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ABSTRACT Plant pest and disease management, especially in the early stages of infestation, is a critical
challenge that poses significant threats and has potential to devastate agricultural crops, causing total yield
loss and food insecurity. Traditional inspection methods are time-consuming and prone to errors due to
limited labor expertise. Therefore, to tackle these challenges, harnessing advanced technologies such as
artificial intelligence (AI), Machine Learning/Deep Learning (ML/DL), and Internet of Things (IoT) is
essential for managing and mitigating agriculture hazards. This research presents a comprehensive review
of the state-of-the-art DL architectures integrated with IoT-based systems applied to plant pest and disease
detection (PPDD) by investigating different potential approaches that have been employed using DL and IoT
up to the year 2024 to address challenges in agriculture. Convolutional Neural Network (CNN) architectures
for image recognition, object detection, and their integration with IoT, embedded into mobile devices
and unmanned aerial vehicles (UAV) are explored. Moreover, the research discusses the advantages and
limitations of these techniques, emphasizing their architecture design, efficiency and accuracy. The findings
demonstrate that there is a tradeoff between robustness and complexity among existing techniques, and
authors recommend future trends aimed at creating robust models with fewer parameters that are more
accurate and easily implementable on small IoT-based and portable devices suitable for in-field and real-
time applications. Furthermore, while existing review papers discuss either DL or IoT separately, this
research paper uniquely focuses on their combined models, providing a comprehensive overview of the
synergistic potential of leveraging IoT-driven technologies alongside advanced DL algorithms to ease the
task of researchers in the field of precision agriculture particularly in PPDD.

INDEX TERMS Deep learning, machine learning, crop pest detection, crop disease detection, convolutional
neural networks, Internet of Things.

I. INTRODUCTION
Agricultural products are crucial for human existence, and
people have been striving to increase their productivity. For
instance, corn is the human staple food that sustains millions
of people across the globe, serves as feed for livestock, and
recently has started being used for fuel production and other
industrial applications [1], [2]. However, a myriad of invasive
pests and diseases pose threats to productivity and quality of
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crop yields, leading to substantial crop losses and economic
hardship for farmers [3], [4]. The Food and Agriculture Orga-
nization (FAO) estimates that 20% to 40 % of world crop
production is lost due to pests and diseases [5]. Several factors
often related to a combination of environmental, biological,
and agronomic conditions contribute to presence and prolif-
eration of the plant pests and diseases. These factors include
climate conditions, migratory pests and other animals, cul-
tural practices, human activities, weeds hosts, and pathogens.
Pathogens can exacerbate the plant growth conditions when
they are not properly managed [6].
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Farmers use pesticides and insecticides as a keystone of
modern agriculture to fight against pests and diseases, playing
an essential role in increasing crop yields and ensuring food
security. Nevertheless, these chemical agents designed to
manage and control pests, pose substantial health risks for
humans and negative environmental impact as well as impli-
cations for long-term sustainability [7], [8]. For instance,
poisoning from pesticides is responsible for nearly 300 thou-
sand deaths worldwide every year [9] and a total estimated
environmental and social loss of 10 billion USD per year due
to pesticide application [10]. Detecting and identifying pests
and diseases at their early stages of development is a proactive
approach to mitigate the damage before they escalate. The
ultimate goal is to reduce reliance on pesticides and adopt
integrated pest management (IPM) strategies for pest and
disease control [11].

Traditional methods of preventative measures for early
pest and disease control in agricultural crops have been
adopted for enhancing yield production [12]. These tradi-
tional approaches involve human inspection to detect the
presence of visible pests on plant and visible symptoms on
leaves, such as necrosis, discoloration, spots, or any signs
of stunted growth or wilting. However, these approaches are
expensive, time consuming, labor-intensive, and inaccurate,
as they are prone to human mistakes or biased decisions due
to lack of expertise [5]. Furthermore, traditional methods are
subjected to overuse of fertilizers, insecticides, and pesti-
cides, resulting in premature or delayed treatment of infected
plants. The limitations of these traditional approaches have
motivated researchers to propose technological solutions for
precision agriculture [13], [14].
The breakthrough of Artificial Intelligence (AI) technol-

ogy triggered the application of computer vision techniques
in agriculture to precisely classify and locate pests and dis-
eases in plants [15], [16]. Machine Learning (ML) conceived
by Arthur Samuel in 1952 has gradually gained momentum
within the research community over the past few decades.
Common traditional ML techniques such as Support Vector
Machine (SVM), Logistic Regression (LR), Random For-
est (RF), K-Nearest Neighbors (KNN), Linear Discriminant
Analysis (LDA), and Naïve Bayes (NB) have been useful in
classifying Pests and diseases [17], [18], [19].
Nevertheless, these traditional ML techniques rely on

manual feature engineering for the model training which
is time-consuming, prone to limited scalability, generaliza-
tion issues, and overfitting. Hence, studies over the last
few decades have started incorporating automatic feature
extraction to enhance accuracy by exploring advanced image
processing techniques, including the use of Artificial Neural
Networks (ANN) [20].

Deep learning (DL) techniques, as a remedy for the
limitations of traditional ML techniques, have revolution-
ized image processing by offering a dynamic and adaptable
approach for visual data interpretation [21], [22], [23]. In the
context of agriculture, DL based on Convolutional Neural

Networks (CNNs) has emerged as a particularly powerful
tool, enabling automatic identification, classification and
localization of pests and diseases on real-time [24], [25].
This approach also reduces the computational cost com-
pared to traditional ANN. Several DL architectures have been
developed and proven effective in recognizing and localizing
pests and diseases within images. These DL/CNN archi-
tectures include AlexNet, GoogLeNet, VGGNet, ResNet,
MobileNet, DenseNet, and EfficientNet [26]. Additionally,
other DL architectures such as R-CNN, Fast R-CNN, Faster
R-CNN, SSD, EfficientDet, and YOLO are used to identify
and precisely locate pests within images or video frames [27],
[28], [29].

Specialized sensors and imaging technologies have been
instrumental in capturing visual data in modern agriculture.
These sophisticated camera sensor technologies are intri-
cately associated with DL techniques for successful detection
of plant pests and diseases. High-resolution RGB cameras
have been extensively employed, providing detailed visual
information about the crop [30]. Furthermore, hyperspectral
and multispectral imaging techniques have been widely used
for capturing data across multiple spectral bands to detect
subtle variations indicative of plant stress, disease, or pest
infestations. Additionally, thermal and infrared cameras have
been utilized to detect temperature variations associated with
presence of pest and disease infestation [31]. The develop-
ment of new sensing technologies, such as Light Detection
and Ranging (LiDAR), has opened new opportunities for
three-dimensional crop mapping, offering a comprehensive
analysis of pest and disease infestation [32]. Moving plat-
forms such as UAVs [33], robots, and satellites carrying these
sensors have further improved data collection efficiency,
by enabling coverage of large agricultural fields [34].
The adoption of Internet of Things (IoT) technology has

emerged as a pivotal force in revolutionizing pest and dis-
ease identification in agriculture, especially when combined
with advanced image processing and DL algorithms [35]
[36]. Application of IoT-enabled devices, such as cameras
on unmanned aerial vehicles (UAVs), robotic systems, and
mobile platforms enables real-time data collection from
farm fields [37], [38]. These devices capture high resolution
images, which, when coupled with DL techniques, allow
automatic recognition of pests and diseases with high accu-
racy. The continuous transmission of image data through IoT
networks to centralized systems amplifies the scalability and
effectiveness of the identification process [39]. Furthermore,
integrating environmental sensors within these IoT systems,
offers valuable contextual information, contributing to the
understanding of factors affecting crop health [39]. There-
fore, the combination of IoT, image analysis, and DL not only
simplifies the identification process but also equips farmers
with timely insights, enabling them to make informed deci-
sions to minimize the impact of pests and diseases on crop
production [40]. This combination of technologies improves
significantly the advancement in precision agriculture,
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ensuring sustainable and data-centric strategies for pest and
disease control at the early stage of infestation.

While the existing review papers typically focus on either
DL or IoT separately and their general applications in agricul-
ture [41], [42], this review paper provides a comprehensive
overview of the integration of IoT and DL technologies for
precision agriculture, with a specific focus on pest and dis-
ease detection in crops. By synthesizing existing research
and real-world applications, this study highlights the syn-
ergetic potential of combining IoT-driven data collection
with advanced DL technology. It offers detailed analysis of
advanced DL models embedded in IoT devices and their
performance in agricultural contexts, specifically for crop
pest and disease management [43].

Ultimately, this review contributes to the advancement of
knowledge in precision agriculture by highlighting emerging
trends, challenges, and opportunities at the intersection of
IoT and DL with significant implications for sustainable crop
production and food security. Additionally, it provides the
clear understanding of the state-of-the-art in DL and IoT
integration for pest and disease management, serving as a
valuable resource for potential researchers in the field.

The remaining sections of this review paper are organized
as follow: Section II depicts the research methods used to
search, select, and analyze the state-of-the-art studies related
to plant pest and disease detection. Section III investigates
CNN architectures and their integration with IoT for plant
pest and disease detection. Section IV presents Key findings
while Section V concludes the review paper and highlights
recommendations and opportunities for future works for
early identification of pests and diseases threatening different
crops.

II. RESEARCH METHOD
This section describes the process of selecting and analyzing
research papers considered for this review. The research pro-
cedure was performed based on the following steps:
1. Research articles published up to 2024 were selected

from well-known academic research journals and
databases such as IEEE Access, Science Direct,
PubMed, Web of Sciences, springer, Elsevier, IEEE
Xplore, Directory of Open Access Journals, EBSCO and
JSTOR.

2. The research was based on the following criteria:
i. DL/CNN architectures-based image recognition for

plant pest and disease detection.
ii. DL/CNN architectures-based object detection for

plant pest and disease detection.
iii. Integration of IoT and DL algorithms for plant pest

and disease detection.
3. Selected articles were analyzed based on their

CNN-based image recognition architectures, CNN-
based object detection architectures, and IoT integrated
with CNN techniques applied in Pest and disease detec-
tion. The analysis also focused on results obtained based
on their performance metrics. The flowchart presented

FIGURE 1. The flowchart of research method.

in Figure1, indicates the flow of the review paper devel-
opment.

Performance Metrics for CNN: The model performance
assessment and quantification is essential practice in the
domain of CNN-based image recognition and object detec-
tion to evaluate the effectiveness of the model [44]. The
standard classification performance metrics including accu-
racy, precision, recall, F1-score, Mean Average Precision,
Intersection Over Union (IoU) and Area Under the ROC
Curve (ROC-AUC) provide insights into the strengths and
limitations of CNN architectures, enabling thorough com-
parisons of CNN algorithms [45]. These key performance
metrics, when applied to image recognition and object
detection tasks for pest and disease detection, offer a com-
prehensive evaluation of model performance. They ensure
accurate identification of affected areas while minimizing
false positives and false negatives, crucial for effective pest
and disease management.

Accuracy of the model measures the overall correctness
of predictions by providing an immediate insight into the
model’s performance

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

where:
• TP (True Positive): instances the model correctly
predicts as positive class

• TN (True Negative): Instances the model correctly
predicts as negative class

• FP (False Positive): Instances the model incorrectly
predicts as positive class

• FN (False Negative): Instances the model incorrectly
predicts as negative class
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Precision shows the ratio of correctly predicted positive
observations compared to the total predicted positive obser-
vations. Specifically for pest and disease detection, a high
precision demonstrates the model’s adeptness in identifying
pest or disease-infected areas within images while minimiz-
ing false positives.

Precision =
TP

TP+ FP
(2)

Recall measures the ratio of correctly predicted positive
observations to all observations in the actual positive class,
ensuring all positive instances are captured. Particularly for
pest and disease, recall determine the model’s ability to
correctly identify all instances of pest or disease within the
images compared to the total actual instances of pest or
disease.

Recall =
TP

TP+ FN
(3)

F1-score metric determines balance between recall and
precision, indicating a model’s ability to achieve both high
precision and high recall concurrently. For pest and disease
detection model, F1-score provides a balanced assessment of
a model’s performance for detecting infested crop area within
an image.

F1 − Score = 2 ×
Precision× Recall
Precision+ Recall

(4)

The Mean Average Precision (mAP) is the weighted mean
of precisions at each threshold of Intersection over Union
(IoU), averaged across all classes. The weight represents the
increase in recall from the previous threshold. Alternatively,
it can be defined as the ratio of the area under the precision-
recall curve, obtained by varying the IoU threshold, to the
number of IoU threshold variations, and then averaged across
all classes.

The average precision (AP) can be computed as:

AP =

∑N
i=1 (Pi + Pi+1)1Ri

2N
(5)

where N is the number of threshold increments, Pi is the
precision at ith IoU threshold, and1Ri is the increase in recall
from ith to (i+ 1)th IoU threshold.

The mean average precision is given by:

mAP =

∑k=Q
k=1 APk
Q

(6)

where Q is the number of classes.
In the context of pest and disease detection, mAP offers a

consolidated evaluation of the model’s ability to accurately
identify various pest/disease-infected areas within images
while effectively balancing between precision and recall.

For plant pest and disease detection, a model that achieves
a high accuracy maybe considered the best. When models
have same accuracy, prioritizing higher recall over precision
may be beneficial. Such a model can guarantee a high per-
centage of all cases of plant pests and disease are detected,

which is very important for comprehensive pest and disease
management. However, this approach may incur costs due
to false positives, which aren’t accounted for by the metric.
Conversely, a model with high precision minimizes false
positives but doesn’t guarantee maximal detection of positive
cases. The F1-score and mAP stand out as optimal choices for
selecting among models of same accuracy. They both aim to
provide a measure that balances between recall and precision,
thus optimizing resource allocation. However, while F1-score
offers a general measure, mAP provides a comprehensive
accuracy measure tailored for object detection models, incor-
porating the precision of bounding boxes.

III. INVESTIGATING CNN ALGORITHMS AND THEIR
INTEGRATION WITH IoT FOR PLANT PEST AND DISEASE
DETECTION
Various research have been conducted in precision agri-
culture [46], employing advanced DL techniques in image
recognition and object detection to automatically identify and
categorize pests and diseases affecting different crops [47].
The state-of-the-art is marked by a convergence of cutting-
edge Convolutional Neural Network (CNN) architectures and
each contributed uniquely to the precision and efficiency of
detection [48]. In addition, the integration of IoT technology
with DL algorithms has advanced the precision agriculture
and attracted attention of many researchers. This section
discusses the state-of-the-art CNN algorithms based on image
recognition and object detection approaches and integration
of IoT and DL technologies in agricultural crop pests and
diseases detection [49].

A. DL/CNN-BASED IMAGE RECOGNITION
ARCHITECTURES FOR PLANT PEST AND DISEASE
DETECTION
The generic CNN architecture for pest image classification
is depicted in Fig. 2. The input layer represents the raw
input plant image fed into the DL/CNN model and it is
converted to a predetermined size and format suitable for
further processing in convolution layers. The convolution
layers which are the core building blocks of the CNN archi-
tecture, applies filters or kernels to the input plant image
for feature extraction such as shapes, edges, and colors. The
convolution results are then summed up and passed to acti-
vation function like ReLU for non-linearity determination,
generating a number of feature maps. Next, pooling layers,
like max pooling downsample the generated feature maps to
reduce their dimensions. Finally, the extracted features are
then flattened into a one-dimensional vector and passed into
fully connected layers, which are typically artificial neural
network layers that produce output classes of plant pests,
diseases or healthy plants.

1) ALEXNET
Ground-breaking model like AlexNet was introduced in
2012 by Krizhevsky et al [50] and deepened the LeNet archi-
tecture with 5 convolutional layers, some of which followed
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FIGURE 2. Overall architecture of image recognition for plant pest and disease detection.

FIGURE 3. Generic architecture of AlexNet [50].

by max-pooling layers, 3 fully connected layers, dropout for
overfitting suppression, ReLu activation function in hidden
layers, and a Softmax activation function in the output layer
as illustrated in the Fig.3 below.

Various studies have employed CNN algorithms based
on AlexNet architecture in the domain of precision agricul-
ture for detecting and managing pests and diseases affecting
crops. Lv et al. in [51] developed DMS-Robust AlexNet
capable of recognizing and classifying six Maize leaf dis-
eases with 98.62% accuracy. The TCI-ALEXN that improves
the original AlexNet architecture by adding a new convolu-
tional layer and new Inception module to enhance the ability
of AlexNet features extraction was proposed in [52] and
achieved 93.28% accuracy. Sanderson et al. [53] designed
a system based on AlexNet architecture and Android plat-
form for detecting tomato leaf diseases with accuracy of
98%. Furthermore, Syarief and Setiawan [54] used AlexNet
for features extraction and obtained 93.5% accuracy, while
Wu et al. [55] achieved 98.33% accuracy using two-channel
CNN. However, while AlexNet architecture has achieved
remarkable results, it suffers from overfitting problems and
high computational resource demands.

2) GOOGLENET/INCEPTION
To overcome the challenges of scalability, computational
complexity, and capturing multi-scale features, the Google-
LeNet/Inception was introduced by Szegedy et al. [56]. This
achitecture is characterized by inception modules employ-
ing parallel pathways of convolutions to efficiently capture

multi-scale features, effectively balancing depth and compu-
tational efficiency for complex visual recognition tasks as
illustrated in Fig.4.a and Fig.4.b [57].
For pest and disease detection, Hu et al. [57] developed

and fine-tuned a pre-trained GoogLeNet/Inception model
and identified corn leaf disease with 98.05% accuracy.
In the study conducted by Li et al. [58], ten different
types of pests were classifies using VGG-16, VGG-19,
ResNet50, ResNet152, and GoogLeNet based algorithms
and GoogLeNet outperformed others with 96.67% accu-
racy. The study in [59], a model based on the inception
layer and residual connection was proposed. This model
used depth-wise separable convolution to reduce the num-
ber of parameters. When trained on Plant Village for rice
disease, the results exhibited 99.66% accuracy. Furthermore,
Mohanty et al. [60], Zhang etal. [61] and Souza et al. [62]
employed GoogLeNet/Inception models to detect and clas-
sify common rice and maize diseases and reached to 99.34%,
98.9%, and 97% accuracy, respectively. Nevertheless, the
GoogLeNet/Inception based models are complex in design
due to intricate inception modules and they require high
computational resources.

3) VGGNET
A deeper CNN architecture known as VGGNet was intro-
duced by Simonyan and Zisserman [63] in 2014. It typically
consists of 16 or 19 layers and 3 × 3 convolutional filters
stacked on top of each other, which made the network deeper
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FIGURE 4. (a) Inception module for Naive version, (b) Inception module with dimensionality reduction.

FIGURE 5. Generic architecture of VGGNe [63].

but with improved the performance of image recognition
tasks, as depicted in Fig. 5.

Two commonly known VGGNet architectures are
VGGNet-16 and VGGNet-19, and they have contributed sig-
nificantly to precision agriculture. For instance,
Thakur et al. [64] developed a lightweight CNN based on
VGGNet-16, named ‘VGG-ICNN’, for maize, apple and rice
crop diseases identification using plant leaf images with
99.16% accuracy. Additionally, Ishengoma et al. [65], Fan
and Guan [66], Subramanian et al. [67], Tian et al. [68], and
Waheed et al. [69] employed VGG-16 as back-born of their
model and achieved 97.29%, 98.3%, 99.21%, 96.8%, and
99% accuracy respectfully, for maize leaf infected detection.
Furthermore, VGG-16 was further deepened by adding three
extra convolutional layers, resulting in the introduction of
VGG-19 architecture. These extra layers allow VGG-19
architecture to learn more intricate features and potentially
capture more detailed information from the input. The works
in [70], [71], and [72] achieved 94.22%,99.73%, and 94%
accuracy, respectively using VGG-19 architecture for detect-
ing crop pests and disease. Furthermore, Paul et al. [73] used
VGG-19 algorithm to detect and classify tomato leaf diseases
and obtain 95% accuracy, 89% Recall, and 92% F1-score.
Despite VGGNet’s simplified architecture, deeper networks
and enhanced feature extraction capability compared to its

predecessor, it still requires more computational resources
and long computational runtime for training due to its deeper
network.

4) RESNET
As CNN architectures become extremely deeper, issues such
as vanishing gradients and a large number of parameters to
train rise. These issues lead to increased overfittings, com-
putational resources and reduced accuracy. To tackle these
problems, He et al. [74] introduced the ResNet architecture
in 2015. ResNet utilizes skip connections, also known as
residual connections, to address vanishing gradient issue.
By allowing the network to learn residual mappings, ResNet
effectively overcomes the vanishing gradient problems and
enable the training of much deeper networks. The overall
architecture of ResNet is presented in Fig.6.

This architectural innovation has significantly improved
crop affliction detection, allowing the identification of intri-
cate patterns and subtle signs indicative of various diseases
and pests affecting plants. Notably, Hassan and Maji [75],
Xu et al. [76], Kumar et al. [77], Zeng et al. [78],
Wang et al. [79], Masood et al. [80] and Rachmad et al. [81]
utilized ResNet architecture in their studies, achieving
remarkable accuracy rates of 96%, 96.02%, 93.5%, 92.9%,
98.52%, 97.89% and 95.59%, respectively, in identifying
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FIGURE 6. Generic architecture of ResNet [74].

various crop pests and diseases. Furthermore, Hassan and
Maji [75] employed two parallel attention mechanisms in
ResNet architectures and achieved 86.9% accuracy, 100%
Recall, and 97% F1-score. These results highlight the
architecture’s accuracy in classifying complex afflictions.
However, while the use of skip connections has eliminated
vanishing gradient problems and enabled the training of
extremely deep networks, it faces other challenges such as
increased design complexity, longer training time and higher
memory consumption due to skip connections.

5) DENSENET
A deep convolutional architecture characterized by densely
connected layers, named DenseNet, which is presented
in Fig.7, was introduced by Huang et al. [82] in 2026.
It promotes the feature reuse and facilitates gradient flow
throughout the network, allowing more effective information
propagation and enhanced feature extraction in an image.

In the precision agriculture, Meena et al. [83], Iparraguirre-
Villanueva et al. [84], Chen et al. [85], Bakr et al [86],
Amin et al. [87], Vellaichamy et al. [88], Albattah et al. [89],
and Waheed et al. [90] harnessed the power of DenseNet
in their studies, and achieved remarkable accuracies of
99.6, 98%, 98.50%, 99.70%, 98.56%, 94.96%, 99.982% and
98.06%, respectively in identifying common pests and dis-
eases in plant. The dense connectivity and feature reuse
mechanisms inDenseNet demonstrate its ability to effectively
capture intricate patterns in both diseases and pests affecting
agricultural crops. This is evidenced by their aforementioned
accuracies, which are relatively superior to those provided by
ResNets and other previously discussed CNN architectures.
However, high computational resources, due to dense connec-
tivity, especially in extreme deep network is still a challenge
for DenseNet based algorithms.

6) MOBILENET
To further overcome computational resource requirements
and latency problem, in 2017, Howard et al. [91] presented

MobileNet, a high accurate, real-time processing, light-
weight and low power consumption model suitable for edge
deployment in mobile devices such as UAV, mobile devices
and ground robots.

The MobileNet’s key innovation involves depth wise
and pointwise separable convolutions which significantly
reduces computational complexity by reducing the number of
parameters compared to traditional CNNs, while preserving
accuracy. Its typical architecture representation is depicted in
Fig.9 along with Fig. 8 (a) and Fig. 8 (b) [91], [92], illus-
trating the standard convolution layer block and depth-wise
separable convolution layer block, respectively.

In the domain of precision agriculture, Barman et al. [93],
Ma et al. [94], Chen et al. [95] and Bi et al. [96]
used MobileNet architecture to detect various corn pests
and leaf diseases, and achieved accuracies of 93.75%,
98.21%, 99.85% and 98.23%, respectively. Furthermore,
light-weight models based on MobileNet architecture were
developed in [97], [98], [99], [100], and [101], and their
deployment empowered field-deployable devices and drones
equipped with cameras to swiftly process images. Despite
reduced computational complexity and real-time applica-
tions, MobileNet based models have reduced accuracy com-
pared to large and complex models due to the need for
balancing accuracy with efficiency.

7) EFFICIENTNET
For further optimization of CNN models’ performance and
size, EfficientNet was introduced by Shoaib et al. [102].
This advanced architecture, illustrated in Fig.10, has revolu-
tionized the landscape of CNN architectures by redefining
model scaling through a holistic strategy that harmonizes
network depth, width, and resolution. This approach achieved
remarkable performance gains without compromising com-
putational efficiency [103].

The EfficientNet architecture series collectively con-
tributed to the state-of-the-art in crop pest image recognition,
forming a diverse arsenal of tools to address problems of
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FIGURE 7. Generic architecture of DenseNet [82].

FIGURE 8. (a) standard convolution layer, (b) depth-wise separable
convolution layer.

pest detection in agricultural landscapes. Sheema et al. [101],
Zheng et al. [104], Singh et al. [105] Liu et al. [106],
Adnan et al. [107], Rajeena et al. [108], Shoaib et al. [98]
and Albahli and Masood [109] fine-tuned the pre-trained
EfficientNet, and achieved 99%, 94%, 91.745%, 98.52%,
98.71%, 98.85%, 94% and 99.89% accuracy, respectively.

When evaluating the performance of image recognition
models based on CNN architecture, the predominant and
most common metric of choice across these studies is accu-
racy. While accuracy indicates a general measure of CNN
based model’s correctness, it may not be the most informa-
tive metric especially when dealing with imbalanced dataset
or accuracy which falls below certain threshold value, and
this may mislead in decision making. Therefore, when these
happen, its crucial to consider additional performancemetrics
such as recall and F1-score to provide more insights and
delve deeper into model’s performance. Recall and F1-score
offers more understanding of the model’s ability to correctly
identify positive cases (sensitivity), while minimizing false
positives, which is crucial for effective decision-making in
pest and disease management. Table 1 summarizes DL mod-
els based on CNN architecture for image recognition applied

in pest and disease detection, highlighting their performance
measures, strengths and limitations.

B. DL/CNN-BASED OBJECT DETECTION ARCHITECTURES
AND ITS APPLICATION IN PEST AND DISEASE DETECTION
The diagram in Fig.11 illustrates a general structure of
an object detection architecture, combining two different
object detectors. The upper part of the diagram illustrates
the two-stage object detector while the lower part illustrates
one-stage object detector. In a two-stage detector, once the
feature extraction backbone block has extracted all necessary
features from the input image into feature maps, the Region
Proposal Network (RPN) block takes the lead. It is tasked
with identifying potential regions of interest (ROIs) within
the feature maps, flagging areas that might contain objects
in form of bounding boxes. Finally, the detector classifies
that proposed regions in bounding boxes into classes along
with corresponding class prediction probabilities. On the
other hand, the one-stage detector takes feature maps and
directly predicts bounding boxes and corresponding class
probabilities [112].
The emergence of object detection techniques in DL has

significantly advanced precision agriculture practices [113],
particularly, it has led to remarkable strides in accurate iden-
tification and localization of pests and diseases affecting
plants [114]. The most prominent object detection architec-
tures, include Faster R-CNN, YOLO, SSD, Mask R-CNN
and EfficientDet [115], show substantial promise in revolu-
tionizing crop pest and disease detection. They offer precise
and efficient detection capabilities crucial for proactive crop
management and ensuring proper health of the growing
plants [116].

1) FASTER R-CNN
Since the invention of Region-based Convolutional Neural
Networks (R-CNN) in 2014 by Girshik et al. [117], computer
vision has entered new era of object detection and localization
within images. This was achieved by proposing R-CNNs for
accurate localization and classification of objects in images.
Built on R-CNN concept, Ren et al. [118] introduced Faster
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FIGURE 9. Generic architecture of MobileNet [91].

FIGURE 10. Generic architecture of EffientNet [102].

FIGURE 11. Overall object detection architecture combining one -stage and two-stage detectors for plant/pest
detection.

R-CNN architecture that uses the Region Proposal Network
(RPN) to simultaneously predict object bounds and abject-
ness scores at each position as illustrated in Fig.12 below.

In the domain of agricultural research, Faster R-CNN
algorithms have been employed for pest and disease
detection in real-time with high precision. Studies by

Quan et al. [119] and Zhang et al. [120] showcased the
efficacy of Faster R-CNN to accurately identify corn seedling
and stand counting with 97.71% and 99.8% mean aver-
age precision rates, respectively. Similarly, studies in [121]
and [122] investigated Tessel Detection Convolution Neural
Network (TD-CNN) based on Faster R-CNN, leveraging low
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TABLE 1. Summary of advanced DL/CNN based image recognition architectures for plant pest and disease detection.
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TABLE 1. (Continued.) Summary of advanced DL/CNN based image recognition architectures for plant pest and disease detection.

FIGURE 12. Generic architecture of Faster R-CNN [117].

altitude UAV imagery platform, and achieved mean average
precision rates of 91.78% and 95.9%, respectively. In another
study [123], researchers combined IoT technology and Faster
R-CNN algorithms to identify the infestation density of Fall
Armyworm (FAW) in maize plants, achieving an accuracy
of 98%. Furthermore, the improved Faster R-CNN models
developed by [80] and [124] exhibited remarkable capabil-
ities for detecting and localizing pest infestation in corn
leaves, achieving accuracies of 97.89% and 91.83%, respec-
tively. Despite its significant performance, Faster R-CNN
faces challenges in detecting very small pests, and requires
significant computational resources due to its two-stage
detection process.

2) MASK R-CNN
Mask R-CNN is a revolutionary extension of the Faster
R-CNN architecture, which includes additional branch for

predicting object masks alongside the existing branch for
bounding box recognition. Introduced by Girshick et al. [125]
in 2017, it has greatly enhanced the capabilities of object
detection, by accurately identifying and segmenting multiple
objects within an image with high pixel-level precision. The
Fig.13 depicts the fundamental architecture of Mask R-CNN.

In precision agriculture, Mask R-CNN has been utilized
for detecting pests like Fall Armyworm in maize crops,
achieving an accuracy of 94.21 % [126]. Craze et al. [127],
further reconstructed R-CNNmodel for identifying corn gray
leaf spot disease, achieving a 94.1% accuracy when trained
with Plant Village dataset. Moreover, Pang et al. [128] and
Gao et al. [129] integrated Mask R-CNN model with UAV-
based imagery systems for early-season plant stand count-
ing, achieving remarkable segmentation accuracy scores of
95.8% and 98.87%, respectively. In further advancements,
Aijun et al. [130] utilized Mask R-CNN models for corn
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FIGURE 13. Generic architecture of Mask R-CN [125].

ear harvesting and corn cob image classification, achieving
an average accuracy of 94.3%. Deepika and Arthi [131]
developed an improved MaskFaster Region-Based Convolu-
tional Neural Network (IMFR-CNN)method that detects four
different types pests and achieved 99% accuracy. However,
the Mask R-CNN model is computationally intensive and
struggles to detect extremely small pests.

3) SSD
For further advancement in enhancing object detection accu-
racy and efficiency, in 2016, Liu et al. [132] introduced a
Single Shot MultiBox Detector (SSD). It utilizes a single
neural network to predict bounding boxes and class proba-
bilities across various scales and aspect ratios in a one pass.
It achieves this by employing a set of default boxes connected
to different feature maps for real-time detection [133]. The
basic architecture of SSD is illustrated in Fig.14.
Building upon this foundation, Sun et al. [124] improved

original SSDmodel and proposed a multi-scale feature fusion
instance detection method for detecting plant leaf disease
and achieved 91.83% mAP. Jiang et al. [134] developed
INAR-SSD model that uses GoogLeNet inception module
for feature extraction to detect apple leaf diseases with
78.80%mAP. Similarly,MEAN-SSDmodel was proposed by
Sun et al. [135] to be deployed in mobile device and it was
trained on apple leaf disease dataset which attained 83.12%
mAP. Furthermore, a deep block attention SSD (DBA_SSD)
network model was presented in [136] that fine-tuned the
original SSD algorithm with residual network and atten-
tion mechanism for plant leaf diseases detection, achieving
improved accuracy of 92.20%. However, the SSD models
has problems of decreasing the resolution of the images to
a lower quality and difficulties for detecting very small pests
or symptoms.

4) YOLO
YOLO (You Only Look Once) architecture, introduced by
Redmon et al. [137], is a unified framework and real-time

object detection technology that reduces redundant calcula-
tions and optimizes computational resources.

As depicted in Fig.15, YOLO system has a single-shot
detection mechanism that makes predictions all at once with-
out the need to separate the region proposals, allowing for
faster training and inference [138]. In the context of plant pest
and disease detection, Ma et al. [139] and Leng et al. [140]
employed YOLO-V5 object detection framework for detect-
ing and localizing infected area on crop leaves, achieving
accuracy rates of 95.2% and 87.5%, respectively. YOLO,
YOLO-V5 and YOLO-V8 models integrated into mobile
devices were explored in [141], ( [142] and [143], achieving
accuracy rates of 85.4%, 99.43% and 99.04%, respectively.
Furthermore, insects affecting corn crop were detected and
identified using YOLO based algorithms including YOLO-
PPLCBot [144] with 95.3% mAP, AgriPest-YOLO [145]
obtaining 71.3% mAP, and Maize-YOLO [146] achieving
76.3% accuracy. However, YOLO based models face chal-
lenges in detecting very small pests within plant images or
videos due to the lower recall rates, as well as detecting
multiple pests that are extremely close to each other due to
the limitations of bounding boxes.

5) EFFICIENTDET
For further improving the scalability and efficiency of object
detection models, Tan et al. in 2020 [147] proposed an
EfficientDet, an advanced architecture illustrated in Fig.16.
While EfficientDet compromises model accuracy, it enhances
computational efficiency. The EfficientDet simultaneously
balances the resolution, depth, and width of all backbone,
feature network as well as box/class prediction networks.
By employing backbones such as EfficientNet, ResNet and
MobileNet to enhance its performance, EfficientDet achieves
higher efficiency for resource-constrained applications.

In the realm of precision agriculture, Liu et al. [148]
proposed the EFDet model, designed specifically for effi-
cient detection of cucumber leaves diseases. Leveraging
an efficient backbone network, feature fusion module, and
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FIGURE 14. Generic architecture of SSD [132].

FIGURE 15. Generic architecture of YOLO [137].

FIGURE 16. Generic architecture of EfficientDet [147].

predictor, the model enhances detection accuracy, achieving
85.52% mAP with a compact 7.72MB model size. Another
lightweight model suitable for handheld devices, based on
EfficientDet framework, was developed by Lakshmi and
Savarimuthu [149]. Employing transfer learning-based Effi-
cientDet, it attained a mean Average Precision (mAP) of
74.10%, boasting fewer parameters compared to SSD, Faster-
RCNN, YOLOv3, RetinaNet andMask-RCNN architectures.
Similarly, in the work by [150], an EfficientDet based model
with state-of-the-art feature extractors such as EfficientNet,
ResNet50 and MobilenetV2 as a backbone, was developed
for detecting paddy rice seedlings. Comparative analysis
with existing object detection architectures showed that the
developed model outperforms others with 83%mean average
precision. Furthermore, Niyigena et al. [151] developed an

EfficientDet model for detecting and classifying Scirtothrips
dorsalis Hood pests from other types of pests on the yellow
sticky traps. Compared toYOLOv5, Faster R-CNN, SSD, and
MobileNetV2, this model achieved a superior 93.3% mAP
with 13.5MBmodel size, indicating its suitability for mobile,
IoT device and other computational resource constraint
applications.

C. INTEGRATION OF IOT WITH DL ARCHITECTURES FOR
PEST AND DISEASE DETECTION
The integration of IoT with AI technology has significantly
advanced the precision agriculture, particularly in crop health
monitoring [154], [155]. In domain of computer vision,
the state-of-the-art DL based image recognition and object
detection architectures, coupled with IoT technology [156],
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TABLE 2. Summary of advanced DL/CNN based object detection architectures for plant pest and disease detection.
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offer dynamic advancements in Smart agricultural devices.
This enables real-time monitoring and precise identifica-
tion of various crop threats, including invasive pests and
plant diseases. This section explores the potential of integrat-
ing IoT driven technologies with diverse DL architectures
by highlighting their roles in advancing pests and dis-
eases prediction and early identification within agricultural
landscapes [157], [158].

The diagram in Fig.17 illustrates an overview of a typical
IoT system integrated with DL/CNN algorithm for pest and
disease detection applications. It begins with the IoT device,
such as drone ormobile device equippedwith camera sensors,
collecting data (plant images) from the field. These images
are either processed directly at the edge or transmitted to the
cloud platform containing DL/CNN algorithms, which have
been trained for analysis. The DL/CNN algorithms analyze
the input images, classify them, and make decision accord-
ingly. The results are subsequently sent to or visualized on
the cloud platform, where they can be accessed by farmers or
other stakeholders.

1) DL ALGORITHMS INTEGRATED WITH UNMANNERED
AERIAL VEHICLE (UAV) BASED IOT PLATFORM FOR CROP
PEST AND DISEASE DETECTION
The integration of UAV platform with IoT technology,
coupled with DL algorithms mark a new paradigm in preci-
sion agriculture, enabling intelligent crop health monitoring
applications [40], [159]. UAVs equipped with IoT sensors
collect real-time data on crop health and environment con-
ditions crucial for early detection and identification of crop
pests and diseases that hinder crop development [160]. The
data gathered by this IoT-driven UAV setup is processed
by DL algorithms at the edge of the network or at the
cloud centered platforms for real-time data-driven decision
making.

Recent research efforts have focused on leveraging the
synergy of UAVs, IoT and DL technologies to alleviate the
damage caused by invasive pests and diseases. For instance,
Gao et al. [161] implemented an UAV system equipped with
IoT spectral camera sensors for crop pests damage detection.
Saranya et al. [162] utilized UAV based IoT for detecting
and classifying crop leaf pests, using fine-tuned VGG-16
model fused with dense layers, achieving an impressive accu-
racy of 96.58 %. Similarly, Khan et al. [163] integrated
a UAV and YOLOv5-based model, incorporating advanced
attention modules, and refining multiscale feature extraction
techniques, achieving 95%mAP. Refaai et al. [160] presented
an IoT-based UAV system for pests and diseases identifica-
tion, evaluating nine DNN architectures for their effective-
ness, with ResNet50 and Support Vector Machine models
being the highest performers, achieving 97.86% accuracy.
Chen et al. [164] implemented an IoT powered UAV sys-
tem, embedded with Tiny-YOLOv3 model for real-time pest
detection, using drone to optimally spray pesticides, yielding
promising results with 95.33% precision.

2) DL ALGORITHMS INTEGRATED WITH MOBILE DEVICE
BASED IOT FOR CROP PEST AND DISEASE DETECTION
Studies that integrate mobile devices such as smartphone,
IoT, and DL hane propelled advancements in precision agri-
culture. In the study by Hu et al. [165], a combination
of IoT and DL technologies was used to build a smart
crop fine-grained disease identification called Multidimen-
sional Feature Compensation based on Residual Neural
Network (MDFC-ResNet). Their system achieved 85.22%
accuracy, with results delivered to farmers via smartphone.
Jiang et al. [134] employed DL model based on Single
Short Detection inception module and rainbow concatena-
tion model named INAR-SSD, which can be integrated in
mobile devices to detect five apple diseases with 78.80%
mean average precision. Additionally, a smartphone have
been used for Tessaratoma papillosa pests identification in
rice farm [166], leveraging IoT- integrated DL algorithms
like YOLOv3 algorithm integrated with IoT technology to
achieve 90% accuracy.

In another work, Chen et al. [167] developed a scal-
able pest detection system employing smartphone embedded
with DL- based object detection model and IoT technology
to send data to the cloud platform. Faster R-CNN, SSD,
and YOLOv4 were compered and YOLOv4 outperforming
others with 100% accuracy when deployed in the field.
Moreover, a mobile app was developed for real-time Brown
spot disease detection in rice paddies in [168]. The system
employs CNN architectures integrated with IoT technology,
achieving a commendable accuracy of 97.70%. A novel
oilseed rape pest detection algorithm was developed by
He et al. [169]. In this study, 12 types of oilseed rape pests
were classified, and different object detection architectures
were compared, including Faster-CNN, R-FCN and SSD,
with SSD demonstrating higher performance with a 77.14%
mAP. Finally, Dhanaraj et al. [170] proposed an IoT based
remote- controlled system that employs a DL algorithm at
the edge of the network to detect crop pests affecting plants.
In this work, various DL algorithms, including DenseNet,
VGG-16, YOLOv5, DCNN, ANN, KNN, Faster RCNN, and
ResNet-50 were compared, with DMF-ResNet outscoring
others with 99.75% accuracy.

3) IoT SCHEME FOR AUTONOMOUS UAV FOR PEST AND
DISEASE DETECTION AND CONTROL
D. DATA ACQUISITION AND ACTUATION LAYER
This layer involves the components responsible for acquiring
data (sensing) and taking actions (actuation) on the field.
The IoT set-up containing camera sensors, pesticide spraying
set-up as actuator and edge processing device is supported
by an autonomous UAV, which covers a large area with high
precision [171].

1) MOVING PLATFORM: AUTONOMOUS UAV
One of the specialized agricultural UAVs designed for preci-
sion farming is DJI Agras T30 drone. It is suitable for pest
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FIGURE 17. General structure of IoT system integrated with DL/CNN for plant pest/disease detection.

FIGURE 18. IoT scheme for autonomous UAV for pest and disease
detection and control.

and disease detection due to its advanced flight capability,
large payload carrying capacity, and integrated spraying sys-
tem [174]. The UAV can cover large areas efficiently and is
equippedwith a range of sensors and high-definition cameras.
Its autonomous features allow for pre-programmed flight

FIGURE 19. DJI Agras T30 [172].

paths, ensuring comprehensive coverage, and consistent data
collection [172].

2) SENSING: HIGH-DEFINITION CAMERA
The quality of the images is critical for the accurate appli-
cation of DL/CNN algorithms in detecting specific pests or
diseases. A high-definition camera such as 4K and infrared
cameras with multispectral imaging capabilities can provide
detailed visual and non-visual data, and they are suitable for
identifying crop stress and disease symptoms not visible to
the naked eyes, allowing for the detection of early signs of
pest and disease infestation [175].

3) ACTUATION: UAV SPRAYING MECHANISM
The specialized UAV is equipped with a spraying system
to apply pesticides directly to the affected areas identified
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by the sensing component [176]. This allows for targeted
intervention, reducing the use of chemicals and minimizing
environmental impact. For example, DJIAgras T30 has a high
pesticides carrying capacity with a high-precision spraying
system that can be adjusted based on the severity of the
detected pest or disease [177].

E. DATA PROCESSING AND DECISION SUPPORT LAYER
This layer is responsible for processing data collected by
the UAV and making informed-decisions based on that data.
An edge computing device integrated with advanced DL
models is used to enable real-time data processing, reducing
the latency associated with sending data to the cloud for
processing.

1) PROCESSING DEVICE: RASPBERRY Pi 5
The System on Chip (SoC) based device such as Rasp-
berry Pi 5 serves as the edge computing device onboard
the UAV [178]. It processes the data collected from the
high-definition camera using DL/CNNmodels to detect pests
and diseases in real-time. The Raspberry Pi 5 is suitable
for edge computing due to its compact size and lightweight
model, processing power that support complex and powerful
DL models as well as energy efficiency capacity, that make it
ideal for integration into an IoT ecosystem [179].

2) DEEP LEARNING/CNN MODELS
The DLmodels based on CNN architecture such as Efficient-
Net, MobileNet and Inception series are mostly used due to
their high efficiency, balancing accuracy and computational
efficiency, making them ideal for deployment on edge devices
like the Raspberry Pi 5 [180]. They are capable of accurately
identifying pests and diseases from the images captured by
the UAV.

3) DATA STORAGE
The raw and processed data, including images of infected and
healthy plants and their locations, is stored locally on the edge
device or transferred to external storage devices. This data
can be used for further analysis or historical record-keeping.
A 128GBmicroSD card are commonly used for local storage,
ensuring that sufficient data can be retained even during long
missions.

F. DATA COMMUNICATION LAYER
The Data communication layer manages the transmission
of information between the UAV supported IoT setup and
remote user interface or cloud-based dashboard [181]. This
layer ensures reliable data transfer, enabling real-time moni-
toring and decision-making.

1) COMMUNICATION PROTOCOL: LoRa OR GPRS
For efficient and reliable data communication, LoRa (Long
Range) is mostly used as wireless communication proto-
col [181]. It offers long-range data transmission with low

power consumption, making it ideal for agricultural IoT
applications where UAVs may operate in remote areas, and
it supports communication over distances up to 10-15 km,
depending on the environment condition. In addition, General
Packet Radio Service (GPRS) which is a mobile data service
available on 2G, 3G and 4G cellular communication systems,
is used as a backup in areas where LoRa coverage is insuffi-
cient or when higher data rates are needed [182].

2) IoT GATEWAY
The IoT Gateway serves as a bridge between the UAV and
the cloud or central server. It aggregates data from multiple
sensors and devices, processes some of the data, and then
transmits it to the cloud for storage or further analysis. Fur-
thermore, it provides edge processing capabilities, offering
an additional layer of decision support, and it ensures that the
data collected by the UAV is seamlessly integrated into the
broader IoT network [183].

G. USER INTERFACE LAYER (FOR DATA VISUALIZATION)
User Interface Layer is responsible for data visualization, and
it focuses on how the processed data and decision support
information are presented to the end-users, such as farmers
or agricultural managers.

1) MOBILE APPLICATIONS
The mobile application provides a user-friendly interface
for real-time monitoring and control of the IoT based UAV
system [184]. Farmers can receive alerts, view live data, and
even control the UAV’s operations from their mobile devices.
It could include features like push notifications for detected
pests or diseases, a live feed from the UAV’s camera, and
options to adjust the UAV’s flight path or spraying mecha-
nisms [173].

2) WEB APPLICATION
The web application offers a more comprehensive platform
for data analysis, historical data review, and system config-
uration. It is accessible from any web browser and provides
detailed reports and insights based on the data collected by the
UAV. It could also offer advanced features like trend analysis,
comparison of historical data, and customizable dashboards.
It is ideal for agricultural managers who need a broader view
of operations and data over time.

H. BENCHMARK DATASETS FOR CROP PEST AND DISEASE
DETECTION
In the field of crop pest and disease detection, specifi-
cally for computer vision tasks such as image recognition
and object detection, various standard datasets have been
established to facilitate researchers to get a wide range
of High quality, relevant, and Sufficient dataset for train-
ing and evaluating DL/CNN models [185]. These datasets
are crucial for standardizing research, enabling comparative
analysis, and advancing the state-of-the-art CNN models.
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TABLE 3. Summary of advanced CNN algorithms integrated with IoT for plant pest and disease detection.

Below, we describe some of the most widely recognized
datasets [186].

IV. DISCUSSION
The integration of DL architectures with IoT technology has
brought significant advancements in detecting and managing
crop pests and diseases. This section discusses key findings,
gaps, and limitations, as well as future trends and opportu-
nities in domain of precision agriculture for pest and disease
detection. It offers insights into the evolution and potential
of DL/CNN architectures integrated with IoT for crop health
monitoring.

A. KEY FINDINGS
As the development of DL architectures based on CNN
evolves from image recognition such as AlexNet to the
state-of-the-art as tiny object detection in image such as
EfficientDet and SSD, a wide range of CNN models have

been developed for pest and diseasemanagement applications
and each with own trade-offs in terms of accuracy, efficiency,
model size and computational resource requirementsand the
choice of architecture depends on the specific requirements
of the application, including the available resources, deploy-
ment environment, and desired performance metrics.

1) PERFORMANCE
Several CNN architectures, including AlexNet, GoogLeNet/
Inception, VGGNet, ResNet, DenseNet, MobileNet, Effi-
cientNet and YOLO have exhibited high accuracy rates
ranging from a moderate 86% to nearly100%. For exam-
ple, accuracies as high as 99.9% have been achieved by
VGGNet, DenseNet and MobileNet architectures in detect-
ing and classifying common cereal diseases and pests.
These high accuracy achievements depend on size of dataset
used [187], optimization and transfer learning techniques
employed. However, increasing accuracy results in increased
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TABLE 4. Benchmark datasets for CNN Model training in crop pest and disease detection.

computational cost. Therefore, these high accurate archi-
tectures are suitable for tasks where high accuracy and
reliability are paramount with available computing resources.
Object detection-based algorithms were employed in disease
detection but were assessed primarily using mean average
precision, which is the weighted mean of precision at each
threshold of intersection over union (IoU), averaged across
all classes. The weight itself indicates the increase in recall
from the previous threshold. The primarymotivation has been
to minimize costs associated with controlling false positives
while simultaneously mitigating false negatives. Mean aver-
age precision depends on the set minimum threshold values of
IoU. IoU is a measure of how close the predicted bounding
box around the detected object is close to the ground truth
of the object bounding box. In conventional object detection
scenarios like autonomous driving or robot motion, IoU play
a critical role. However, when applied to crop pest and disease
detection, these algorithms often fail to detect very small
pests due to limitations inherent in intersection over union.
While both false positives and false negatives are undesirable
in pest and disease detection, the intersection over union does
not significantly impact the detection objective. Therefore,
accuracy and F1 score may suffice as metrics for optimiz-
ing object detection-based DL algorithms for crop pest and
disease detection

2) COMPUTATIONAL RESOURCES
The advanced CNN architectures have different computa-
tional resource requirements. Early CNN architectures such
as AlexNet, VGGNet and GoogLeNet exhibit moderate to

large computational resources requirements as they are char-
acterized by deeper networks with dense layers and large
number of parameters. On other hand, MobileNet, Efficient-
Net, and YOLO architectures employ mode scaling, depth
wise separable convolution and single-shot detection tech-
niques, respectively, to reduce computational resources at the
expense of reduced accuracy. Therefore, these lightweight
models are suitable for resource constraint environment
including IoT devices and edge computing platforms such as
UAVs and mobile devices.

3) CNN ARCHITECTURES INTEGRATED WITH IoT
With the synergy of DL/CNN models and IoT-driven sys-
tem, real-time monitoring, and efficient identification of crop
pests and disease infestation has been significantly advanced.
Among the typical CNN architectures suitable for integration
with IoT areMobileNet, EfficientNet, YOLO and SSDwhich
offer lightweight, high accuracy and efficient solutions for
processing data on edge devices with limited computational
resources. This review revealed a number of studies that
employed this integration to achieve remarkable successes in
detecting and classifying various pests and diseases affecting
agricultural crops. For example, the use of UAV platforms
equippedwith IoT sensors and embeddedwith DL algorithms
has facilitated proactive monitoring and early detection of
crop health issues, with reported accuracies ranging from
91.78% to 99.8% [97], [98]. Additionally, the synergy of
mobile device based IoT solutions and DL have enabled
farmers to remotely and timely take informed decision about
pest and disease outbreaks, empowering them with advanced
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TABLE 5. Summary of gaps and opportunity for future works associate with integrating IoT technology with DL/CNN algorithms for Plant Pest and
Disease Detection.

technological tools for crop management and paving the
way for more efficient and sustainable farming practices.
Nevertheless, despite these advancements, it is important
to acknowledge limitations and challenges associated with
security, datasets, hardware, infrastructure and scalability.

B. GAPS AND POTENTIAL OPPORTUNITIES FOR FUTURE
WORKS
Despite significant advancement in the state-of-the-art inte-
gration of DL/CNN architectures with IoT technology for
plant pest and disease detection, this survey uncovered several
notable gaps and limitations that require further investigation
and research. Table 3 illustrates these gaps and proposes
solutions for enhancing performance and improvement for
realization of integrating DL and IoT for pest and disease
detection.

V. CONCLUSION
This study conducted a comprehensive review of the state-
of-the DL/CNN architectures integrated with IoT technology,
which have significantly advanced precision agriculture, par-
ticularly in the domain of plant pest and disease detection.
It focuses on up-to-date CNN architectures and its integra-
tion with IoT, revealing existing gaps and possible potential

opportunity for future research. The synergy of DL/CNN
architectures and IoT-driven systems such as UAVs and
embedded devices, has significantly advanced early identi-
fication of crop health issues.

Various CNN architectures ranging from early models
like AlexNet to state-of-the-art architectures like EfficientNet
and YOLO have been developed and applies for specific
applications in pest and disease detection, resulting in impres-
sive accuracies, often surpassing 90% and even reaching
almost 100% in some instances, such as with GoogLeNet
and MobileNet. Furthermore, advancements in object detec-
tion architectures such as Faster R-CNN, YOLO, and SSD
have enabled precise localization and identification of pests
and diseases within crop images, offering efficient solutions
essential for proactive crop management and ensuring food
security. Additionally, light weight model like MibileNet,
EfficientDet and Tiny-YOLOv3 have demonstrated ability to
produce small- size and highly efficient models, suitable for
resource- constraint environment, such as IoT devices, mobile
and embedded devices as well as UAVs for edge application.

Despite remarkable achievement through the integra-
tion of the DL/CNN models with IoT devices, such as
UAVs and mobile devices, several challenges and limitations
remain to be addressed, including hardware constraints, data
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privacy concerns, limited visibility of certain parts of plant,
connectivity issues, dataset scarcity, power consumption con-
straints, difficulties in severity detection of infestations, and
limitations in detecting various pests and diseases simul-
taneously. To overcome these challenges and unlock the
full potential of DL/CNN architectures integrated with IoT,
further research and development efforts are needed. These
efforts should focus on optimizing lightweight algorithms for
accuracy and precision, enhancing security measures, explor-
ing innovative imaging techniques, developing efficient edge
computing techniques, optimizing power management, inte-
grating disease severity estimation algorithms, developing
multi-purpose DL algorithms, and integrating weather and
environmental data. By addressing these areas, researchers
and practitioners can advance the field of precision agricul-
ture, improve crop management practices, and contribute to
global food security.
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