is significant and allows the practical
application of the proposed procedure to find the solution of
Problem 3. With LSTM, the problem size is similar but the
optimization problem has nonlinear constraints. Finally, the
table reports the solving time and number of iterations needed
to find the solution with the ADMM algorithm when the
LSTM is used as predictor; in this case the parallel problems
are solved numerically, slowing down the solving time (see
Remark 4).

As the MIQP problem formulation obtained for the ReLU
NN is equivalent to the original QP problem, they both obtain
the optimal cost. A sub-optimal solution is obtained with the
ADMM algorithm: the cost function value worsens by 0.78%
for the ReL.U solution and 1.28% for the LSTM one (probably
penalized by the need to use numerical solvers). We mention
that the ADMM performance might be improved by refining
the NN models (e.g., by increasing the size/quality of training
database, improving the tuning of the NN hyper-parameters or
increasing the number and/or size of the NN layers).

B. Example With Nonlinear System

This Section considers the coupled tank model reported
in [49], described by the nonlinear system

xi(t+ 1) =x(r) - 5%\/28961(1) + 5%14(0

A (30)
Xt + 1) = x(t) — SX\/ngz(t) +8/2gx1(1).
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NONLINEAR SYSTEM: NUMBER OF PROBLEMS TO SOLVE, SOLVING TIME,
NUMBER OF ITERATIONS AND COST VALUES FOR DIFFERENT
VALUES OF R WITH MPC (NONLIN) AND ITERATIVE
NEURAL MPC (ADMM)
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Fig. 9. Nonlinear system: state trajectories; R = 0.2.

24 +— Nonlin |~
NN

T T T T T T T T T )
0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Fig. 10. Nonlinear system: control actions and state trajectories with upper-
and lower-bounds; R = 2.
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Fig. 11. Nonlinear system: state trajectories; R = 2.

where x; and x; are the depths of liquid in a pair of connected
tanks, A = 15.2 cm? is the tank cross-section area, A; =
0.13 cm? and A, = 0.14 cm? are the outflow orifices areas,
g = 981 cms™ is acceleration due to gravity, k, = 3.3 cm’
sV is the pump gain, § = 1.4 s is the time-step. The control
task is to stabilize the system around a constant level of liquid
in the tanks, with x] = 15.9, xJ = 15 cm, in the presence of
inflows and outflows. The height of the tanks is x = 30 cm
and the pump voltage, playing the role of the control action
u, is bounded by u = 24 V.

Nonlinear | ADMM (ReLU)
N. of OP 1 50
Time ~ 1s 0.01s
Niter 70 59
J(R=0.1) 11501 12573
J(R =0.2) 11769 12785
J(R=2) 16125 17269

For comparison purposes, the model-based nonlinear MPC
approach of [49] was implemented, with cost function (28),

with state cost Q = 8(1) cm2, control cost R = 0.2 V2,
. 2112] B
terminal cost P = 12509 cm and N, = 50.

The same nonlinear system was then used to generate
a database of input-output pairs {[x u]”, f(x,u)}, with f
given by (30), used, in turn, to train a Neural One-Step
Predictor fiyy(x) with the same procedure used for the linear
system case in Section VI-A. The ReLU NN has the same
structure of the one developed for the linear system case and
was trained on 10° input-output pairs.

The nonlinear MPC algorithm of [49], needed to control the
nonlinear system (30), is much more complex with respect
to the linear one of the former section and requires an
iterative procedure (see [49] for details). Conversely, the single
problem (27a) is exactly the same as the one of the linear
example in section IV-A, with same problem size, as the same
structure for the one-step predictor fyy was used. However,
the number N, of problems to be solved in parallel and the
number of iterations required to reach the solution are larger.
Table II collects the simulation characteristics.

Figures 6-11 shows the closed-loop application of the MPC
strategies, considering the real process as identical to the
nonlinear model, with initial conditions x(0) = [0.2 0.1]7
cm and desired final state [15  15]7 cm. The results are shown
for different values of R (see the figure captions).

The figures show that the trajectories obtained with the
neural MPC are close to the ones obtained with the model-
based MPC, meet both input and state constraints and are
steered towards the final state. Table II shows the performance
of the two approaches: for the different values of R, the
difference in the cost function values ranges between 6.6%
and 8.5%. In evaluating these results, we underline again
that the proposed neural MPC approach is purely data-driven,
whereas the model-based MPC exploits the perfect knowledge
of the system model since no uncertainties or disturbances
were introduced in the simulations: the presence of a model
mismatch could significantly worsen the performance of the
model-based approach; conversely, if needed, the performance
of the neural MPC might be improved by using a more refined
NN for the one-step predictor.

VII. CONCLUSION AND FUTURE WORKS

In the context of data-driven MPC, the paper proposes an
approach enabling the tractable solution of the MPC optimal
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control problem using efficient iterative algorithms. This study  [4] U. Rosolia and F. Borrelli, “Learning model predictive control for

relies on the development of a prediction model by concate-
nating a set of multi-layer Neural Networks (NNs) used as
one-step predictors. This structure has a twofold advantage:
(1) the optimal control problem can be formulated as a convex
optimization with linear constraints, under the assumption
that the NN employs ReLU and linear activation functions,
regardless of the linear or nonlinear nature of the controlled
system; (ii) the optimal solution can be found by means of
efficient iterative and parallel optimization algorithms, such
as the ADMM algorithm used in the numerical simulations
that validate the approach.

Future work is aimed at analysing the convergence prop-
erties of iterative optimization algorithms with the provided
problem formulation and at extending the formulation to
include other activation functions and NN architectures to
further improve the interpretability of the overall control loop.

APPENDIX
MATRICES OF THE EQUALITY CONSTRAINTS OF THE
ADMM MICP FORMULATION

The matrices A’, B’ and d’ of Problem (23) are, shown in
the equation at the top of the page, where

M = coly, (IM jilk=1...n,.j=1....i1-1)
bl = CO]NF (bl),

b_; = coly, ([bjklk=1,...n.j=1,...i~1)
; X ifi=1
Yy = .
Op.x1 ifi=2,...,Np,
o [0, ifi=1
B' = e
—1I,, ifi=2,...,Np.
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