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Abstract—Sleep apnea syndrome (SAS) requires early
diagnosis because this syndrome can lead to a variety
of health problems. If sleep apnea (SA) events can be
detected in a noncontact manner using radar, we can then
avoid the discomfort caused by the contact-type sensors
that are used in conventional polysomnography (PSG). This
study proposes a novel radar-based method for accurate
detection of SA events. The proposed method uses the
expectation–maximization (EM) algorithm to extract the res-
piratory features that form normal and abnormal breathing
patterns, resulting in an adaptive apnea detection capa-
bility without any requirement for empirical parameters.
We conducted an experimental quantitative evaluation of the
proposed method by performing PSG and radar measurements simultaneously in five patients with the symptoms of SAS.
Through these experiments, we show that the proposed method can detect the number of apnea and hypopnea events
per hour with an error of 4.8 times/h; this represents an improvement in the accuracy by 1.8 times when compared with
the conventional threshold-based method and demonstrates the effectiveness of our proposed method.

Index Terms— Antenna arrays, biomedical engineering, Doppler radar, radar measurements, radar signal processing.

I. INTRODUCTION

THE number of adults aged from 30 to 69 years that
display moderate to severe symptoms of sleep apnea
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syndrome (SAS) is estimated to be approximately 425 million
worldwide [1], [2]. SAS is known to increase the risk of
complications, such as hypertension, coronary artery disease,
and cerebrovascular disease and can also lead to work-related
errors and traffic accidents because of daytime sleepiness and
poor concentration [3]. To avoid these risks, early diagnosis
and treatment are essential [4], [5], and the gold standard for
SAS testing is polysomnography (PSG) [6]. PSG records var-
ious physiological signals, including electroencephalography
(EEG), electrocardiography (ECG), and arterial blood oxygen
saturation signals throughout the night using contact-type sen-
sors. When compared with the conventional PSG technique,
radar-based noncontact SAS monitoring offers the advantage
that the discomfort caused to the patient by contact-type
sensors can be avoided, thus enabling monitoring of the SAS
signs during natural sleep.

Many existing studies of noncontact detection of sleep apnea
(SA) are based on machine learning (ML) methods [7], [8],
[9], [10], [11], [12], [13], [14], including long short-term mem-
ory (LSTM) [9], [13], [14] and support vector machine (SVM)
techniques [8], [10], [11]. Although ML-based methods often
require sufficient quantities of training data to be available for
accurate classification, it is not easy to collect enough data
effectively because the radar data depend on the measurement
setup and the surrounding environment and also depend on
the positioning and angle of the radar system [9], [13], thus
limiting the use of ML in practice.
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In contrast, test methods without the use of ML have also
been reported [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], and some of these methods are based on thresh-
olding in terms of the displacement amplitude. For example,
in a study by Kagawa et al. [19], [20], a threshold was set
up using the amplitude of the displacement caused by normal
respiration. Another example is a study by Kang et al. [25]
that proposed a method for the use of adaptive thresholding in
a constant false alarm rate (CFAR) framework. These methods
require prior information about the normal respiration of the
target patient, which limits the practicality of the methods.

Unlike conventional ML-based or threshold-based methods,
this study introduces a new approach that uses the statistical
distribution of respiratory displacement. The proposed method
uses the expectation–maximization (EM) algorithm to estimate
parameters for stochastic models of respiratory displacement
and distinguish between normal breathing and apnea to detect
apnea without using numerous training datasets or threshold
values. In this study, we conducted experiments on five patients
who had been hospitalized for SA testing using PSG and
evaluated the accuracy of apnea event detection using the
proposed method. Through these experiments, we demonstrate
that the proposed method can detect apnea events with higher
accuracy than the conventional threshold-based method.

II. SA DETECTION USING ARRAY RADAR

A. Millimeter-Wave Array Radar
In this study, we apply a millimeter-wave radar system

that uses the frequency-modulated continuous-wave (FMCW)
method with a center frequency of 79 GHz, a center wave-
length of λ = 3.8 mm, range resolution of 43 mm, transmit
power of 9 dBm, an equivalent isotropic radiated power of
20 dBm, and a slow-time sampling frequency of 10 Hz.
The antennas of this radar system comprise a multiple-input
multiple-output (MIMO) array that contains three transmitting
elements and four receiving elements, corresponding to a
12-element virtual array; the transmitting and receiving arrays
are linear arrays that are equally spaced at intervals of 2λ
(7.6 mm) and λ/2 (1.9 mm), respectively. The radiation pattern
for each element is defined as ±4◦ and ±35◦ in the E- and
H -planes, respectively. The three transmitting elements radiate
signals one-by-one in a time-division multiplexing manner.

B. Radar Imaging and Extraction of Respiratory
Displacements

The FMCW radar system transmits a linear chirp signal
with a constant amplitude and a frequency fT(τ ) that increases
linearly, as described by fT(τ ) = f0 + Bτ/T0 over the
interval 0 ≤ τ ≤ T0, where τ is a fast time, f0 is the initial
frequency, B is the bandwidth, and T0 is the chirp duration.
The echo reflected from a target located at a distance r from
the radar system can be approximated using a time-delayed
attenuated copy of the transmitted signal, and the echo fre-
quency fR(τ ) can thus be expressed as fR(τ ) = f0 + B(τ −

2r/c)/T0, where c is the speed of light. The transmitted and
received signals are then input into a mixer with a low-pass
filter to generate an intermediate-frequency (IF) signal with
a frequency fIF, which is a beat frequency and is given by

fIF = fT(τ ) − fR(τ ) = 2Br/cT0. Therefore, to estimate the
target range r = (cT0/2B) fIF, the Fourier transform of the
IF signal is calculated to estimate the signal frequency fIF,
where the Fourier transform is often implemented using the
fast Fourier transform algorithm.

By applying a Fourier transform to the FMCW radar data
with regard to the fast time, we obtain a signal s ′

k(t, r), where
t is the slow time, r is the range, and k(=0, 1, . . . , K − 1)

is the element number of the virtual array, with the number
of virtual elements being denoted by K = 12. Note that the
phase of the signal s ′

k(t, r) was assumed to be calibrated in
advance.

By assuming that the the kth virtual array element is located
at (x, y) = (xk, 0) in the xy plane, where xk = kλ/2, the
signal vector s(t, r) can then be obtained as follows:

s(t, r) =
[
s0(t, r), s1(t, r), . . . , sK−1(t, r)

]T (1)

where sk(t, r) = cks ′

k(t, r), ck is a Taylor window coeffi-
cient and the superscript T denotes a matrix/vector transpose
operator. Using the beamformer weight vector w(θ) =

[w0, w1, . . . , wK−1]
T along with wk(θ) = e−j(2πxk/λ) sin θ

=

e−jπk sin θ (k = 0, 1, . . . , K −1), a complex-valued radar image
I0(t, r, θ) = wH(θ)s(t, r) is then generated, where H denotes
the complex conjugate transpose operator.

We then suppress the static clutter components as follows:

Ic(t, r, θ) = I0(t, r, θ) −
1
Tc

∫ t

t−Tc

I0(τ, r, θ) dτ (2)

where Ic(t, r, θ) is a clutter-free complex-valued radar image
and Tc is a time period. Because the static clutter components
are echoes from nontarget stationary objects, e.g., desks,
chairs, and walls, they are not dependent on the slow time
t within the time period Tc, which means that the static
clutter can be estimated by averaging the radar image Ic(t, r, θ)

with respect to t . In this study, we selected the average time
length Tc = 30 s empirically [26]. We should note here that
if the clutter is neither homogeneous nor stationary, other
approaches, e.g., circle fitting, must be used to suppress the
clutter.

If the signal received contains only a single dominant echo
from the target human body, which is located at (r0, θ0), then
the signal received from an angle θ0 is approximated to be
proportional to the phase-modulated term; i.e., Ic(t, r, θ0) ∝

ej4πd0(t)/λ with an echo waveform p(t, r), and the body dis-
placement d0(t) is thus obtained as follows:

d0(t) =
λ

4π
̸ Ic(t, r0, θ0) (3)

where ̸ represents the phase of a complex number. The
respiratory displacement d(t) is estimated using a bandpass
filter to suppress the body motion and the random noise
components. The cutoff frequencies of the filter are set at
0.17 and 1.8 Hz, corresponding to 0.55 and 6 s in the time
domain, respectively.

C. Limitations of the Conventional Apnea
Detection Method

According to the American Academy of Sleep Medicine
(AASM) scoring criteria for SAS, ventilation is reduced by
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30% when compared with normal breathing during hypopnea
and by more than 90% during apnea [1], [2], [27], [28],
[29], [30], and any such events that last longer than 10 s
are counted as hypopnea or apnea, respectively [27], [28].
Therefore, the body motion caused by respiration is reduced
during hypopnea and apnea events, and many conventional
methods detect this reduced body motion. One such example
is the amplitude baseline method (ABM) [19], [20], which
is referred to as the conventional method for the purposes of
performance comparison in this study.

The displacement amplitude d̄(t) is given by

d̄(t) =

√
1
Ta

∫ t+Ta/2

t−Ta/2
|d(τ )|2 dτ (4)

where we set Ta = 5 s because the typical respiratory interval
is usually shorter than 5 s. The ABM first estimates the body
displacement amplitude d̄b during normal breathing to act as
a baseline and then sets a threshold βd̄b to detect reduced
displacement. Based on consideration of the AASM criteria,
the threshold value is set at either 70% or 50% (β = 0.7 or 0.5)
of the amplitude for normal breathing d̄b. The ABM detects the
apnea and hypopnea event period [t1, t2], where d̄(t) < βd̄b
holds for any value of t that satisfies the relation t1 ≤ t ≤ t2.
In addition, the condition t2 − t1 ≥ Tm = 10 s must be satisfied
according to the AASM criteria.

The limitation of the ABM lies in the fact that normal
breathing must first be detected as a baseline, which is not
always easy in practice. In addition, the accuracy of the ABM
decreases when the patient’s position and posture change,
which is the reason why a new method is proposed in
Section III.

III. PROPOSED APNEA DETECTION METHOD

A. Respiratory Features Extraction With EM Algorithm
We propose a method that uses the EM algorithm for

apnea detection. In this method, we regard the respiratory
displacement amplitude d̄ as a random variable and assume
that d̄ follows a Gaussian distribution with a mean µ1 and a
variance Σ1 during apnea and hypopnea events; in addition,
we assume that d̄ also follows a Gaussian distribution with a
mean µ2 and a variance Σ2 during normal breathing periods.
The respiratory displacement amplitude, including both the
apnea and normal breathing, can then be expressed as a
Gaussian mixture model.

First, we define the mixing ratios π1 and π2 (π1 + π2 =

1), which represent the ratios of the time lengths of apnea
and normal breathing. Using the vectors µ = [µ1, µ2]

T, Σ =

[Σ1, Σ2]
T, and π = [π1, π2]

T, the probability density function
G(d̄|π , µ, Σ) of d̄ is given by

G(d̄|π , µ, Σ) =

Ke∑
k=1

πkN (d̄|µk, Σk) (5)

where N (·|µ, Σ) is the probability density function of a
normal distribution with a mean µ and a variance Σ , and
the number of mixture components Ke is set to be Ke = 2.

If we assume that d̄ is observed M times (i.e., d̄ i (i =

1, 2, . . . , M)), then the log-likelihood function L(d̄ i |π , µ, Σ)

Fig. 1. Overview of the proposed apnea detection method.

is given as follows:

L(d̄ i |π , µ, Σ) = log
M∏

i=1

G(d̄ i |π , µ, Σ)

=

M∑
i=1

log

[
Ke∑

k=1

πkN (d̄ i |µk, Σk)

]
. (6)

To determine the parameters µ and π , we use the EM
algorithm, which consists of an expectation (E) step that
calculates the posterior probability over the hidden variable
γk,i using the current parameters πk , µk , and Σk , and a
maximization (M) step that estimates the parameters πk , µk ,
and Σk using the current value of γk,i . Here, zi,k denotes the
probability that the i th data sample d̄ i is generated by the
kth Gaussian distribution πkN (d̄|µk, Σk). γk,i is estimated as
follows:

γk,i =
πkN (d i |µk, Σk)∑Ke

k=1 πkN (d i |µk, Σk)
. (7)

The optimal parameters π∗

k , µ∗

k , and Σ∗

k are given by

π∗

k =
Mk

M
(8)

µ∗

k =
1

Mk

M∑
i=1

γk,i d i (9)

Σ∗

k =
1

Mk

M∑
i=1

γk,i
(
d i − µ∗

k

)2
(10)

where Mk =
∑M

i=1 γk,i .

B. Proposed Apnea Detection Method
We propose a radar-based system for apnea detection,

as illustrated in Fig. 1. The proposed system consists of a
radar signal processing block and an SA detection block.

First, the overnight radar signal data are divided into epochs,
with each having a period of Tep = 60 s, where the adjacent
epochs overlap by 30 s following the convention of the PSG
test procedures. Next, the radar image Ip(r, θ) is generated as
follows:

Ip(r, θ) =
1

Tep

∫ Tep

0
|Ic(t, r, θ)|2 dt. (11)

From the radar image Ip(r, θ), local maxima with intensities
greater than a specific threshold are extracted, and their range
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and azimuth characteristics are obtained from (rm, θm) (m =

1, 2, . . . , M), which correspond to multiple scattering centers
on the human body. From the results for the positions (rm, θm),
we obtain a respiratory displacement dm(t) and an amplitude
d̄m(t) using (3) and (4). The proposed method uses the
displacement waveform not only at a single scattering center
but also at multiple scattering centers across the human body
because the apnea and hypopnea movements vary depending
on the body part involved [28]. By applying the EM algorithm
to the displacement amplitude d̄m(t), the parameters πk,m ,
µk,m , and Σk,m (k = 1, 2) are estimated, where µ1,m ≤ µ2,m .

Let us define a label lm(t) as lm(t) = 1 if an apnea
and hypopnea event is detected from the mth displacement
amplitude at a time t , and let lm(t) = 0 otherwise. The
proposed method estimates this label as follows:

lm(t) =

 1, if γ1,m(t) ≤ γ2,m(t), and
µ1,m

µ2,m
≤ β

0, otherwise.
(12)

Here, we set β = 0.5 based on the AASM scoring criteria that
were established in 1999 [2], [27], [28]. In (12), the presence
or absence of apnea and hypopnea events is determined by the
ratio of µ1,m to µ2,m . Finally, we make our decision by using
all lm(t) (m = 1, . . . , M) as shown

l(t) =

 1, if
M∑

m=1

lm(t)µ2,m >

M∑
m=1

µ2,m/2

0, otherwise.

(13)

This approach detects the presence of an apnea and hypopnea
event if that apnea and hypopnea event is detected at the
majority of the patient’s body parts in the radar signals.
Because each epoch has a 50% overlap with its neighboring
epoch, the sum of the labels l(t) for each of the apnea events
must be either 0, 1, or 2. Therefore, the proposed method only
detects the presence of an apnea and hypopnea event when this
sum value reaches 2 and the event lasts for more than 10 s.

IV. EXPERIMENTAL PERFORMANCE EVALUATION

A. Overview of the Experimental Setup
To evaluate the performance of the proposed method,

we performed radar measurements on patients with SAS symp-
toms, where the radar and PSG measurements were performed
simultaneously, and an evaluation was also performed using
conventional medical diagnostic results. The details of the five
participating patients with minor to moderate SAS symptoms
are presented in Table I. Fig. 2 shows the measurement setup
with the radar system in a hospital room. Because we are
interested in apnea and hypopnea events in this work, we only
analyzed the radar data acquired when the patients were asleep.
The awakeness of each patient was detected using the PSG
data. In Section IV-B, we apply the proposed method to the
radar data and compare the results with the PSG data to
evaluate the method’s performance.

B. Application of the Proposed Method
In this section, we apply the proposed method to the

experimental data to evaluate the method’s performance. Fig. 3

Fig. 2. Measurement setup with millimeter-wave array radar system in
a hospital room.

TABLE I
PATIENT DETAILS

Fig. 3. Example of the radar image Ip(r, θ).

shows a radar image Ip(r, θ) that was obtained from data
acquired while the patient was asleep, in which we see a
set of strong echoes at a range of approximately 1.5 m; this
suggests that these echoes arrive from not a single point on
the target person’s body, but from multiple points. The body
displacement waveforms measured at these multiple points
were then used to detect apnea and hypopnea events when
using the proposed method.

Figs. 4 and 5 show examples of the respiratory dis-
placements measured using the radar system during normal
breathing and during apnea and hypopnea events, respectively.
In Fig. 4(a)–(d), the respiratory amplitudes remained almost
constant within the 60-s epoch. In contrast, in Fig. 5, the apnea
and hypopnea respiratory amplitudes were reduced (red lines)
when compared with normal respiration (black lines). Fig. 5(a)
and (d) shows the obstructive SA (OSA) signs and (b) shows
the hypopnea sign. In these three panels, respiratory efforts,
i.e., periodic movements similar to those of normal breathing
when the amplitude is decreasing, were found. However,
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Fig. 4. Examples of respiratory displacements observed during normal
breathing. (a) Participant 1, (b) participant 3, (c) participant 4, and
(d) participant 5.

Fig. 5. Examples of respiratory displacements observed when
apnea and hypopnea events occur. (a) Participant 1, (b) participant 3,
(c) participant 4, and (d) participant 5.

no respiratory effort was observed in Fig. 5(c), showing the
central SA (CSA) sign. Therefore, apnea and hypopnea events
can be determined visually to some extent from the respi-
ratory displacements measured using radar. We note that all
participants’ apnea and hypopnea may have included central
apnea and hypopnea, nonetheless, most SAS patients have
OSA symptoms, and the detection of OSA events is considered
important.

Fig. 6 shows examples of the histograms of the respiratory
amplitudes (gray bars) and the corresponding probability den-
sity functions of the mixed Gaussian distributions that were
estimated using the EM algorithm, where each panel (a)–(d)
corresponds to (a)–(d) in Fig. 4. In Fig. 6(a) and (b), only
one peak is observed, whereas in Fig. 6(c) and (d), we can
see two peaks that approximately correspond to µ1 and µ2
(µ1 < µ2). This illustrates that there can be two peaks in
these characteristics, even when the breathing is normal.

Fig. 6. Probability density functions estimated using the EM algorithm
for respiratory amplitudes during normal breathing. (a) Participant 1,
(b) participant 3, (c) participant 4, and (d) participant 5.

Fig. 7. Probability density functions estimated using the EM algorithm
for respiratory amplitudes when apnea and hypopnea events occur.
(a) Participant 1, (b) participant 3, (c) participant 4, and (d) participant 5.

Fig. 7 also shows example histograms of the respiratory
amplitudes (gray bars) and the corresponding probability den-
sity functions when the apnea and hypopnea events occur,
corresponding to Fig. 6. In this case, we can see two peaks
in all panels and the peak gaps are larger than those observed
in Fig. 6 (i.e., µ1/µ2 is larger). The proposed method uses
these characteristics to detect the apnea and hypopnea events
automatically.

C. Accuracy Evaluation of the Proposed Method
This section provides a performance evaluation of the pro-

posed method by comparing it with the conventional ABM.
For this performance evaluation, we use the apnea–hypopnea
index (AHI), which represents the combined number of apneas
and hypopneas that occur per hour during sleep and is used to
diagnose the severity of a patient’s SAS. In addition, we also
evaluate the accuracy of estimation of the number of apnea
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Fig. 8. Number of apnea and hypopnea events estimated at 30-min
intervals for participant 1 when using (a) conventional and (b) proposed
methods.

Fig. 9. Number of apnea and hypopnea events estimated at 30-min
intervals for participant 2 when using (a) conventional and (b) proposed
methods.

Fig. 10. Number of apnea and hypopnea events estimated at 30-min
intervals for participant 3 when using (a) conventional and (b) proposed
methods.

Fig. 11. Number of apnea and hypopnea events estimated at
30-min intervals for participant 4 using (a) conventional and (b) proposed
methods.

and hypopnea events per 30 min, which we then convert into
the number per hour by simply doubling the number.

Figs. 8–12 show the numbers of apnea and hypopnea events
per hour for each participant. In each figure, the red lines in
(a) and (b) indicate the estimates from the conventional and
proposed methods, respectively. The true numbers of apnea

Fig. 12. Number of apnea and hypopnea events estimated at
30-min intervals for participant 5 using (a) conventional and (b) proposed
methods.

TABLE II
RMS ERRORS OF ESTIMATED NUMBERS OF APNEA AND HYPOPNEA

EVENTS PER HOUR

TABLE III
AHI ESTIMATED USING THE CONVENTIONAL AND PROPOSED

METHODS (TIMES/HOURS)

and hypopnea events, which are plotted as black dashed lines,
were obtained from the PSG data and the doctor’s diagnosis.

Table II shows the root-mean-square (rms) errors calculated
for the estimated numbers of apnea and hypopnea events
as shown in Figs. 8–12. For all patients, the rms error of
the proposed method was shown to be smaller than that of
the conventional method. The rms error averaged over all
patients was 11.5 times/h when using the conventional method,
whereas the corresponding value when using the proposed
method was 6.4 times/h, representing an improvement in
accuracy of 1.8 times.

Table III summarizes the AHI values that were estimated
using both the conventional and proposed methods. The AHI
was estimated to have an average error of 8.5 times/h when
using the conventional method and 4.8 times/h when using
the proposed method, again resulting in an improvement
of 1.8 times. Because the diagnostic criterion for SA is
AHI ≥ 5 times/h, the proposed method estimates the AHI
with an accuracy of 4.8 times/h, which reaches the minimum
accuracy requirement for diagnosis. These results illustrate the
effectiveness of the proposed method for the detection of apnea
and hypopnea events in a noncontact manner using a radar
system.
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V. DISCUSSION

In this study, we have proposed a method for the detection
of SA/hypopnea events that can be regarded as decision
problems for two hypotheses (i.e., normal breathing and
apnea/hypopnea). In decision theory, statistical approaches
such as the generalized likelihood ratio test are available.
However, rather than adopt an existing statistical method,
we have developed a new approach because it is diffi-
cult to identify the appropriate statistical model for the
radar-measured body displacements caused by respiration that
includes apnea and hypopnea, partly because insufficient quan-
tities of radar-measured respiratory displacement data have
been collected from patients. In fact, the amplitudes and
waveforms of radar-measured respiratory displacement signals
are affected strongly by individual differences, and they are
also dependent on the type of apnea/hypopnea [i.e., OSA,
CSA, and mixed SA (MSA)], the body part to be measured
(e.g., the chest, abdomen, front, or back), and the patient’s
posture (supine, prone, and lateral recumbent positions).

In our problem setting, the EM-based procedure represents
the first choice because the EM algorithm is the most com-
monly used unsupervised approach for the estimation of the
model parameters in cases where the statistical distribution is
expressed using a Gaussian mixture model. In addition, the
use of the EM algorithm allows us to obtain the ratio of the
respiratory amplitude for normal breathing to the respiratory
amplitude for apnea/hypopnea; this ratio can then be used
to detect reduced ventilation due to apnea/hypopnea directly
based on the AASM criteria. For these reasons, we selected
the EM-based approach rather than use other decision statistics
methods for the detection of SA/hypopnea. Despite this, it will
be important to investigate the possibility of the application
of other statistics-based methods to determine the decision
boundary to improve the detection accuracy; however, this
aspect will form part of our future studies.

One of the drawbacks of our proposed method is that
it is unable to distinguish unwanted limb movements from
physiological body displacements, and it is thus suspected that
our approach is affected negatively by patient body motion,
which can reduce the detection accuracy. Therefore, it will
be important to extend our method by including a technique
to detect these limb movements and improve the overall
detection accuracy in future work. Another important step
will be integration of the proposed radar-based method with
the PSG system, which has been studied intensively in the
literature [31], [32], [33], [34].

VI. CONCLUSION

In this study, we have proposed a novel method for noncon-
tact radar-based SA detection. The proposed method achieves
adaptive apnea detection without prior knowledge of the res-
piratory amplitude of normal breathing. The proposed method
uses a histogram of the respiratory amplitude as measured
using a radar system, and then detects single or double peaks
using the EM algorithm to distinguish the apnea and hypopnea
events from normal breathing. To evaluate the performance of
our proposed method, we performed experiments using both
radar and PSG systems on five patients with SA symptoms.

The experimental results showed that the proposed method
estimated the AHI with an accuracy that was 1.8 times
higher than that of the conventional method, confirming the
effectiveness of the proposed method. In addition, we also
demonstrated that the proposed method was able to estimate
the AHI with a mean error of only 4.8 times/h, which met
the minimum accuracy requirement for use in SAS diagnosis.
In conclusion, the proposed method was shown to be effective
in using radar to perform noncontact apnea detection.
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