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ABSTRACT Ensuring the reliability of wind energy conversion systems (WECSs) is a crucial task for
maximizing energy capture from the wind. A detailed model incorporating mechanical and electrical
components is essential for accurately diagnosing system errors and assessing their impact on subsystems.
Additionally, a fault detection and isolation system is necessary to quickly identify recurring faults and
prevent significant economic losses. This study introduces a fault detection and isolation system using
dynamic model of WECS based on type-3 (T3) fuzzy logic systems (FLSs). The adaptive random search
(ARS) is employed to optimize the T3-FLS parameters and structure for enhanced fault detection accuracy.
T3-FLSs handle higher levels of uncertainty and variability compared to traditional FLSs and neural
networks. This allows for more accurate fault detection in complex and dynamic systems. One T3-FLS
model replicates the system’s normal operation, while another simulates faulty conditions. These T3-FLS
models are run in parallel with the actual plant, allowing for comparison of their outputs with the real system’s
outputs to pinpoint error timing and location. The ARS is utilized to train the T3-FLSs, eliminating the need
for gradient expression calculations. The appropriate number of rules for the T3-FLS is determined using
Akaike and final prediction error criteria. Simulation results demonstrate the system’s ability to rapidly detect
and isolate errors with minimal false alarms. This research framework can be applied to identify errors in
various system components effectively.

INDEX TERMS Fault detection, wind energy, isolation, type-3 fuzzy logic, control systems, machine
learning.

I. INTRODUCTION
Energy distribution network and transportation systems have
become a key element in daily life nowadays. Therefore,
an error in any of their components will disrupt the
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performance of the entire system. Generally, an error is
defined as changes in the system’s behavior, such that the
system is no longer able to fulfill its goals and tasks.
Reliability for any plan is one of its very important features,
guaranteed by eliminating the weaknesses and errors that
occurred in the past. One of the methods of achieving
reliability is the development of monitoring systems and
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fault diagnosis and isolation (FDIS) systems. Error detection
for industrial problems has become very important recently.
In these systems, economic issues and user euphoria are
important [1], [2], [3].

Many faults can be detected in a wind energy conversion
system (WECS) while the faulty component continues to
operate [4]. Therefore, the repair operation can be done at the
appointed time. The absence of urgency is crucial for offshore
power plants, as adverse conditions like typhoons can result
in repair operations being delayed for weeks. With FDIS,
a system can often be repaired before a faulty component
causes damage. These cases are also very important in
WECSs. Although the implementation of FDIS requires
investment at the beginning, the continuous production
of energy without any outages will return the primary
investment cost. Because of their remote location, wind farms
benefit more from the benefits of such a system, because very
high costs must be paid for transportation to these places.
Countries with weak transportation systems to reach the wind
farms and turbines should use FDIS to avoid energy cutting
and good maintenance costs [5], [6], [7].

Since replacing the basic components of a WECS is
hard and expensive, developed maintenance solutions can
reduce costs. Therefore, an FDIS for WECS has advantages,
such as preventing premature failure, reducing maintenance
costs, monitoring remote sites, improving the capacity factor,
and supporting the further development of WECS [8].
Generally, error diagnosis methods are divided into two
cases: error detection based on hardware redundancy and
error detection based on analytical redundancy. On the other
hand, the redundancy method can be classified into methods
based on the quantitative model and methods based on
the qualitative model. Quantitative model-based approaches
use mathematical dynamics and control theory to produce
residuals in the fault detection system, while qualitative
models use intelligent methods to obtain differences between
real and predicted behaviors [9].
Diagnosing and isolating the errors that occur continuously

in WECS has also attracted attention, recently. For example,
in [10], by the use of a linear model of the mechanical
components of a case-study WECS, a fault-tolerant system
is suggested. In [11], wind turbine fault detection has been
done for the linear dynamics of mechanical components, and
only one fault has been investigated. In [12], the occurrence
of an error in the induction generator has been considered.
In [10], continuous errors in the wind turbine have been
identified using supervisory control and data acquisition.
In [13], bearing errors have been detected using the data
mining method. In [14], using practical information from the
conditions monitoring system, the errors related to the wind
turbine brake system have been identified.

In recent years, extensive research has been done in
the field of techniques using quantitative models [15] and
qualitative models [16]. In general, these techniques are
classified as system identification methods, observer-based
methods, signal analysis methods, artificial intelligence

methods, and expert systems. Recently, neural networks
(NNs) have been intensively studied and successfully used in
dynamic systems [17]. The primary idea behind using NNs
for fault detection involves their ability to learn complex
patterns and relationships within large data sets. NNs can
analyze historical data from machinery to predict potential
failures before they occur, allowing for timely maintenance.
By training on normal operating conditions, NNs can identify
deviations in system behavior that may indicate faults. Local
recurrent NNs offer the advantage of having a structure that
closely resembles that of a static NN. In these networks,
dynamic neurons replace static neurons. One type of dynamic
neuron generates dynamics by utilizing a filter within the
neuron dynamics. As a result, this NN does not incorporate
global feedback. These types of feedback make network
design and training difficult. The design of these NNs is
between the design of forward and backward NNs. This
class of neural networks is called global feedforward-local
backward NNs [18]. Recurrent NNs with infinite impulse
response (IIR) filters have been successfully used for
modeling, error detection, and forecasting of time series [19].
In [18], applications for fault detection by these NNs are
presented in the splitting system of the fluid actuator and
the direct current (DC) motor. In [20], a recurrent NN is
presented by combining a neuron structure with an IIR filter,
and by using the designed NN, a fault detection model is
suggested.

Fuzzy systems are also applied in fault detection systems
to handle uncertainties and imprecise data that are common
in real-world scenarios. FLSs can be used to define rules
for fault detection based on expert knowledge or historical
data. These rules can capture the complex relationships
between input variables and fault conditions, allowing the
system to make accurate decisions even in the presence
of uncertainty. For example, the research [21] focuses
on designing an FLS-based controller for active/reactive
power during transients and faults. The study includes
four different models, analyzing their performance under
various fault conditions. In [22] a hybrid method is
suggested by combining machine learning with zonotopic
observers. It begins by identifying a wind turbine’s dynamic
model using an adaptive network-based FLS. However,
recently advanced FLSswith higher flexibility and estimation
capability have been introduced, that can be used for
this problem. In [23] the fault detection in hydrodynamic
mechanical seals is studied and a convolutional network is
developed.

Type-2 (T2) and type-3 (T3) FLSs offer a flexible and
effective approach to fault detection by handling uncertainties
and imprecisions in data, making them well-suited for
applications in diverse industries, such as manufacturing,
automotive, and aerospace [24], [25], [26]. However, T3-
FLS based fault detection for wind turbines has not been
studied. T2-FLSs based systems have been studied in some
studies. For example, in [27], a multiple first-order dynamic
fractional-order T2-FLSs is proposed to model and control
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load frequency in power systems. In [28], an interval T2-FLS
is suggested for analyzing the stability of a generator-based
wind turbine system in the presence of external distur-
bances. The controller aims to reduce uncertainties. The
study utilizes fuzzy modeling techniques and constructs a
Lyapunov functional to design a nonfragile sampled-data
controller. In [29], a hybrid method is introduced that uses
a multi-objective evolutionary algorithm to maintain key
components and optimize maintenance plans in offshore
substations for renewable energy applications. The method
addresses operational changes and uncertainties through
system optimization based on FLSs and hidden Markov
model technology. Results show that this approach can
effectively handle uncertainties in condition-based mainte-
nance for renewable energy applications. The study [30]
focuses on creating a decision-making system that considers
environmental factors to evaluate Ireland’s offshore wind
sites for sustainable development. The model integrates
interval T2-FLSs and advanced energy economic metrics to
make more precise decisions.

In [31], a hybrid model is suggested to improve the preci-
sion of a support vector machine (SVM) classifier for detect-
ing stator winding short circuit faults in inductionmotors. The
model involves extracting statistical features from healthy
and defective data sets, reducing dimensions using principal
component analysis, constructing SVMs based on training
data, optimizing SVM parameters with a chaotic particle
swarm optimization algorithm, and combining SVMs with
T2-FLSs. The model is tested on measured stator current data
from a three-phase induction motor, achieving an average
accuracy of 98.4% in detecting stator winding faults under
various load conditions. In [32], a shadowed T2-FLS is
developed with m cuckoo search and flower pollination for
dynamic parameter adaptation. The designed system is shown
to outperform type-1 FLSs. In [33], a T2-FLS based wind
speed prediction model is designed that focuses on selecting
important input variables to reduce complexity. The model
utilizes fuzzy curves and Gaussian membership functions to
improve prediction accuracy, with the recursive least squares
method used for parameter identification. The suggested
model aims to achieve deterministic wind speed prediction
with high robustness.

Type-3 FLSs are an extension of traditional FLSs that
allow for more complex and flexible modeling of uncertainty
and imprecision [34]. In T3-FLSs, the membership functions
can take on a wider range of shapes and can be non-
standard, allowing for a more nuanced representation of
uncertainty. This makes T3-FLSs well-suited for applications
where uncertainty is high or where traditional FLSs may
not provide enough flexibility. In various applications, the
superiority of T3-FLSs have been shown, such as control of
surface vehicles [35], modeling problems [36], monitoring
systems [37], control systems [38], [39], forecasting prob-
lems [40], optimization problems [41], and many others. The
literature review shows that

• Modeling of WECSs has not been studied entirely, and
in many existing methods, a linear model has been
employed to construct a fault detection system.

• In manymethods, the fault detection discussion has been
taken into consideration, and the isolation errors have
been ignored.

• In few studies, FLS-based methods have been proposed,
however, conventional FLSs have limited flexibility in
capturing complex relationships between input vari-
ables, which can hinder their ability to accurately detect
faults in dynamic and uncertain environments.

• Most of the existing models are sensitive to noise and
disturbances in the input data, leading to false alarms or
missed detections in fault detection applications.

Regarding the discussion above, in the present research,
using the T3-FLS based full nonlinear model of the wind
power conversion system including electrical and mechanical
parts, a fault diagnosis/isolation system is designed, which
can diagnose and isolate the errors of angular speed sensor
and the pitch actuator. Using a nonlinear-based model will
lead to better results closer to the real uncertain situation.
T3-FLSs can handle uncertainties more effectively compared
to type-1 and type-2 FLSs, resulting in more accurate fault
detection. The adaptive random search method (ARS) is
used to train the T3-FLS model to enhance the accuracy
and construct an adaptive fault detection system. The main
contributions of the present study are as follows.

• A new fault detection and isolation system is introduced
using a dynamic model of WECS based on T3-FLSs.

• A new ARS is employed to optimize the T3-FLS
parameters and structure for enhanced fault detection
accuracy, eliminating the need for gradient expression
calculations.

• The appropriate number of rules for the T3-FLS is
determined using Akaike and final prediction error
criteria.

• The developed T3-FLS can handle higher levels of
uncertainty and allow for more accurate fault detection.

• The suggested system is capable of detecting the error
timing and location and can rapidly detect and isolate
errors with minimal false alarms.

II. WIND ENERGY CONVERSION SYSTEM
The common part between all presented models is dividing
WECS into subsystems and deriving the mathematical
dynamics. The model used in this research is shown in Fig. 1.
In this figure, the turbine angle adjustment mechanism is
omitted. Because the tower is in oscillation, vr (t) is obtained
from the difference between the speed of the chassis, χ̇t (t),
and the wind speed.

Additionally, the rotor aerodynamic torque denoted as
Tr (t), is transmitted to the generator via the drive com-
ponents, which consist of high-speed and low-speed axes
as well as the gearbox. The induction generator transforms
mechanical power into electrical energy and is linked to
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FIGURE 1. Modeling diagram of WECS.

the energy grid. An interface is utilized to determine the
active/reactive power. The network model also encompasses
the local load, transformer, and an infinite bus. Furthermore,
converters, rotor side converter controllers (RSC), and grid
side converter (GSC) are included in this model.

At first, the equations of the mechanical parts ofWECS are
examined [42].

Vω(t) = V̄ω(t) + vws(t) + vts(t) + vtu(t) (1)

In Equation (1), Vω(t) is the wind speed which includes
the effect of the tower, the vortex airflow, and the sudden
deviation of the wind path, V̄ω(t) is the average wind speed,
vws(t) is the effect of the sudden deviation of the wind path,
vts(t) is the element indicating the effect of the tower, and
vtu(t) is the effect of the vortex airflow. Also, Equation (2)
is employed to model the aerodynamic parts, in which Pr (t)
is the energy received by the turbine rotor, β(t) denotes
the pitch angle, λ(t) represents the speed of the blade tip,
Cp (λ(t), β(t)) show the energy factor of the turbine, A is the
surface of the rotor in square meters, vr is the effective wind
speed on the rotor in meters per second, ρ denotes the air
density in kg/m3 and Tr (t) rotor aerodynamic torque.

Pr (t) =
1
2
Cp (λ(t), β(t)) ρAv3r (t)

Tr (t) =
Pr (t)
ωr (t)

=
Cp (λ(t), β(t))

ωr (t)
0.5ρAv3r (t) (2)

where Ct (λ(t), β(t)) denotes thrust coefficient. The force
function is given by Equation (3).

Ft (t) = 0.5ρAv2r (t)Ct (λ(t), β(t)) (3)

The aerodynamic torque is converted by the drive parts into
the torque applied to the generator. The gear wheel converts

the rotational speed to the generator speed with a factor called
the gear ratio. Equations (4)-(6) are used to model the drive
parts, including the low-speed axis, the gear, and the high-
speed axis.

Jr ω̇r = Tr − KdtθδBdt θ̇δ (4)

JgNgω̇g = −TgNg + KdtθδBdt θ̇δ (5)

θ̇δ = ωr − ωg/Ng (6)

In Equations (4)-(6), the rotor inertia and low-speed axis is
shown by Jr . Tr denotes the torque in low-speed axis and ωr
denotes the rotor speed. Note that Jr acts in the same direction
asωr . Also, it is amassless viscous damping rotational spring,
with a spring stiffness coefficient of Kdt and a damping
coefficient of Bdt . The gear ratio is shown by Ng and the
inertia of the gear, high-speed axis, and generator is shown
by Jg. In these equations, Tg and ωg represent the generator
torque and rotor rotational speed, respectively. Note that Tg
acts against the direction of rotation. Also, the negative values
in the two curves above are set to zero. The thrust force causes
the tower to move forward and backward by fluctuating tower
with a mass-spring-damper system based on Equation (7) is
modeled. In this regard, Fth(t) denotes the operating force,
and at the height of the vane ball, Bt is coefficient damping,
Kt the twist coefficient of the tower, Mt is the mass of the
top of the tower and χt (t) represents the displacement of the
chassis. Tower oscillation impact on thewind speed seen from
rotor. The wind speed is modeled based on Equation (8).

Mt χ̇t (t) = Fth(t) − Bt χ̇t (t) − Ktχt (t) (7)

vr (t) = Vω(t) − χ̇t (t) (8)

Pitch driver is modeled by Equation (9), where in this
equation, β(t) and βref(t) denote the angle reference pitch
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angle, ωn and v represent the natural frequency and damping
ratio. Equation (9) explains the action of the superimposed
stimulus when this stimulus applies within certain limits.
The upper and lower limits should be considered for β(t)
and β̇(t) (the physical limits of the drive). These limits were
considered in the form of Table 1 [43].

β̈(t) = −2vwnβ̇(t) − ω2
nβ(t) − ω2

nβref(t) (9)

TABLE 1. Limitations of pitch.

The equations of modeling of the electrical parts of WECS
are also as follows.

Vqs = Rsiqs +
γ

dt
ϕqs + ωsϕds (10)

Vds = Rsids +
γ

dt
ϕds + ωsϕqs (11)

Vqr = iqrRr +
γ

dt
ϕqr + ϕdr (ωs − ωr ) (12)

Vdr = idrRr +
γ

dt
ϕdr + ϕqr (ωs − ωr ) (13)

Equations (10)-(13) display the voltage equations of the
stator/rotor in reference frame. All parameters in this model
are related to the stator, Rs/Rr is the resistances of the
stator/rotor, ωs denotes the angular speed, ωr is the rotor
angular speed, ϕqs and ϕqs are the stator flux in the direction
of d and q axis, and also ϕqr and ϕqr of the rotor flux are in the
direction of d and q axis. Also, stator and rotor flux are shown
in Equations (14)-(17). The equations Lr = Llr + Lm/Ls =

Lls + Lm is the inductance of the stator/rotor.

ϕqs = Lsiqs + Lmiqr (14)

ϕds = Lsids + Lmidr (15)

ϕqr = Lr iqr + Lmiqs (16)

ϕdr = Lr idr + Lmids (17)

Electromagnetic torque is written as Equation (18), in which,
p is the pole numbers of the machine. Two equations related
to the mechanical parts of the machine are also shown in
Equations (19) and (20), in which H is the inertia constant
of the load and rotor, F is the coefficient of friction of
the viscosity of the load and rotor, Tg and ωg denote the
mechanical torque and angular velocity. θg is the rotor angular
position.

Te = 1.5p
(
ϕdsiqs − ϕqsids

)
(18)

γ

dt
ωg =

1
2H

(
Te − Fwg − Tg

)
(19)

γ

dt
θg = ωg (20)

The grid side converter and DC link capacitor are mod-
eled using Equations (21)-(24). Rg/Lg represents the resis-
tance/inductance, C is the link capacitor capacity, Vdc is the

capacitor voltage, Pr /Pg is the active/reactive power.

Vdg = Rgidg + Lg
γ

dt
idg − ωsLgiqg + Vds (21)

Vqg = Rgiqg + Lg
γ

dt
iqg − ωsLgiqg + Vqs (22)

Pg =
3
2

(
VdsIdg + VqsIqg

)
(23)

dVdc
dt

=
P

VdcC
=
Pr − Pg
VdcC

=
Pe − Ps − Pg

VdcC
(24)

The WECS has three types of control systems: RSC, GSC,
and pitch control systems. The following equations are used
to control RSC.

V ∗
dr = σLrV ′

dr + Rr idr − swsσLr iqr − sws
(Lm
Ls

)
ϕqs

V ∗
qr = σLrV ′

qr + Rr iqr − swsσLr idr − sws
(Lm
Ls

)
ϕds

In the equations above, the control voltages V ∗
dr and V ∗

qr
are obtained using proportional and integral (PI) controllers
and by comparing the obtained currents idr and iqr with
the reference values i∗dr and i∗qr according to the following
equation.

V ′
dr =

didr
dt

= Kp1
(
i∗dr − idr

)
+ KI1

∫ (
i∗dr − idr

)
dt

V ′
qr =

diqr
dt

= Kp1
(
i∗qr − iqr

)
+ KI1

∫ (
i∗qr − iqr

)
dt

In the equations above, Kp1 denotes the proportional coeffi-
cient and KI1 is the integral coefficient controlling PI. For
GSC control, Equations (25) and (26) are considered [44].

V ∗
dg = Rg ídg + LgV́dg − ωsσLgiqg + Vds (25)

V ∗
qg = Rg íqg + LgV́qg + ωsσLgidg + Vqs (26)

The values of the V́dg and V́qg are computed by a PI controller
and according to the following equations.

V ′
dg =

didg
dt

= Kp2
(
i∗dg − idg

)
+ KI2

∫ (
i∗dg − idg

)
dt

V ′
qr =

diqq
dt

= Kp2
(
i∗qq − iqq

)
+ KI2

∫ (
i∗qq − iqq

)
dt

The elevation angle control system is responsible for
increasing or decreasing the elevation angle. By changing
the angle of the angular generator speed and as a result, the
active power can be kept within the allowed power limit. This
controller has feedback on the angular speed of the generator.
The reference speed is also set on the maximum speed, which
is usually 20% higher than the nominal speed. The resulting
error after passing through the PI controller, the reference
angle of the reference, results in the reference angle being
entered into the distribution system.

When modeling WECSs, sensor dynamics are typically
overlooked due to their rapid response compared to the wind
turbine dynamics. The anemometer stands out as it is modeled
as a first-order low-pass filter with a time constant of 0.5 s.
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Sampling is done at a rate of 100 Hz. The recorded signals
are subject to Gaussian noise with zero mean and standard
deviation as outlined in the Table 2 [42].

TABLE 2. Sensors in WECS.

III. TYPE-3 FUZZY LOGIC
T3-FLSs uses developed fuzzy sets that have more degree of
freedom in comparison to type-2 counterparts. The secondary
memberships in T3-FLSs are fuzzy numbers while in type-2
counterparts are crisp number. This flexibility helps T3-FLSs
to represent higher-order uncertainties, allowing for a more
detailed modeling of complex systems where uncertainty is
not just about membership grades but also about the uncer-
tainty in those grades. This capability makes T3-FLS suitable
for applications where uncertainty is multi-dimensional or
varies significantly. T3-FLS can adapt more effectively to
changes in the environment due to its sophisticated handling
of uncertainty, making it suitable for real-time applications.
The structure of the T3-FLSs is shown as Fig. 2.
The inputs are generated using ui(k), i = 1, . . . , n and

output y(k). The inputs are denoted by χi. The membership
functions (MFs) are shown by Ãji, j-th MF for χi. The
memberships are written as (see Fig. 3):

ϑ̄Ãji |ρ̄i
=



1 −

 |χi −MÃji
|

γ
Ãji

ρ̄i

ifMÃji
− γ

Ãji
< χi ≤ MÃji

1 −

(
|χi −MÃji

|

γ̄ Ãji

)ρ̄i

ifMÃji
< χi ≤ MÃji

+ γ̄ Ãji

0 ifχi > MÃji
+ γ̄ Ãji

orχi < MÃji
− γ

Ãji

ϑ̄Ãji |ρi
=



1 −

 |χi −MÃji
|

γ
Ãji

ρ
i

ifMÃji
− γ

Ãji
< χi ≤ MÃji

1 −

(
|χi −MÃji

|

γ̄ Ãji

)ρ
i

ifMÃji
< χi ≤ MÃji

+ γ̄ Ãji

0 ifχi > MÃji
+ γ̄ Ãji

orχi < MÃji
− γ

Ãji

ϑ Ãji |ρ̄i
=



1 −

 |χi −MÃji
|

γ
Ãji


1
ρi

ifMÃji
− γ

Ãji
< χi ≤ MÃji

1 −

(
|χi −MÃji

|

γ̄ Ãji

) 1
ρi

ifMÃji
< χi ≤ MÃji

+ γ̄ Ãji

0 ifχi > MÃji
+ γ̄ Ãji

orχi < MÃji
− γ

Ãji

ϑ Ãji |ρi
=



1 −

 |χi −MÃji
|

γ
Ãji


1
ρi

ifMÃji
− γ

Ãji
< χi ≤ MÃji

1 −

(
|χi −MÃji

|

γ̄ Ãji

) 1
ρi

ifMÃji
< χi ≤ MÃji

+ γ̄ Ãji

0 ifχi > MÃji
+ γ̄ Ãji

orχi < MÃji
− γ

Ãji

where ϑ̄Ãji |ρ̄i
, ϑ̄Ãji |ρi

, ϑ Ãji |ρ̄i
and ϑ Ãji |ρi

respectively denote

the upper memberships for Ãji at ρ̄i and ρ
i
and the lower

memberships for Ãji at ρ̄i and ρ
i
, which are not specific values

but in the specific interval. MÃji
expresses the center of Ãji.

Also, γ̄ Ãji
and γ

Ãji
are the distance ofMÃji

to the start and end

points of Ãji, respectively (see Fig. 3).
The rule firings are given as

�̄k
ρ̄i

= 5n
j=1ϑ̄A

pj
i |ρ̄i

�̄k
ρ
i
= 5n
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The output is rewritten as
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FIGURE 2. The structure of the type-3 FLS.

FIGURE 3. Type-3 membership function (MF). The letters ‘‘U’’ and ‘‘L’’
mean the upper and lower bounds of footprint of uncertainty,
respectively.
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IV. ADAPTIVE RANDOM SEARCH (ARS) TRAINING
In this research, ARS is employed for T3-FLS training. The
advantage of this method is that it can be implemented
easily and has a very wide application area. The information
required for the implementation of this approach is only the
input/output information. The input is the parameter vector θ ,
while the output is the cost function J (θ ). The parameters of
T3-FLS are represented by the vector θ . During training, the
objective is to adjust the elements of the vector θ to minimize

the following cost function.

θ∗
= min

θ∈C
J (θ )

where in the relation above θ∗ is the vector of optimal
parameters of T3-FLS, J represents the cost function, p
denotes the dimension of the θ . J (l; θ ) is defined as

J (l; θ ) =
1
2

N∑
k=1

(
yγ (k) − y(k; θ )

)2
In the context of ARS, the desired output of T3-FLS,

denoted by yγ (k), the actual response of T3-FLS to input
pattern N , denoted by y(k; θ), represent the target and
practical outcomes, respectively. u(k) signifies the training
size, and l is the repetition data index. The cost function
should be constructed to minimize the input/output patterns
provided. Notably, in ARS, there is no necessity to compute
the gradient J . Table 3 shows the stages of the ARS learning
algorithm. Considering the sequence θ̂0, θ̂1, . . . , θ̂k as the
answer obtained at time k , to reach the next point, θ̂k+1, the
following equation is utilized.

θ̂k+1 = θ̂k + rk

In the given scenario, θ̂k represents the estimated value of θ∗

in the k-th iteration, and rk denotes the randomly generated
disturbance vector following a normal distribution N (0, v).
The updated estimate θ̂k+1 is determined by comparing the
cost functions J (θ̂k ) and J (θ̂k+1), with leading to a smaller
cost function. Otherwise, θ̂k+1 remains unchanged as θ̂k .
To initiate the optimization process, specifying the initial θ̂k
and the variance of v is essential. In the pursuit of locating the
global minimum θ∗, a large variance for rk is necessary when
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TABLE 3. ARS training algorithm.

θ̂k is distant from θ∗ to cover extensive parameter spaces and
prevent getting trapped in local minima. Conversely, a small
variance for rk is preferred when θ̂k is close to θ∗. The ARS
training process is streamlined with the algorithm’s inherent
feature of global convergence.

V. PROPOSED FDIS DESIGN PROCESS
In general, possible errors in the WECS can be classified into
two categories: mechanical and electrical. In this research,
the errors related to the pitch sensor, the pitch engine, and
the generator angular speed sensor are examined, because
these categories of errors are more severe and important than
others have mechanical errors. The internal errors related to
the generator and converters were also not considered due
to the complexity and widening of the research. The other
faults, such as a 3-phase short circuit to the ground fault in
the generator bus, and the protection systems that come into
action and disconnect the wind turbine from the network,
were not taken into consideration. Also, it is assumed that
the controllers used in the energy conversion system do not
suffer errors and continue to function properly. The operating
conditions when the error occurs are as follows.

• The control system does not have any errors and
continues to function normally when an error occurs.

• One of the errors related to the pitch sensor, pitch engine,
and generator sensor happens asynchronously.

• Other than the mentioned cases, no other error occurs in
WECS.

In the fault detection system, checking the two output signals
from the speed sensors of the generator angles and pitch
angles will identify the error in the generator sensor, and
the pitch actuators. According to the modeling done for the
wind turbine, both the signals above are considered as a
nonlinear function of the rotor angular speed, ωr , and the
wind speed. Because the control performance changes under
various speeds. Then,

ωg = h1(Vω, ωr )

β1,2,3 = h2(Vω, ωr )

where h1(·) and h2(·) are non-linear functions. Considering
the values measured as inputs, their output can be estimated
by the mentioned T3-FLS. To train the T3-FLS model of the
output of the generator angular speed sensor, training data
with the number of 1000 samples in each category were used
according to the presented WECS. To test the designed T3-
FLS model, the test data set was used, which has 200 samples
for an average speed of 16 m/s. The best structures were
selected according to the Akaike criteria (AIC) and the final
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forecasting error. AIC considers the complexity of the model
by minimizing the fAIC. The function fAIC is defined as

fAIC = log(J ) + 2K/N ,

where N and K are the sample numbers used for training
and rule parameter numbers, respectively, and J is the mean
squared error between yγi and the T3-FLS output yi. Another
well-known criterion is also used in this field, which is the
criterion of final prediction error (FPE). The FPE selects the
order of the model by minimizing the following function.

fFPE = J
(
1 + K/N

)
/
(
1 − K/N

)
.

Remark 1: The proposed parallel operation of T3-FLS
models (one simulating normal conditions and the other
faulty) facilitates precise error identification, making it a
robust solution for real-time diagnostics. Furthermore, the
elimination of gradient calculations through ARS simplifies
the training process, which is particularly advantageous in
dynamic environments. The successful simulation results,
showcasing rapid fault detection with minimal false alarms,
underscore the approach’s practicality and potential for
widespread application across various system components.
Remark 2: The threshold can be increased to prevent

false alarms caused by noise and interference to reduce
misdiagnosis. However, increasing the threshold limit will
result in a decrease in the sensitivity of the detection scheme.
A trade-off should always be considered between the error
diagnosis rate and the sensitivity of FDIS to all types of errors
in the design, to minimize the number of incorrect diagnoses
and maximize sensitivity. To deal with this issue, in this
paper the accuracy of identification of the normal conditions
is improved using T3-FLSs and developed global learning
algorithm. However, it can be further studied in future studies.
Remark 3: The ARS fine-tunes the parameters of the T3-

FLS, which are critical for accurately modeling the behavior
of the wind energy conversion system (WECS). By global
exploring the parameter space, ARS identifies the optimal
settings that improve the system’s responsiveness to faults.
Also, The ARS helps in determining the appropriate number
of rules for the T3-FLS. The ARS does not require gradient
calculations, simplifying the optimization process.

VI. SIMULATION
The simulation conditions are described in Table 4. The
results related to choosing the appropriate T3-FLS structure
for ωg modeling are shown in Table 5. From Table 5, T3-FLS
with least number of rules provide the best results. Finally,
according to the results of training and testing, the optimal
structure is considered the best model for modeling the
behavior of ωg under normal operating conditions. Figure 4
depicts the comparison of ωg obtained from the model and
ωg estimated by the dynamic T3-FLS. The designed FLS
optimally approximates ωg.
To form a fault diagnosis and isolation scheme for the

angular speed sensor of the generator, several different types
of faults were considered and for each of these faults, a fault

FIGURE 4. (a) Estimated ωg and (b) Estimation error or residuals. The
results are for an average wind speed of 14 m/s and under normal
conditions.

model was designed by T3-FLS to create a bank of different
models for operation modes. The errors considered for the
generator angular speed sensor are as follows.

f 11 = +10%, f 12 = −10%, f 13 = +5%

f 14 = −5%, f 15 = +2%, f 16 = −2%.

Therefore, it is necessary to design a T3-FLS for each type
of error and place it in the bank of error models. The design
process is the same as the T3-FLS design to estimate the
output of the angular velocity sensor. After examining the
different structures and according to the mentioned criteria,
for errors f 11 , f

1
2 , f

1
3 , f

1
4 , f

1
5 and f 16 the optimal T3-FLS

is selected. As a result, six error states were considered
for the angular speed sensor of the generator. From these
faulty states, it is possible to find out the amount of error
continuously occurring in the generator sensor, in such a way,
whether the error happened to a low (±2%), medium (±5%)
or high (±10%) rate. Also, according to the evaluation of
the residuals, a simple threshold limit was used, which was
considered to be ±4 rad/s. The selection of this threshold
level is done to obtain the desired sensitivity and prevent the
occurrence of false alarms. During the first simulation, in the
30th second, a sudden proportional error of+2%was applied
to the generator sensor for 20 s, and in the 70th second,
a proportional error of −5% was applied to the generator
sensor for 20 s.

Figure 5 shows the result of simulation. From Fig. 5, in the
scenario of deviation of the angular velocity of the generator
from the actual value, a residual is achieved by the error
detection system, and by comparing this residual with the
threshold level, it is possible to realize the existence of an
error in the system. In this form, between 30-40 s and 70-
80 s, the obtained balance exceeded the limit of ±4 rad/s
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TABLE 4. The simulation conditions.

and this indicates the occurrence of an error in the generator
sensor. The type of error is also found by examining the
residuals obtained from faulty neural models; In this way,
if the remainder was close to zero, it would indicate the
occurrence of that type of error.

FIGURE 5. The residual of the angular speed of the generator. The results
are for an average wind speed of 14 m/s and when a sudden proportional
error occurs in the angular speed sensor.

In Fig. 5, only the balance of f 15 is close to zero in the
period of 30 to 50 s, so an error of +2% has occurred in this
period. Also, only the balance of f 14 in the time interval from
70 s to 90 s is close to zero, which indicates that −5% error
occurred in this interval. In Fig. 5, the residuals from other
faulty models have also shown that, as is clear, these residuals
have never been in a range close to zero.

The second simulation is related to the occurrence of a soft
proportional error in the angular speed. The output of sensor
deviates from its original value in the 30th second until it
reaches a value of 1.1 equal to its real value in the 90th second;
That is, during 60 s, an error equal to+10%of the actual value
is created in the angular speed. The result of the simulation
in this case is shown in Fig. 6(a). According to Fig. 6(a), the

error detection system can detect the soft error in 40.7 s; That
is, a time of about 10.7 s is needed to detect this type of error,
which is a good thing for detecting a soft error in the angular
speed sensor of the generator.

Finally, the third simulation is related to checking the
occurrence of constant output error for the angular speed
sensor. In this case, in the 30th second, the output of the
angular velocity is kept constant. The remaining signal in this
case is given in Fig. 6(b). With the remaining review, it is
clear that the error detection system from 34.7 s onwards;
That is, only 4.7 s after the occurrence of the error, it can
detect it. According to the results obtained for the occurrence
of a sudden proportional error, proportional soft error, and
fixed output for the angular speed, it can be concluded
that the designed error detection system in various speeds.
It brings the desired results. This FIDS can detect errors early.
A remarkable point in the proposed plan is the very small
numbers of false alarms, which is desirable and desirable for
any fault diagnosis system.

The following phase of the fault detection system design
pertains to the pitch system. Within the pitch system, errors
may occur in both the pitch sensor of the vanes and the
pitch actuators. To train T3-FLS to model the output of pitch
sensor, training data with 1000 samples in each category are
used. The ARS was also used to train FLS. The optimal
structures are selected according to AIC and FPE criteria.
The results related to the selection of the appropriate FLS for
the modeling of blade angle are shown in Table 6. According
to the results of the table, the T3-FLS with least number of
rules with the second order filter was considered for modeling
the behavior of β1 under normal operating conditions. The
comparison between the model’s β1 and the dynamic neural
network’s estimated β1 and the error in estimation under
normal conditions are displayed in Fig. 7.
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TABLE 5. Results of dynamic T3-FLS training for training and test data to model ωg.

FIGURE 6. The residual signal of the angular velocity of the generator for
(a) an average wind speed of 12 m/s and when a soft proportional error
occurs in the angular velocity and (b) an average wind speed of 8 m/s
and when a constant output error occurs in the sensor of the angular
speed of the generator.

The T3-FLS is designed to optimally estimate β1 with low
error. Various errors were examined to assess the performance
of FDIS in the pitch system. Errors in the pitch system were
categorized based on the output of pitch sensor; an increase
(positive bias) as first category, denoted as f 21 , and a decrease
(negative bias). as the second category, f 22 . Also, the error
related to the pitch engine, which is modeled by changing
ζ and ωn, are considered as the third case, f 23 . To check the
residual, in the thirtieth second a bias error of +0.75 degrees
for 10 s, in the fiftieth second a bias error of −1 degree
for 10 s, and in the seventieth second a sudden type of
stimulus error with a change in ζ and ωn for 30 s were
applied to pitch system. Figure 8(a) shows the remaining
signal in these conditions. From Fig. 8(a), it is difficult to
separate these three categories of errors from each other
because similar behaviors can be observed between Category
3 and Categories 1 and 2. In fact, with the threshold level,
it is possible to separate only two error categories 1 and
2 from each other, while separating error category 3 with

FIGURE 7. Simulation results of WECS for an average wind speed of
14 m/s and under normal conditions: (a) estimated β1 and (b) residuals
(error).

the threshold level would be wrong because this category
sometimes has similar behavior to Category 1, and at other
times with Category 2, causing a wrong decision. However,
it is possible to identify the error that occurred in the pitch
system by evaluating the obtained balance and the threshold
level. For this purpose, a threshold level of ±0.3 degrees has
been considered for the evaluation of the balance, and the
results show that the detection of errors is done well in any
case. According to Fig. 8, the positive bias error is 1.3 s, the
negative bias error is 2.1 s, and the trigger error is more than
2.5 s after its occurrence.

By using this FDIS, identifying the positive/negative bias
errors of the sensor up to ±0.5 degrees is possible. To speed
up the diagnosis time, the value of the threshold can be
reduced, but the decreasing of the diagnosis time will
coincide with the occurrence of wrong diagnoses.

The suggestion that is made to isolate the error is to use
the average of the balance in short periods. According to
Fig. 8, it can be noted that the average of the remaining signal
increases during the period of the occurrence of an error with
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TABLE 6. Results of T3-FLS training for training/test data to model β1.

FIGURE 8. (a) Evaluation of the residual by the specified threshold for the
average speed of 15 m/s in the conditions of all three types of errors in
the pitch subsystem and (b) The average of the residual during the time
intervals of 10 s during the happening of all three type of errors in the
one pitch system.

positive bias and decreases during the period of the error
occurrence with negative bias. Also, in the time interval of
the occurrence of the motor error, there is not much change
in the remaining Yangin current. To check the correctness of
the suggested scheme, the simulations were performed again
when three types of errors occurred and the average of the
remaining signal was calculated in 10-second intervals. The
result of the simulation is illustrated in Fig. 9.

The average of the balance in the period of occurrence of
positive bias error (between 30 s and 40 s) has increased and
in the period of occurrence of negative bias error (between
50 s and 60 s), it has decreased. In period 70-100 s, it has
remained in a range close to zero. Therefore, the operations
related to error diagnosis and isolation for the pitch system
can be summarized as follows.

• If the balance obtained from the pitch system exceeds the
specified threshold, it indicates that a fault has happened
in the pitch component. The type of error is also found
according to the following process.

FIGURE 9. Residual signals when three types of errors occur in the
angular speed sensor and actuator: (a) the residual for error detection of
generator angular speed sensor and (b) the residual for error detection of
pitch system.

1) If the residual average is more than the upper
threshold, category 1 error; meaning that positive
bias has occurred.

2) If the remaining average is less than the lower
threshold, category 2 error; meaning that negative
bias has happened.

3) If the remaining average does not exceed the
specified threshold level, it indicates that an error
has happened in the pitch driver.

• If the resulting balance does not exceed the threshold,
an error has not occurred in the overflow system.

VII. DISCUSSION
The pre-operation phase involved separate investigations of
the fault detection systems for the generator sensor and pitch
system. This section aims to evaluate the overall efficiency
of the suggested fault detection under conditions where
errors in the angular speed sensor, pitch sensor, and pitch
actuator do not occur simultaneously. It is important to note
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TABLE 7. Sensors in WECS.

that an error in the generator’s angular speed sensor can
impact the accuracy of the generator error detection system.
To investigate this matter, the error of the generator sensor
in the thirtieth second is +5% for 10 s, the error of the pitch
sensor in the fiftieth second is +1 degree for 10 s, and the
error of the pitch actuator in the seventieth second, due to the
type of hydraulic pump decay, for 20 s, was applied to pitch
system.

As it is clear from the results, with the occurrence of an
error in the generator sensor, the balance related to the 1st
vane system has also been affected and changed. On the
contrary, with the occurrence of an error in the sensor or the
actuator, there is no change in the rest related to the angular
speed of the generator. Therefore, to form a unified FDIS, this
point should be considered if both of the resulting balances
change and cross the threshold. This indicates that if the
balance related to the pitch angle of the blade exceeds the
threshold level, it signifies an error in the pitch system. The
algorithm described in the previous section can be applied
to identify the ongoing error in the pitch system. The steps
of the general algorithm for diagnosing and isolating the
investigated errors are as

1) If the differences between the angular speed sensor
residuals and the 1st blade system residuals are both
below the threshold, then there is no error in the system.

2) If the residuals from the speed sensor and the pitch
system are both out of the threshold, an error has
happened in the sensor. The type of error is also
obtained according to the faulty FLS models and the
comparison of their residuals with the threshold.

3) If the residual of the angular speed sensor is within
the specified threshold, but the residual of the pitch
system is out of the specified threshold, an error has
been happened in the pitch subsystem. The type of error
is determined according to the suggestion presented in
the previous section. If the remaining average is higher
than the threshold, it is a positive bias error, if it is less
than the lower threshold, it is a negative bias error, and
if it is within the threshold level, it is a rising error.

To check the accuracy of the FDIS operation along with
the presented algorithm, according to Table 7, different errors
are shown in time intervals and applied to the system over
300 s. As it is clear from the results of the simulation, FDIS

has a very favorable performance with the least error in
diagnosing errors. To decrease the wrong diagnoses numbers,
the threshold can be raised to prevent false alarms due to
noise, and disturbances. However, increasing the threshold
limit will result in a decrease in the sensitivity of the detection
scheme. A trade-off should always be considered between the
rate of false diagnosis and the sensitivity of FDIS to all types
of errors in the design so that the false diagnosis number is
low and the sensitivity is as high as possible. The algorithm
exhibited strong performance, demonstrating minimal error
rates in diagnosing faults. Future work will explore adaptive
thresholding techniques and a broader range of performance
metrics to optimize the algorithm’s performance in real-world
scenarios.

VIII. CONCLUSION
In this research, by using the dynamic model of the wind
energy systems that include both mechanical and electrical
parts, a fault detection and isolation system is designed. The
continuous faults are detected in the angular speed sensor of
the generator and pitch’s sensors and actuators. Diagnosing
and isolating the continuously occurring errors in the wind
energy conversion system is done using T3-FLSs. A dynamic
T3-FLS imitates the system’s normal behavior and another
model imitates the faulty conditions. T3-FLS models are
placed in parallel with the real plant and their outputs are
compared with the real outputs of the system. Thus, the time
and location of the error in the real system are identified. The
adaptive random search is used to train T3-FLSs, which do
not need to calculate gradient expressions. A suitable number
of rules for the T3-FLS are also selected based on the AIC and
FPE criteria. The simulation results show that FDIS works
fast, accurately, and correctly with the presented algorithm.
Its false alarm rate is seldom and isolates the identified errors
well. The presented method can be used to diagnose the error
of other components of the wind energy system, such as the
gear wheel.
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