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ABSTRACT Battery energy storage systems, especially lithium-ion batteries, have become more common
in power systems owing to their numerous advantages, such as supporting voltage and frequency regulation
and contributing to peak shaving and load shifting. However, when the battery reaches its end-of-life,
it becomes more unstable, leading to a higher probability of system operation failure and safety accidents.
Therefore, to accurately predict the State of Health (SOH) and the Remaining Useful Life (RUL) of a
battery system, a prediction method is proposed in this paper based on Empirical Mode Decomposition
(EMD), Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural Network (CNN), and
Attention Mechanism (AM). Firstly, capacity and different health indicators with high correlation extracted
from the battery’s charging and discharging characteristics are considered inputs. Then, the EMD method
decomposes the battery data into several intrinsic mode functions (IMFs) and a residual. In the second part,
with IMFs and a residual as input parameters, the SOH and RUL of different battery datasets are predicted
by using the combined model CNN-BiLSTM-AM. To validate the accuracy of the proposed method,
different comparative models are considered and carried out on CALCE and NASA battery degradation
datasets. The results illustrate that the errors of the proposed method, which are root mean square error
and mean absolute error are at least 48% and 19% more accurate than others in all battery datasets,
showing the effectiveness and accuracy of the proposed model in predicting the SOH and RUL of the
battery.

INDEX TERMS State of health, remaining useful life, health indicator, correlation coefficient, convolutional
neural network, bidirectional long short-term memory, attention mechanism.

I. INTRODUCTION
Lithium-ion (Li-ion) batteries, with notable characteristics
such as a larger storage capacity, higher durability, and lower
discharge rate than traditional lead-acid batteries, have been
widely applied in various industrial domains [1]. Neverthe-
less, degradation is a crucial and challenging problem for
expanding the utilization of Li-ion batteries. In practice,
the performance of batteries will gradually degrade with
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repeated charge/discharge cycles or deteriorate severely due
to unexpected risks [2]. In the industry, battery degradation is
determined through time, and charging/discharging cycles are
regarded, especially with the high penetration of renewable
energy into the power system. Therefore, accurate Li-ion
batteries’ health condition forecasting is imperative to ensure
the operation of batteries with high reliability. The State
of Health (SOH) and Remaining useful life (RUL) are
two significant indicators of the battery health diagnosis
system. SOH defines the battery aging level, and RUL
represents the remaining period before the battery’s useful
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life ends. To date, SOH estimation methods are classified into
three main categories: direct measurement, model-based, and
data-driven.

Direct measurement approaches are based on direct
computations, such as open-circuit voltage for capacity or
Electrochemical Impedance Spectroscopy for impedance [3],
[4]. Although this approach has low computational complex-
ity and obtains accurate SOH, it is time-consuming and may
not capture subtle changes or degradation trends over time.

In model-based methods, mathematical relations are built
to represent the physical properties, thus fitting the degra-
dation curve of a battery. Numerous models with priority
knowledge of batteries have been employed for SOH and
RUL prediction, for example, the Kalman Filtering (KF)
method [5], Extended KF (EKF) [6], adaptive EKF [7],
and Particle Filtering methods [8]. In general, model-
based approaches require a significant amount of expert
knowledge along with a large volume of calculations.
However, several existing drawbacks of these methods render
them less prevalent in the area of SOH and RUL forecast,
such as Implementing a model with accurate parameters
in every cycle is challenging due to complicated internal
electrochemical characteristics, or the forecast accuracy of
filtering methods might be affected negatively due to particle
impoverishment problem.

Data-driven methods without the requirements for battery
degradation mechanisms have been increasingly adopted
in this field. The data-driven method, perceived as a
‘‘black box’’ due to its incomprehensible internal work-
ings, uses historically measured data of variables in the
charging/discharging cycle such as voltage, cycle, and
charge/discharge current. Recently, various intelligent algo-
rithms such as Linear Regression (LR) [9], Gaussian
Procession Model (GPM) [10], and Support Vector Machine
(SVM) [11] have been applied to battery health prediction.
In [12], a SOH and RUL prediction was proposed using the
GPM considering Indirect Heath Indicators. Vilsen et al. [13]
proposed a Multiple LR (MLR) for reducing the number
of features, increasing the efficiency in SOH prediction.
Lin et al. [14] implemented a multi-feature-based multi-
model fusion method for predicting the SOH of the lithium-
ion battery. Different models, including MLR, GPR, and
Support Vector Regression, were used, increasing accuracy
and robustness. However, these models struggle to capture
temporal information from input data.

Currently, the research based on Neural Networks (NN)
is augmenting both quantity and quality. For instance,
a Recurrent Neural Network (RNN) constitutes a category of
neural architectures adept at managing sequential or temporal
data by maintaining a concealed state, which encapsulates
pertinent information from antecedent temporal instances.
Lu et al. [15] evolved a SOH and RUL prediction framework
based on RNN, incorporating forthcoming current plans
and a limited set of initial capacity-voltage data as input.
However, RNN struggles with exploding and vanishing

gradient problems, leading to less accuracy in predicting the
battery’s health. Hence, several models developed from RNN
are introduced, such as Gated Recurrent Unit (GRU) [16]
and Long Short-TermMemory (LSTM) [17]. Ungurean et al.
[18] proposed an online SOH prediction method based on
the GRU model. The results illustrated the forecast accuracy
of the technique, concurrently conducting a comparative
analysis between GRU and LSTM, thereby illustrating the
parity in predictive capabilities exhibited by both models.
Ma et al. [11] implemented a model-based improved
LSTM and Health Indicators (HIs) extraction to estimate
the SOH of the battery. Differential evolution grey wolf
optimizer is introduced in optimizing hyper-parameters, and
the results indicated competence in accuracy, robustness,
and generalization. In general, both LSTM and GRU are
effective models for capturing temporal dependencies and
handling time series data. GRU, despite being designed to
reduce the computation of the LSTM model, is less effective
in capturing long-term dependencies as well as handling
complex temporal patterns. Moreover, for capturing bidirec-
tional dependencies, a Bidirectional LSTM (BiLSTM) model
combined from two LSTM layers with opposite directions is
more suitable. In [19], an incremental energy analysis (IEA)
and BiLSTM-based method for estimating the SOH of the
battery was carried out. The IE was first extracted and its
relationship with the battery degradation was evaluated, then
BiLSTM was utilized to capture the underlying mapping
relationship between peak characteristics and SOH, resulting
in the development of a battery SOH estimation model. The
proposedmodel outperformed other comparedmodels, which
can be expressed through significantly smaller RMSE and
higher R2.

However, these NN models are not appropriate to handle
spatial patterns in data. Therefore, a Convolutional Neural
Network (CNN) shows up as a solution to capture spatial
patterns and short-term dependencies in time series data.
The combination of the two models CNN and BiLSTM
(or LSTM) provided an effective solution in capturing both
long-term and short-term dependencies, both spatial and
temporal patterns. The combination of suitable forecasting
models, a practice that researchers have been employing,
leads tomore accurate time series data predictions by leverag-
ing the strengths of the individual component models. More-
over, mastering long-term dependencies remains a substantial
challenge, attributed to their restricted scalability in modeling
extended sequences and the time-intensive nature of the
training process. Hence, the Attention Mechanism (AM) is
suggested to augment the model’s capacity for capturing
temporal dependencies while preserving interpretability [20],
[21]. Self-attention Mechanism (SM) is also a mechanism
enabling the model to focus on different parts of the input
sequence with higher efficiency and flexibility. However,
the SM is the core component of Transformer architectures,
while AM better aligns with the architecture of BiLSTM.
Moreover, AM’s integration within the BiLSTM framework
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allows for efficient handling of long-term dependencies
without the extensive computational resources required by
SM. Wang et al. [22] proposed a hybrid model including
BiLSTM and AM models for SOH and RUL prediction.
This paper used AM to extract features from the entire
sequence by employing a weighted sum of all preceding
input sequence states. Six Li-ion batteries were carried
out, and the results indicated the predictive performance of
the proposed method, which was revealed through several
evaluation metrics. In [23], a combination of the CNN and
Transformer model was employed for SOH estimation based
on the NASA dataset. In data preprocessing, the Pearson
correlation coefficient and the principal correlation analysis
were applied to select the highly related features and decrease
the complexity in computation, respectively. The predicted
results indicated the high accuracy and stability of the
proposed method.

Although combining different NN models can enhance the
accuracy of SOH and RUL prediction, the denoising method
was not included, which can still enlarge the deviation in the
results. Cheng et al. [24] decomposed the raw degradation
data by applying Empirical Mode Decomposition (EMD).
Backpropagation LSTM with two structures used these
handled data to predict the RUL and SOH of the battery.
A model based on EMD, grey relational analysis (GRA),
and deep RNNs was developed for estimating the SOH and
RUL of lithium-ion batteries by Chen et al. [25]. First, the
EMD and GRA methods extracted the characteristics of time
series data, and then, several deep RNNs were implemented
for SOH and RUL prediction. The current research is
enhanced by analyzing another battery degradation dataset,
simultaneously combining the use of both capacity and HI
for estimating the SOH and RUL of the battery, drawing on
methodologies proposed by Minh et al. in 2023 [26].
Health indicators are the features that can be extracted

in the charging and discharging processes of the batteries.
In general, HIs can be classified into two categories: Direct
HI and Indirect HI [27]. Direct HIs refer to the capacity
degradation and the increase in internal resistance of the
battery, while indirect HIs relate to the features with high
correlations with battery degradation. In paper [28], two HIs
are extracted while the SOH is analyzed by applying the
EMDmethod to decompose into IMFs and RES. In summary,
the EMD-VCR-GRU-RF model is employed to estimate the
SOH, improving both accuracy and computational efficiency.
Liu et al. [29] proposed a SOH estimation method based
on multi-feature extraction with a temporal convolution net-
work. By combining Class I features extracted from charging
and discharging curves with Class II features derived from
EMD of battery capacity decay curves, the proposed model
achieves enhanced SOH estimation accuracy.

Therefore, this paper proposes a hybrid model including
EMD, BiLSTM, CNN, and AM, leveraging the strengths
of each model while addressing the constraints outlined in
the preceding article. Additionally, the model utilizes both
capacity and highly correlated HI as inputs, further enhancing

its predictive capabilities. The EMD model is initially used
for extracting the data into IMFs and a residual, which
can limit the errors caused by the noise if using the initial
degradation data. The advantages of each model are utilized
to increase the accuracy of SOH and RUL prediction of the
batteries. Moreover, different commonly used models are
compared to illustrate the effectiveness in predicting SOH and
RUL. In this study, the main contributions are given below:

• Different batteries from two datasets, namely CALCE
and NASA, are used in this work. In addition to batteries
under normal conditions, the degradation data from the
batteries operated under extreme conditions are also
considered to diversify the data, leading to an overall
assessment of this model.

• Several Health Indicators are extracted from the charg-
ing and discharging process of the battery to contribute
to predicting the SOH and RUL of the battery. However,
for batteries operating under harsh conditions, using
HI for forecasting may not be appropriate because
the transformation patterns of the HIs are not highly
correlated with the degradation of SOH.

• Establishing a data-based SOH and RUL prediction
method using EMD, CNN, BiLSTM, and AM. The
initial data is decomposed using the EMD method,
which can effectively decompose complex signals into
signals of different frequencies. This data then becomes
the input of the CNN, subsequently passing through the
BiLSTM and AM models, thereby providing the SOH
and RUL predictions of the battery. The technique takes
advantage of each component model to give accurate
prediction results.

• Investigation and comparison of the prediction per-
formance of the proposed model is carried out in
terms of different battery datasets and the percentage
of training data. The proposed model appears to
outperform other compared models in all scenarios with
different proportions of training data across both battery
datasets. The RMSE and MAE respectively decrease
by at least 48% and 19% when applying the CALCE
battery dataset, in some cases, the proposed model can
determine precisely the RUL of the batteries.

The structure of the paper is as follows. Section II describes
each part of the proposed method and presents the method in
this paper. Section III demonstrates the data used in this paper
as well as the errors for evaluation. Section IV shows the
prediction results and validates the accuracy and robustness
of the proposed method by using different datasets with
different percentages of training data and comparing them
with other methods. Section V concludes this article.

II. DATA AND HEALTH INDICATORS EXTRACTION
A. SOH AND RUL CALCULATION
SOH is an indicator of health through the aging process of
the battery. SOH is usually defined through the ratio between
the battery capacity at the current capacity Ci and the initial
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capacity of the battery C0 as follows:

SOH =
Ci
C0

× 100 (1)

Due to physical reactions, the chemistry inside the battery
causes the capacity of the battery to decrease over time.When
the SOH of the battery drops below 70%, the battery needs to
be replaced to ensure efficiency and safety for the user [30].

The battery’s RUL index will indicate the battery’s
remaining number of applicable charge and discharge cycles.
RUL is usually expressed by the difference between the
total useful cycle of the battery before reaching a preset
threshold and the cycle at the start of monitoring. The End
of Monitoring (EOM) threshold is the initial capacity value
utilized for RUL prediction, corresponding to the number
of cycles TEOM . When a battery’s capacity falls below
70% of its standard value, it has reached its End of Life
(EOL), corresponding to the number of cycles TEOL . RUL
is explicitly expressed through the formula below:

RUL = TEOL − TEOM (2)

The battery’s capacity will increase and decrease dra-
matically during the aging process because the battery has
enough rest time for internal physical and chemical reactions
to take place, carrying out the process of regenerating
energy in the battery. This indicates that the battery’s
state changes frequently, demonstrating instability and non-
linearity. Therefore, accurate RUL prediction is necessary to
solve more significant problems.

B. DATA
To determine the effectiveness of the proposed model, this
paper uses two experimental datasets from the Center for
Advanced Life Cycle Engineering (CALCE) at the University
of Maryland [31] and the National Aeronautics and Space
Administration (NASA)’s Prognostics Center of Excellence
(PCoE) [32]. Data from CS2_35, CS2_36, CS2_37, and
CS2_38 batteries from the CALCE dataset were selected
for inclusion in the proposed model test. Those data are
illustrated in Figure 1a. The CS2 batteries are all charged
using a profile of constant current/ constant voltage (CC/CV),
applying a CC charging mode with a charging rate of 0.5C
until the voltage reaches a value of 4.2V . After that, the
voltage value is maintained until the charging current drops
below the value of 0.05A. In discharge mode, the cells are
cycled at the CC of 1C , and the process will be stopped
when the voltage reaches its cut-off value of 2.7V . These
prismatic cells have a rated capacity of 1.1Ah and theminimal
charge current is 50mA. The charging and discharging process
of the batteries has been carried out at room temperature
(23oC). Moreover, the End of Performance for these batteries
is set at 0.85 Ah, hence, its EOL is about 77%. However,
in this work, the EOL is set at 70%, which is about 0.77 Ah,
since the battery’s degradation is significant when its capacity
decreases around 0.7 Ah as illustrated in Fig. 1a. Batteries
CS2_35 and CS2_37 are chosen to carry out this research.

FIGURE 1. CALCE and NASA battery datasets.

On the other hand, NASA’s 18650 lithium batteries
with a rated capacity of 2Ah are run through different
operating configurations (charging, discharging, impedance)
at room temperature (24oC) for B05, B06, B07, and B18,
or at an ambient temperature of 4oC , for B53 to B56.
It is necessary to consider different batteries in different
conditions, diversifying the data and making the validation
more valuable. The battery’s aging process is performed by
repeated charging and discharging operations to accelerate
the decline in battery capacity. Charging in the CC mode
1.5A is the charging process used mainly until the voltage
reaches 4.2V , after which the batteries will continue to
be charged in the constant voltage mode until the current
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FIGURE 2. Indirect characteristic parameters of B05 battery.

drops to 20mA. The discharge of the batteries is carried
out in the constant current mode of 2A. The discharge
process will stop when reaching the cut-off voltages, which
are 2.7V (B05, B56), 2.5V (B06, B18, B55), 2.2V (B07,
B54), or 2V (B53). Moreover, the impedance was measured
using electrochemical impedance spectroscopy (EIS) with
a frequency sweep ranging from 0.1 Hz to 5 kHz. When
30% of the battery’s capacity faded, the experiment stopped,
hence the EOL of these batteries is set at 70%. The trend
of capacity depletion of the batteries is shown in Figure 1c.
In this work, B05, B06, B54 and B55 are selected. It is noted
that the degradation of B54 and B55 batteries have significant
fluctuations and harsh working conditions compared to other

chosen batteries, which is a substantial contribution to the
assessment of the proposed model. The parameters of the
two batteries dataset used in this paper are shown in Table 1.
It should be noted that there are some increases in the capacity
of the battery at several time intervals. This phenomenon is
called regeneration, which occurs when the rest time lasts
long enough [33]. The data used then be cleansed through
a cleansing data process to wipe out most of the outliers,
reducing their influence in predicting the SOH and RUL of
the batteries.

FIGURE 3. Health indicator results of B05 battery.

C. SELECTION OF HEALTH INDICATORS
In this part, different HIs are considered to determine through
the charging and discharging processes, which indirectly
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TABLE 1. Batteries degradation parameters.

reflect the SOH of the battery. Figure 2 illustrates the voltage
and current of the B05 battery in both the charging and
discharging phases. It can be seen from Figure 2b that
when the cycle increases, or in other words, the capacity
decays, the CC charging time decreases. This is due to the
deepening of the battery polarization, leading to a decline
in charging capacity. Therefore, two parameters named the
CC charging time and the ratio between the CC charging
time and the total charging time are selected as the health
features for estimating the SOH and RUL of the battery.
Moreover, in the battery discharging process, it is necessary
to consider the average discharge voltage in CC mode. It’s
worth highlighting that while the battery’s capacity can be
determined by analyzing the discharging time in the CC
mode, the average voltage calculated during that time interval
will also exhibit specific correlations. The HIs extracted in
this work can be seen in Figure 3. To verify the correlation
between these HIs and the health of the battery, Pearson and
Spearman correlation coefficients are utilized in this work.
Pearson correlation measures the linear relationship between
two continuous variables, while the Spearman correlation
measures a monotonic relationship between two variables
based on the rank of the data [34]. Pearson correlation
and Spearman correlation coefficient can be calculated as
follows:

p =

∑m
i=1

(
HIi − HI

) (
SOHi − SOH

)√∑m
i=1

(
HIi − HI

)2 ∑m
i=1

(
SOHi − SOH

)2 (3)

s = 1 −
6

∑m
i=1 d

2
i

m
(
m2 − 1

) (4)

where p and s are the Pearson and Spearman correlation
coefficients, respectively, and di is the difference between
the rank of HI and SOH. These correlation coefficients,
ranging from −1 to 1, signify the strength and direction
of the relationship between voltage and capacity. A higher
absolute value closer to 1 indicates a stronger correlation,

providing valuable insights into the battery’s health during
charge and discharge cycles. The correlation results of all
the battery datasets can be observed in Table 2. Both the
Pearson correlations and the Spearman correlations of the HI
are above 0.9, indicating a strong reflection of the battery
degradation process. It is worth pointing out that B54 and B55
batteries have harsh working conditions, hence the change
in the voltage and current when the capacity increases does
not follow the rules as in the B05 or B06 battery. There-
fore, for batteries with harsh operating conditions, directly
using the capacity to predict will be more effective and
accurate.

III. METHODOLOGY
The aim of employing multi-variable time series forecasting
in this study is to anticipate the capacity output Pt by
considering L observed values from the previous instances.

Pt = f (XN×L ,PL) (5){
XN×L

= (XN×1
t−L ,XN×1

t−L+1, . . . ,X
N×1
t−1 )

PL = (PT−L ,PT−L+1, . . . ,PT−1)
(6)

whereN denotes the number of dimensions in the dataset over
the time span of L; XN×L , and PL are the historical input data
and output capacity data, respectively. The method proposed
in this paper is a combination of the EMD, CNN, BiLSTM,
and AMmethods. The CNN-BiLSTM-AMmodel can predict
the data in time series and be more accurate and robust by
applying the EMD method in the data preprocessing section.

A. EMPIRICAL MODE DECOMPOSITION
EMD was initially introduced in [35] as an effective
method for decomposing time-series data and interpreting
their inherent properties. In the context of the battery’s
degradation data, the high-frequency signals correspond to
the regeneration phenomena and local fluctuations, whereas
the global trend can be characterized as low-frequency
signals. EMD extracts time-series data into two elements:
a series of intrinsic mode functions (IMFs) and a residual
sequence based on an iterative process [36]. Each IMF stands
for a particular frequency band extracted from the original
data. The criteria for IMFs are as follows: First, for the entire
dataset, the number of local extrema and zero-crossings of
the differences between the original data and the average of
the surrounding envelope differs at most by one; then, the
average of the surrounding envelope equals to zero. EMD
is considered an adaptive method since the number of IMFs
correlates with the complexity of the data. The detailed
procedure of EMD is shown below:

1) Compute extreme points indicated as the local minima
i(t) and maxima a(t) of the original time series x(t)
(Battery’s capacity or SOH)

2) Connect these local extrema based on a cubic spline
interpolation to implement the upper and lower
envelopes

VOLUME 12, 2024 129027



L. T. M. Lien et al.: Prediction of SOH and RUL of Battery Based on Hybrid NN Model

TABLE 2. Pearson and spearman correlation results.

3) Calculate the mean of the surrounding envelope as
follows:

m(t) =
a(t) + i(t)

2
(7)

4) Compute the differences as the following equation:

d(t) = x(t) − m(t) (8)

5) If the aforementioned stopping criteria are satisfied, then
the first IMF = m(t) and the first residue R = d(t)

6) Repeat Steps 2-5 until R becomes a monotonic func-
tion. The iterative process will be terminated if the
pre-defined number of iterations is reached.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
The CNN is a widely recognized deep learning framework by
the natural visual perception mechanism observed in living
beings [37]. Its precursor was first introduced in 1980 by
Kunihiko Fukushima [38], and it was not until 1990 that
CNN’s modern framework was established by LeCun et al.
[39]. The CNN model is commonly used for processing
and extracting features from structured grid-like data. Unlike
traditional neural networks, CNN, with specialized layers,
is intended to capture spatial hierarchies and lessen the
computing burden. A CNN architecture generally consists
of 3 main parts: convolutional layer, pooling layer, and
fully-connected layer [37]. Instead of using two-dimensional
convolutional layers as in image data, this paper adopts
one-dimensional CNN (1D-CNN) to extract local spatial
features of time-series data [40]. About the procedure of
the 1D-CNN model, the data is first set up and regulated
in the input layer. Then, the convolutional layer uses filters,
also called kernels, to slide over the input data to detect
spatial hierarchies of features. The output feature map of the
convolutional layer at the location i is calculated by:

Hi = ReLU (
M∑
j=1

Xi+j−1 ×Wco,j + bco) (9)

where ReLU (.) denotes the Rectifier Linear Unit activation
function, M is the size of the filter, X is the input sequence,

and Wco, and bco are the weight and bias matrices, respec-
tively. After that, the pooling layer reduces the temporal
dimensional, decreasing the number of parameters. Max
pooling is used in this paper, which selects the maximum
value from a local input region due to feature retention and
robustness improvement. The mathematical equation can be
expressed as follows:

Pi = max{Hi.s,Hi.s+1, . . . ,Hi.s+s−1} (10)

where Pi is the pooled value, and s is the pooling size.
After the convolutional and pooling layer, the acquired
features flatten into a single extended vector and traverse
a fully connected layer or dense layer before reaching the
output layer. Besides, the dropout is applied for overfitting
prevention. The process can be interpreted by these equations:

F = [P1,P2, . . . ,PN ] (11)

Y = ReLU (Wf × F + bf ) (12)

where F is the flattened vector, Y is the output of the
fully connected layer, and Wf , and bf are the weight and
bias matrices of the fully connected layer, respectively. The
structure of the 1D-CNN network, in particular, and the basic
CNN network, in general, can be indicated in Figure 4.

FIGURE 4. Structure of 1D-CNN network.

C. BIDIRECTIONAL LONG SHORT-TERM MEMORY
(BiLSTM)
LSTM was first introduced in 1997 [41], an advancement in
the field of neural networks, particularly in comparison to
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its predecessor, RNN. Unlike traditional RNNs, LSTM units
include mechanisms such as input, forget, and output gates,
allowing them to capture temporal dependencies better and
handle time series data [42]. The operation of the LSTM cell
is mathematically described as follows:

• Forget gate ft : employs a sigmoid activation function to
decide which parts of the current cell state should be
retained and which should be forgotten.

ft = σ
(
Wfx × xt +Wfh × ht−1 + bf

)
(13)

where Wf and bf denote the weight and bias matrices
of the forget gate, xt is the current input data, and ht−1
represents the previous hidden state.

• Input gate it : operates by using a sigmoid activation
function to decide which values from the input should
be updated. Simultaneously, a tanh activation function
produces a new candidate cell state C̃t that could be
added to the new cell state Ct .

it = σ (Wix × xt +Wih × ht−1 + bi) (14)

C̃t = tanh (Wcx × xt +Wch × ht−1 + bc) (15)

Ct = ft × Ct−1 + it × C̃t (16)

where Wi, bi, Wc, and bc denote the weight and bias
matrices of the input gate and memory cell, respectively,
and Ct−1 is the previous cell state.

• Output state ot : controls the information outputted from
the memory cell. The equation of ot and the new hidden
state ht are as follows:

ot = σ (Wox × xt +Woh × ht−1 + bo) (17)

ht = ot ∗ tanh (Ct) (18)

whereWo and bo denote the weight and bias matrices of
the output gate and ∗ indicates the Hadamard product.

While LSTM is effective for tasks with unidirec-
tional dependencies, BiLSTM offers a more comprehensive
approach for capturing bidirectional dependencies. There-
fore, BiLSTM is comprised of two LSTM layers with
opposite directions, and the output h′

t of the BiLSTM
network is the result of a combination process expressed as
follows:

hf = LSTM
(
xt , hf−1

)
(19)

hb = LSTM (xt , hb−1) (20)

h′
t = Whf × hf +Whb × hb + bh (21)

where hf and hb are the output of the forward and backward
LSTM layer, respectively; Whf and Whb are the weight
matrices corresponding to each layer, while bh denotes the
bias matrix. The visualization structure of a single LSTM
cell and BiLSTM network can be illustrated in Figure 5 and
Figure 6.

FIGURE 5. Structure of a single LSTM cell.

FIGURE 6. Structure of BiLSTM network.

D. ATTENTION MECHANISM
The AM draws inspiration from the way biological systems
in humans concentrate on distinct components when handling
extensive information. In deep learning, AM is a fundamental
idea that allows models to focus on particular parts of input
sequences selectively [43]. When applied to time series data,
AM enables models to dynamically balance the importance
of various temporal points, improving the models’ capacity to
represent long-range interdependence. Therefore, significant
information is more focused on instead of unimportant
details [44]. In this study, AM employs the hidden layer
output vector of the BiLSTM network h′

t mentioned above
as inputs, and then the AM will be mathematically described
as follows:

• The correlation score eij between the ith and jth output
(h′

i and h′
j) of the BiLSTM network is calculated as

follows:

eij = f
(
Wi × h′

i +Wj × h′
j + bij

)
(22)

whereWi andWj are the weight matrices corresponding
to h′

i and h′
j, respectively, and bij defines the biasmatrix.

• Hereafter, the attention score αij will be computed based
on the Softmax function and correlation score eij as the
following equation:

αij =
exp

(
eij

)
T∑
k=1

exp
(
eij

)′

,
∑

aij = 1 (23)
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• Thereby, the output of the AM layer or the contribution
of each input is calculated as follows:

Hk =

∑
j

αij × hj′ (24)

The process of the AM model can be illustrated in Figure 7.

FIGURE 7. Structure of attention mechanism.

E. COMBINATION MODEL
Figure 8 indicates the detailed architecture of the combination
model CNN-BiLSTM-AM (CBA). It should be noted that the
raw data first went through the EMD, and the decomposed
data, which are the IMFs, then became the input of the
combination model. As can be observed from this figure, the
model comprises three main components: CNN, BiLSTM,
and AM. Detailed structure and operation of each one are
presented in the previous sub-sections. The process to attain
the output and forecast values is as follows: First, the
1D-CNN layer is adopted to extract global spatial features
from the input sequences based on convolutional multipli-
cation. Then, the output of the 1D-CNN layer is fed into
the BiLSTM layer to obtain new vectors. To enhance the
performance of the BiLSTM layer, these vectors are entered
into the AM layer to be allocated weights effectively for
each one based on the AM. After the weight distribution
process finishes, the final value or the output is achieved.
The overall process can be mathematically expressed as
follows:

Y1 = ECBA(IMF1, IMF2, . . . , IMFN )

= E(Con1D(BiLSTM (AM (IMF1, IMF2, . . . ,

IMFN )))) (25)

where Y1 is the output of the CBA model, ECBA(.)
denotes the EMD-CNN-BiLSTM-AMmodel, andE ,Con1D,
BiLSTM , and AM express the EMD, 1D-CNN, BiLSTM, and
AM process, respectively.

The proposed framework for SOH estimation and RUL
prediction in this study is represented in Figure 9. This
framework is classified into three steps: data preprocessing,
data processing, and data prediction. In the first step, the
battery data is acquired, containing several parameters related
to the battery module, such as capacity, SOH, and HIs.

These parameters are decomposed into IMFs and RES using
the EMD method. The detailed results of decomposition
based on EMD are illustrated in the subsequent sub-
section. Hereafter, IMFs and RES are utilized as input
variables entered into two separate forecasting models: CNN-
BiLSTM-AM and LSTM. These deep learning models are
described explicitly in the previous section. The second
step processes the input to generate the predicted RUL
and SOH. The output of the LSTM model using RES
as the input and the overall process can be expressed as
follows:

Y2 = E(BiLSTM (RES)) (26)

Y = Y1 ⊕ Y2 (27)

where Y2 is the output of the LSTMmodel, and⊕ denotes the
element-wise summation. In the last step, the performance of
the proposedmodel is illustrated and evaluated based on three
assessment metrics and validated by using several benchmark
models for comparison.

IV. RESULTS AND DISCUSSION
A. EVALUATION METRICS
In this study, four performance criteria are adopted to assess
the effectiveness of the proposed model in SOH estimation
and RUL prediction. To evaluate the predictive performance
of the proposed method, absolute error (AE), relative error
(RE), root mean square error (RMSE), and mean absolute
error (MAE) are used in this paper. They are defined as
follows:

AE =
∣∣RULpr − RULre

∣∣ (28)

RE =

∣∣RULpr − RULre
∣∣

RULre
(29)

RMSE =

√√√√1
n

n∑
t=1

(xt − x̂t )
2 (30)

MAE =
1
n

n∑
t=1

∥∥xt − x̂t
∥∥ (31)

where RULpr is the predicted RUL value, RULre is the actual
RUL data, n is the cycle number, xt is the actual capacity data,
and x̂t is the predicted capacity data.

In this section, the battery data from two datasets,
CALCE and NASA, is used to demonstrate the accuracy and
robustness of the proposedmethod. Themethod compares the
SOH andRUL predicted results with those of CNN-BiLSTM-
AM, CNN-BiLSTM, and BiLSTM to verify the accuracy
of the proposed method. In Section IV-B, the comparisons
between methods are given using the CALCE dataset, and in
Section IV-C, theNASAdataset is used to show the difference
between those methods. In both sections, the SOH and RUL
data results will be displayed. Different training rates are
applied to show the changes when more data is employed to
train.
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FIGURE 8. The architecture of the combination model (CNN-BiLSTM-AM).

FIGURE 9. Proposed framework for SOH and RUL estimation.

B. EMD
In this paper, the EMD method is used to decompose the
sequence data, including the capacity and several HIs, of the

battery into IMF sequences and a residual sequence. When
applying CALCE battery datasets, two IMFs and a RES were
extracted in each battery, as shown in Figure 10. In general,
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FIGURE 10. IMFs and RES data of CALCE datasets.

the local or high frequencies are removed by the EMDmethod
and are captured by two IMF sequences. The remaining data
after separation is obtained by residual, which presents the
overall trend of the data. Due to the number of IMFs that have
decomposed, RES cannot be obtained as a less fluctuating
curve. In this case, the error will be cumulative if the amount
of IMF sequences increases.

Figure 11a and Figure 11b illustrate the corresponding
decomposition results of B05 andB06 batteries. For these two
battery datasets, the local or high frequencies are removed
by the EMD method, and each is captured by two IMF

sequences. The remaining data after separation is obtained by
residual, which presents the overall trend of the data. There
are similarities between the IMF sequences and the residual
sequence. Similar to the CALCE battery datasets, there are
only 2 IMFs extracted by using the EMD method due to the
increase in error. However, for B54 and B55 batteries, four or
five IMF sequences were decomposed from the source data
instead of two, which can be illustrated in Figure 11c and
Figure 11d. The increase in the number of IMFs is caused
by the significant fluctuation of the two battery datasets,
which relates to their harsh working conditions. In general,
IMF1 possesses themost fluctuation; the variability gradually
decreases, and by IMF4, its trend becomes softer. The
residual sequences of these two battery datasets still present
monotonous health trends. However, when extracting more
IMF, the residuals of these two batteries are smoother than
those of batteries B05 and B06.

C. CALCE BATTERY DATASET
1) SOH PREDICTION RESULTS AND DISCUSSIONS
To verify the robustness and accuracy of the proposed
method, the data of CS2_35 and CS2_37 batteries in the
CALCE dataset are selected for the experiments. In this
paper, three scenarios with different training data are applied.
First, 30% of the dataset is used to train, and the other 70%
is used to validate the prediction of the methods. In the
following scenario, half of the data is for training, and the
rest is for validation. Finally, the data used for training is 60%,
and the remaining is for validation. The capacity prediction
is shown in Figure 12.

The comparison between the proposed method and other
methods, BiLSTM, RNN-AM, and GRU, with different
training data rates using the CS2_35 dataset, is shown in
the first three figures. In Figure 12a, where 30% of the
dataset is used to train, it can be seen that the proposed
method has the highest accuracy and the closest compared
to the remaining methods. Regarding the compared models,
their accuracy varies depending on different scenarios. For
instance, with only 30% of the data trained, the BiLSTM
model yields the closest results among the standard models.
However, with an increased proportion of training data to
50%, the GRUmodel emerges as the superior performer, or in
scenarios where 60% of the data is utilized, the RNN-AM
model excels. This relates to the unstable of these models
in SOH prediction. Besides, it can be seen that the models
in the second and third scenarios are more accurate than
the models with 30% of the training data. Likewise, when
applying the CS2_37 dataset, similar results can be obtained.
The proposed method has the best performance, while others
show their limit in prediction ability, which can be seen in
Figure 12d, Figure 12e, and Figure 12f. Besides, in some
cycles, the predictions of those methods in the model with
50% training data are worse than those in the one with 30%
training data. However, overall, the SOH prediction results
of the standard models are also acceptable for the second
and third cases. The proposed model, on the other hand, can
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FIGURE 11. IMFs and RES data of NASA datasets.

ensure accuracy even when only 30% of the data is used for
training.

2) RUL PREDICTION RESULTS AND DISCUSSIONS
The RUL prediction results are shown in Table 3. It should
be noted that the start point in each model can be calculated

based on the proportion of training data. Analyzing the data
shows that the predicted RUL of the proposed method is
closest to the real RUL of the datasets when 30%,50%,
or 60% of the total data are used to train, respectively. For
the dataset of the CS2_35 battery, in the first scenario, while
the real RUL is 419 cycles, the predicted RUL of the hybrid
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FIGURE 12. The capacity prediction of CS2_35 and CS2_37.

model is 426 cycles, and RE is just 0.017, compared to
0.0181 when applying the BiLSTMmethod. Or when 60% of
the data is used to train, the prediction RUL of the technique
in this paper is equal to 184 cycles, the actual RUL of the
dataset. In the CS2_37 battery, the difference between the
predicted RUL of the proposed method and the real RUL is
just six cycles in the 30%-training-data case, and there are
no differences between them in the other cases. However,
other methods recorded significant AE, which demonstrated
the instability of those methods. For instance, the RE of
RNN-AM is 0.097 when the training data is 30% of the total
data, but it rises to 0.131 and 0.124when the percentage of the
training data increases to 50% and 60%, respectively. Other
models have also observed the same scenarios, which can be
seen in Figure 12 and Table 3. From that point of view, all the
models but the proposedmethod are unstable when predicting
the SOH and RUL of the battery.

To be more reliable, the parameters in Table 3 also show
that the errors RMSE and MAE of the proposed method
are smaller than those of the other methods. When 60%
of the data is used to train when applying CS2_35 battery,
RMSE, and MAE of the proposed method are 0.014 and
0.012, which reduce at least 71% and 66% compared to other
algorithms, respectively. Similar results can also be obtained
in the CS2_37 dataset. In all cases, the RMSE and MAE of
the proposed method decreased by at least 48% and 19%
compared to those of other methods, respectively. From those
results, when using 50% or 60% of the dataset’s data to train,
the errors of the compared model can be accepted, while the
proposed model demonstrates forecasting ability even when

using only 30% of the data for training, provided prediction
results close to the actual degradation data. Remarkably, the
RMSE, MAE, and AE of this model in the 30% scenario are
even lower than those of some models with a higher training
percentage.

D. NASA BATTERY DATASET
1) SOH PREDICTION AND DISCUSSIONS
When using the NASA dataset, the SOH prediction and
validation are implemented similarly to the CALCE dataset.
The performance of the proposed method is compared with
other techniques in each scenario: 30%, 50%, and 60% of
training data when applying the data of B05, B06, B54,
and B55 batteries, respectively. Figure 13 and Figure 14
show that the proposed method predicts the capacity curves
closest to the actual capacity curve in all cases and both
battery datasets. Although the batteries in the NASA dataset
have fewer data points expressed by the number of cycles
compared to CALCE data, the proposed model can still
give accurate degradation curves. In B05, since the training
data is 60%, BiLSTM, RNN-AM, and GRU capacity curves
do not follow strictly the real one. The BiLSTM model
shows the worst prediction in most cases in each battery
dataset, especially in the B05 and B06 datasets. There is
a considerable deviation between the BiLSTM’s prediction
curve and other models and the actual data. Besides, the
instability of those models can be expressed by observing the
results.

In some cases, the capacity curves of the compared models
are above the real ones, while in the remaining cases,
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TABLE 3. RUL prediction and errors validation of CS2_35 and CS2_37.

FIGURE 13. The capacity prediction of B05 and B06.

the models show the SOH predictions lower than the data
used. When the proportion of the data training increases
from 30% to 60%, the SOH prediction curves of the four

models become more and more accurate. Moreover, in some
cases, the starting point of the compared models can not
catch the endpoint of the data used to train. This issue
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FIGURE 14. The capacity prediction of B54 and B55.

TABLE 4. RUL prediction and errors validation of B05 and B06.

occurs mainly in the benchmark models in most batteries
with all three scenarios. In general, the proposed method

shows the best performance among all four models in all
cases.
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TABLE 5. RUL prediction and errors validation of B54 and B55.

2) RUL PREDICTION AND DISCUSSION
The RUL prediction results are shown in Table 4 and Table 5.
It is noted that there are no RUL prediction results for
B54 and B55 batteries. The reason is that the SOHs of
those batteries do not reach the EOL, which can be seen
in Figure 14. Analyzing the data shows that the predicted
RUL of the proposed method is closest to the real RUL of
the datasets when 30%, 50%, or 60% of the total data are
used to train, respectively. For the dataset of the B05 battery,
in the model with 30% training data, while the real RUL is
66 cycles, the RUL that the proposed method predicted is
78 cycles, and RE is just 0.182, compared to 0.545, 1.000,
and 0.379 when applying GRU, RNN-AM, and BiLSTM
methods, respectively. In addition, when 60% of the data
is used to train, the prediction RUL of the method in this
paper is equal to 22 cycles, with only one deviation from
the real RUL. In the B06 battery, the difference between
the predicted RUL of the proposed method and the real
RUL is just seven cycles in the 30%-training-data case, and
there are no differences between them in the other cases.
It can be seen that when the proportion of the data used to
learn increases, the accuracy in predicting the RUL is also
improved. Additionally, the RE in each scenario of B05 and
B06 batteries decreases when applying different models and
analyzing the start point. Other methods show their worse
forecasting ability where their AE and RE are mainly greater
than the proposed method, especially the BiLSTM method,
which has the worst prediction about RUL.

Furthermore, the parameters in Table 4 and Table 5 also
show that the errors RMSE and MAE of the proposed
method are smaller than those of the other methods. When
considering the dataset of the B05 battery, RMSE and
MAE of the proposed method reduce at least 67% and
73% compared to other algorithms, respectively. The same
scenarios occur when considering batteries B54 and B55with
different degradation data. The proposed model performs
a better forecasting ability compared to other models,
especially in the case of using 30% of the total data to train
where the RMSE andMAE of the proposed method reduce at
least 65% and 72% for B54, or at least 67% and 72% for B55,
respectively. Moreover, in some cases, the predicted model

has zero errors, which indicates the absolute accuracy in SOH
prediction. In short, the proposed method, including EMD,
CNN, BiLSTM, and AM models, can further promote SOH
and RUL prediction accuracy.

V. CONCLUSION
Predicting accurately the SOH and RUL is essential to ensure
the reliability, safety, and maintenance of the Li-ion battery
system. In this paper, an innovative method combined with
EMD, CNN, BiLSTM, and AM is proposed to predict the
SOH and RUL of the battery. First, the HIs are extracted
and validated for their correlation with the SOH. Then, the
EMD method is used to extract the capacity as well as HI
data from the dataset into several IMF sequences and a
residual sequence, and they are used as input parameters.
Based on the actual degradation capacity data of the battery
and input parameters, the proposed method will bring out its
SOH and RUL predictions. This research selects two types
of datasets, CALCE and NASA, with different training and
testing data ratios to show how they affect the prediction
results. Three other methods, BiLSTM, RNN-AM, and GRU,
are comparedwith the proposedmethod to verify thismethod.
The results demonstrate that the proposed method is the
most accurate and robust in predicting the SOH and RUL
of the battery. When considering the SOH prediction of
the CALCE datasets, the RMSE and MAE of the proposed
method decrease by at least 48% and 19% compared to
other methods. A similar scenario occurs when using the
NASA battery datasets, where the errors, including AE, RE,
RMSE, andMAE, are also the smallest values when applying
this work’s method. In this work, however, the number of
IMF extracted using the EMD model in the pre-processing
step is not objectively determined. Therefore, it would be
necessary to find a suitable function or procedure showing
the relationship between the complexity of the data and the
number of IMF extracted. The application of the proposed
model to a larger-scale system and considering other battery
datasets will also be further considered.
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