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Deep Learning-Based Cascaded Light Source
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Wireless Optical Communication
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Chengye Cai , Sitong Qin, and Jing Xu

Abstract—Obtaining the light source position from the image
is an important solution for achieving link alignment in laser-
based underwater wireless optical communication (UWOC) sys-
tems. However, in practical scenarios, the misalignment degree
between the light source and camera is variable, and factors such
as ambient light may introduce disturbances, leading to significant
variations in the appearance of light spots in images. Existing
research primarily relies on simple features like brightness, color,
or shape, which makes it difficult to accurately obtain position
information from these non-ideal images. In this paper, deep neural
networks (DNNs) with strong feature extraction capabilities are
introduced to automatically learn the patterns of the light source
from diverse images. A detection architecture cascading an object
detector and a keypoint detector is adopted, achieving better com-
prehensive performance in terms of accuracy and speed. To train
and evaluate the deep learning model, we construct the UWOC
Light Source Detection Benchmark (ULDB) dataset. This dataset
comprises 2200 images captured in a standard swimming pool,
covering a misalignment range far beyond existing studies. On the
ULDB test set, the proposed detection method achieves an average
precision (AP) of 99.1% and an average positioning error of 4.66
pixels, while the traditional method may frequently extract false
light spots. To the best of our knowledge, the ULDB dataset is
the first image dataset specifically designed for the task of link
alignment between UWOC terminals.
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I. INTRODUCTION

E FFICIENT underwater communication systems play an
important role in interconnectivity of future Internet of

Underwater Things (IoUT) devices. As one of the means of
underwater communication, underwater wireless optical com-
munication (UWOC) has attracted wide attention due to its
high bandwidth, high data rate, low power consumption, and
appropriate transmission distance [1], [2]. Laser diodes (LDs)
and light-emitting diodes (LEDs) are commonly used as light
sources for UWOC. Compared to LEDs, LDs can provide higher
modulation bandwidth and better collimation. Many UWOC
systems have greatly benefited from the excellent characteristics
of LDs in terms of transmission distance and data rate [3], [4],
[5], [6], [7].

Despite these strengths of LD-based UWOC systems, their
strict alignment requirements cannot be ignored in practical
applications. Existing solutions can be divided into passive
methods and active methods. Passive methods aim to alleviate
the alignment requirement by enhancing the propagation capa-
bility of the transmitter or the sensing ability of the receiver
[8], [9], [10], [11]. In contrast, active methods make the UWOC
terminals actively point at each other by moving or rotating, and
then the line-of-sight (LOS) link is established [12], [13], [14],
[15], [16]. For active methods, it is essential to obtain accurate
position information about the light source during the alignment
process.

Many UWOC active alignment (UAA) systems use the cam-
era to search for the light source and obtain its position from the
captured image using positioning algorithms. In [17], grayscale
centroid method was employed to extract the light source posi-
tion from images. Tracking algorithms proposed in [19] and [23]
can obtain the light spot position from consecutive video frames.
To enhance the alignment capability of camera-assisted UAA
systems, Williams et al. adopted a large field-of-view (FOV)
camera, expanding the tolerable range of camera deviation angle
(a detailed definition is presented in Section II) [17]. If the light
source is not pointed at the camera, the shape of the spot in the
image becomes distorted. In view of this, AprilTag detection was
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Fig. 1. Challenges in light source detection. (a) Variation in spot size. (b) Variation in spot shape. (c) Other challenges such as motion blur, surface reflection,
pure background.

TABLE I
COMPARISON OF CAMERA-ASSISTED UAA SYSTEMS

introduced into the camera-assisted UAA system, significantly
expanding the tolerable range of terminal deviation angle [20].
Tang et al. utilized the relationship between receiver deviation
distance and spot shape to achieve alignment [21]. A positioning
method based on principal component analysis (PCA) proposed
in [22] can extract the light source position from distorted light
spots.

The aforementioned methods work well when the terminal-
camera misalignment degree is relatively small and varies
slightly. In practice, however, the terminal-camera misalignment
degree is normally arbitrary before the alignment process. This
implies that the terminal-camera distance varies largely, while
the deviation angles of the terminal or camera also range from
−180 degrees to 180 degrees. As shown in Fig. 1, with the
change of misalignment degree, the light spot in the image
may undergo a significant variation in terms of position, size,
shape, and brightness. Interference such as reflection is also

common. Existing positioning methods mainly rely on simple
features like brightness, color, or shape, making it challenging to
accurately extract the position information of light source from
these non-ideal images. Therefore, the misalignment ranges that
these methods can handle are limited (see Table I).

Inspired by the success of deep learning in advanced computer
vision tasks such as classification, detection, and segmentation
[24], [25], [26], [27], [28], we introduce deep neural networks
(DNNs) to obtain accurate light source position from captured
images with various light spot sizes and shapes. According
to the knowledge from the computer vision community, this
positioning task is defined as UWOC light source detection.
Specifically, UWOC light source detection refers to determining
whether a communication light source exists in an image. If it
exists, its position in the image is further provided; if it does not
exist, a lower prediction score is given to indicate this result.
To achieve better comprehensive performance in accuracy and
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speed, we consider light source detection as a cascaded combi-
nation of object detection and keypoint detection. Thanks to the
powerful feature extraction capability of the DNN, the proposed
method shows significant improvement compared to the existing
works in terms of tolerable range of misalignment. Its tolerable
terminal-camera distance ranges from 1 to 32 meters, while its
tolerable terminal deviation angle (absolute value) ranges from
0 to nearly 180 degrees. When facing complex cases that may
make the existing methods fail, such as water surface reflection,
background light interference, and more severe spot distortion,
the proposed method can still provide correct detection results.
For the 4K images, the proposed method achieves an average
precision (AP) of 99.1% and an average positioning error of
4.66 pixels. It is worth noting that this method requires no human
intervention, that is, the original image is directly input into the
detector without manually extracting any potential regions of
interest.

To train and evaluate deep learning models, we also construct
the UWOC Light Source Detection Benchmark (ULDB) dataset,
which consists of 2200 images with annotated positions. These
images were all captured using a camera with a large FOV of
87 degrees in a standard swimming pool. They cover a wide
range of misalignment scenarios, including diverse variations in
distance, angle, and external interference factors. To the best
of our knowledge, this is the first image dataset specifically
designed for the task of link alignment in the UWOC field. It can
be used not only for training data-driven models but also as a fair
platform to evaluate the performance of light source detectors.

The rest of this paper is organized as follows: Section II intro-
duces the description of misalignment degree and discusses the
effect of misalignment degree on imaging results. In Section III,
the details about ULDB dataset are illustrated, and the deep
learning-based light source detection method is proposed. In
Section IV, the experimental results are presented and discussed.
Finally, our work is summarized in Section V.

II. DESCRIPTION OF MISALIGNMENT DEGREE

In this paper, we define the deviation angle to clearly and
quantitatively describe the misalignment degree. With the help
of some devices such as pressure sensors, it is not difficult for
the underwater terminal to reach a specific depth [18], so we
only consider the deviation angle in the horizontal plane.

As shown in Fig. 2(a), the deviation angle θd of a terminal is
defined as

θd =

{
θCW , |θCW | ≤ |θCCW |
θCCW , |θCW | > |θCCW | , (1)

where θCW and θCCW represent the angle required for the
terminal to rotate clockwise and counterclockwise, respectively,
from its current orientation to the aligned orientation. It is
specified that negative values denote clockwise rotation, while
positive ones denote counterclockwise rotation. The range of
θd is (−180°, +180°]. Fig. 2(b) shows some examples about
the deviation angle. It can be observed that the respective devi-
ation angles of Terminal A and Terminal B explicitly reflect
alignment/misalignment status between them. When both of

Fig. 2. (a) Definition of deviation angle. (b) Some examples about deviation
angle. The orientation of each terminal is indicated by an arrow and a triangle.

their deviation angles are 0°, the whole UWOC system achieves
alignment. In contrast, as long as the deviation angle of either
terminal is not 0°, it cannot be considered that the UWOC system
is aligned. For two terminals in a plane, the combination of their
individual deviation angles and the distance between them can
clearly describe all misalignment scenarios between them.

After defining the deviation angle, its effect on camera-
assisted UAA systems is examined in this paper. Fig. 3 shows the
imaging results at different deviation angles. As the |θd| of the
terminal increases, the light spot shape changes from a perfect
circle to a beam-like shape, and the brightness of the light spot
gradually diminishes. As the |θd| of the camera increases, the
light spot gradually moves from the center of the image towards
the edge until it moves out of the image. In addition, as shown
in Fig. 1(a), the size and brightness of the light spot decrease
as the camera moves away from the terminal. In summary, the
deviation angle of the terminal affects the shape and brightness
of the light spot, the deviation angle of the camera affects the
position of the light spot, and the terminal-camera distance
affects the size and brightness of the light spot.

The deviation angle of the terminal also has an effect on
the relative position relationship between the light source and
the light spot. In this paper, the position of the light source
is represented as a point (i.e., coordinate) in the image for
alignment purposes. When the terminal deviation angle is close
to 0°, the light spot appears as an ideal circle (Fig. 4(a)). It is
generally regarded that the center of the light spot is the light
source position [21]. When the |θd| of the terminal reaches a
certain level, the light spot distorts into an obvious beam shape
(Fig. 4(e) and (f)). At this point, the emission port of the light
source on the terminal is exposed and the light source is located
at the edge of the beam. Therefore, as the light spot gradually
distorts from a circular shape into a beam shape, the light source
position gradually moves from the center of the light spot to the
edge. Fig. 4 illustrates this process.

III. METHOD

According to the discussion in Section II, the position, size,
brightness, and shape of light spots in images are all vari-
ables. Therefore, extracting light spots based on simple image
features is likely to be inaccurate. Moreover, it is difficult to
explicitly model the relative position relationship between the
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Fig. 3. Effect of the deviation angle on the imaging result. Insets: (i) When the terminal and camera are both aligned with each other, the light spot appears round
and is located in the center of the captured image. (ii)∼(v) If the terminal faces other directions, the spot shape changes. If the camera faces other directions, the
spot position changes.

Fig. 4. Effect of the terminal deviation angle on the relative position relationship between the light source and the light spot. From (a) to (f), the absolute value
of the terminal deviation angle gradually increases. The light source position is marked by a red triangle.

light source and the light spot. To extend the application of
the camera-assisted UAA system in more general alignment
scenarios, the DNN is introduced to detect the light source from
images.

A. ULDB Dataset

Deep learning-based methods require high-quality datasets
for training and evaluation, so we constructed the ULDB dataset.
We used a 450-nm blue LD with a front collimating lens as the
light source. The output optical power of the LD was about
23.78 dBm (238.8 mW). The entire light source was fixed in
a watertight cabin, serving as the UWOC terminal. We used a
GoPro HERO10 Black waterproof camera to capture light source
images with linear mode, which provided a horizontal FOV of
87°. The resolution and frame rate were set as 3840×2160 and
60 fps, respectively.

As shown in Fig. 5, we demarcated a 35 m× 11 m rectangular
area in an indoor standard swimming pool for data collection.
The terminal was submerged at a depth of 0.6 m. By measuring
the received optical power at different distances, the attenuation
coefficient of the pool water was estimated to be approximately

0.092 m−1. During data collection, the position and orientation
of the terminal were adjusted multiple times, while the position
and orientation of the camera were constantly changing. The
ambient light condition was also changed, since we collected
image data under different scenarios, including “nighttime with
indoor lights on/off” and “daytime with indoor lights on/off”.
In addition, no zoom-in was employed, implying that the FOV
of the camera was always 87°.

After data collection, 22673 images were taken from the cap-
tured videos at an interval of 10 frames. From these images, we
further carefully selected the 2200 most representative images
as the ULDB dataset. Among these 2200 images, 300 are pure
background images without any terminal, which can help the
detection model to reduce “false-positive” errors. Among the
remaining 1900 images with the terminal, the terminal-camera
distance ranges from 1 m to 32 m, the |θd| of the terminal
varies from 0° to nearly 180° (i.e., behind the terminal), and
the maximum |θd| of the camera is more than 45° (i.e., the
light source was outside the FOV, but a part of the light spot
appeared at the edge of the captured image). Moreover, a large
number of images with motion blur or reflection interference
are retained in the ULDB dataset to reflect the real working
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Fig. 5. Data collection scenario. Insets: Typical image captured at a distance of (i) 5-m, (ii) 10-m, (iii) 20-m, and (iv) 30-m from the terminal.

Fig. 6. Examples of the images in ULDB dataset.

environment. Overall, the ULDB dataset exhibits good diversity.
Some examples of images in this dataset are presented in Fig. 6.

According to a certain ratio, the ULDB dataset is also ran-
domly divided into training/validation/test set. These subsets are
respectively used for training the deep learning model, monitor-
ing the training process, and evaluating the model performance.
Some detailed information about the ULDB dataset is provided
in Table II.

B. Cascaded Light Source Detection Based on Deep Learning

In the computer vision community, detecting specific regions
from an image is regarded as the object detection task, while
detecting specific points from an image is known as the keypoint
detection task. Therefore, light source detection is a keypoint
detection task. However, it is inefficient to directly perform
keypoint detection on the 4K images in the ULDB dataset. In
order to speed up the detection, the high-resolution original
image is commonly resized to a low-sized one before being
processed by the DNN. But this process results in a loss of

TABLE II
DETAILS OF THE PROPOSED ULDB DATASET

local features of the image, which reduces the accuracy of
keypoint localization. Considering the above factors, we adopt a
cascade detection architecture to achieve better comprehensive
performance in terms of accuracy and speed.

As shown in Fig. 7, the original image is first fed into a
deep learning-based object detection model, which gives the
bounding box of the light spot region. Subsequently, the light
spot region in the original image is cropped out as the input of
a deep learning-based keypoint detector that eventually predicts
the light source position. In this architecture, the light spot
region detected by the object detection model helps the keypoint
detector exclude a large number of irrelevant regions. Although
resizing the original image is still unavoidable, more image
details that benefit keypoint detection can be retained and are
fed into the DNN of the keypoint detector.

As one of the latest detection models, YOLOv8 [29] and
RTMPose [30] have achieved excellent performance in the
fields of general object detection and human keypoint detection,
respectively. More importantly, they are lightweight and easy to
deploy, which is very important for underwater devices with lim-
ited power consumption. Therefore, they are used to construct
the cascaded light source detector in our work. Fig. 7 also shows
the internal architecture of YOLOv8 and RTMPose. Generally
speaking, they include five modules: pre-processing, backbone,
neck, head, and post-processing. The pre-processing module
adjusts the original image to an input tensor suitable for DNN
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Fig. 7. Architecture of the proposed cascaded light source detector based on deep learning. Backbone module is composed of deep CNN and is responsible for
feature extraction. P1∼P5 in backbone represent feature maps at different levels, which have different resolutions and characterize semantic information at different
levels. P1 has the highest resolution and the lowest-level semantic information, while P5 has the lowest resolution and the highest-level semantic information.
Details of other modules are provided in the text.

processing in terms of size and numerical range. The backbone is
the main part of the detector and is used to extract image features.
As the input tensor is forward propagated in the backbone,
feature maps with different levels and sizes are sequentially
generated. The feature maps from P1 to P5 are downsampled
relative to the input tensor by factors of 2×, 4×, 8×, 16×, and
32×, respectively. The neck module is responsible for fusing
the feature maps of P3, P4, and P5. The head module obtains
preliminary information about the object location and category
based on the feature maps processed by the neck module. The
post-processing module decodes and filters the results provided
by the head, and then outputs the final prediction results. In
these five modules, the backbone, neck and head modules are
typically composed of convolutional neural networks (CNNs).
The backbone to head forms an end-to-end DNN. It is noted that
the head module of YOLOv8 outputs three prediction tensors
with different sizes, which collectively contribute to detecting
light spot regions. This design is conducive to the model to cope
with the variation of spot size. In contrast, RTMPose adopts a
more lightweight design without a neck module. Its head module
obtains preliminary information about the light source position
directly from the P5 feature map output by the backbone.

Unlike traditional methods, deep learning models do not re-
quire the handcrafted feature representations. Through training,
the model can automatically learn the potential features of the
target based on image-annotation pairs. During training, the out-
put tensors of the head module are compared with the same-sized
tensors generated from annotations to compute the loss. This
loss is then used to optimize the parameters of the DNN so
that the model can ultimately produce the desired results. After
being trained, when the original image is input into YOLOv8,

Fig. 8. Illustration of the annotation strategy of the light spot region.

the center coordinates, width, height, and predicted scores of the
light spot regions will be output. Similarly, when the cropped
image is input into RTMPose, the coordinates and predicted
scores of the light source will be output. Both YOLOv8 and
RTMPose ultimately output position predictions based on the
scale of the original image.

In our proposed detection method, how to define the light spot
region is also a critical issue. A strict definition makes it difficult
to annotate images and predict bounding boxes, while a loose
definition results in too many invalid regions in the bounding
box and weakens the keypoint detector performance. To obtain
a reasonable light spot region, four annotation strategies are
adopted:

1) The halo outside the spot is considered as part of the light
spot region (Fig. 8(a)).
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Fig. 9. Area distribution of the annotated bounding boxes of the light spot
region in the ULDB dataset. The area of each bounding box is represented as a
percentage of the image area.

2) The image area occupied by the terminal is also considered
as part of the light spot region, if its appearance in the
image is clearly recognizable (Fig. 8(b)).

3) For the images with very small light spot region, instead
of annotating the bounding box just fitting the edges of
the light spot region, a moderate-size bounding box is
annotated around the light source (Fig. 8(c)). In other
words, the bounding box can include some background
in case that it is too small.

4) When annotating the light spot region, all reflections are
carefully avoided to train the object detection model to
exclude the reflection interference (Fig. 8(c)).

Fig. 9 shows the area distribution of the 1900 annotated light
spot region bounding boxes in the ULDB dataset. The area is
expressed as a percentage of the corresponding original image
area. Only two bounding boxes have an area less than 1% of
the corresponding image area. With respect to the light source
keypoint, we follow the relative position relationship discussed
in Section II for annotation.

IV. EXPERIMENT RESULTS AND DISCUSSION

Both the training and testing procedures were performed on a
desktop computer with Intel Core i7-13700F CPU and NVIDIA
GeForce RTX 3060 GPU. The object detector and the keypoint
detector were all trained from scratch. Mosaic data augmentation
was used during the training of the object detector but was closed
for the last 20 epochs. Other training hyperparameters are shown
in Table III.

A. Evaluation Metrics

The AP metric and the percentage of correct keypoints (PCK)
[31] are used to evaluate the detection performance. The AP
metric can comprehensively reflect the precision and recall of a
model. It can be considered as the area under the precision-recall

TABLE III
TRAINING HYPERPARAMETER CONFIGURATION OF YOLOV8 AND RTMPOSE

curve. The precision P and recall R can be expressed as

P =
C

M
, (2)

R =
C

N
. (3)

In the above equations, C represents the number of correct
predictions generated by the model, M represents the total
number of predictions output by the model, and N represents
the total number of annotations. Intersection over Union (IoU)
and object keypoint similarity (OKS) are used to assess whether
the object detection results and keypoint detection results are
correct, respectively. In this paper, AP50 denotes the AP score
at an evaluation threshold of 0.50, while AP denotes the average
of AP scores at ten evaluation thresholds (i.e., 0.50, 0.55, …,
0.90, 0.95). A higher AP means that the model has a better
discrimination between the object and the background. When
calculating AP for a keypoint detector, a constantσ is introduced
to balance the fluctuation arising from manual annotation. A
smaller σ indicates lighter fluctuation and a stricter AP metric.
We refer to the standard setting in the human keypoint detection
task (i.e., 0.025 for the eyes, 0.087 for the knees), and set the σ
of light source to 0.036. For more details about the AP metric,
we refer readers to the MS COCO websites [32], [33].

The PCK metric examines whether the keypoint is correctly
detected from another perspective. If the Euclidean distance
between the predicted keypoint and its corresponding ground
truth is less than the distance threshold dthr, the detection is con-
sidered successful. the distance threshold dthr can be written as

dthr = α×max(h,w). (4)

In the above expression, h and w represent the height and
width of the bounding box where the keypoint is located, and
α is a hyperparameter. A smaller α indicates a stricter PCK
metric. Common values for α are 0.1 and 0.2, but in our work,
a more rigorous value is adopted. PCK under a specific α is
denoted as PCK@α. As the terminal-camera distance increases,
the size of light spot region decreases rapidly. Thus, the farther
the light source is from the camera, the more accurate prediction
is required to achieve the same PCK score.

In addition, the number of parameters and floating-point oper-
ations (FLOPs) of a deep learning model can largely characterize
its storage and computation overhead, which determine whether
the model can eventually be deployed to low-power underwater
terminals. Therefore, the two metrics are also reported.
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TABLE IV
PERFORMANCE OF YOLOV8 OBJECT DETECTION MODEL ON THE

ULDB TEST SET

B. Quantitative Evaluation

By adjusting the number of layers and feature map channels
in backbone, YOLOv8 and RTMPose with different scales can
be generated. To determine the appropriate model scale, we
first evaluated the detection performance of YOLOv8 for the
light spot region on the ULDB test set (see Table IV). To our
surprise, YOLOv8n, the smallest version of YOLOv8, shows
satisfactory detection performance even if the resolution of the
original image is as high as the 4K standard and most light spot
regions are indeed very small. YOLOv8n is advantageous for
underwater devices due to its lightweight design. When the input
size of YOLOv8n is set as 320×320, its FLOPs are only 2G,
while maintaining a high AP50 of 98.8%. To ensure better results
for the subsequent keypoint detection, we select YOLOv8s
with 320×320 input size as the object detector considering the
trade-off between model accuracy and computational effort.

Next, we performed the full two-stage light source detection
process on the test set. Thanks to the refinement function of
the object detector, the input size of RTMPose does not need to
be too large. We set it to 256×256, which effectively reduces
the computation of the model. The results in Table V demon-
strate that RTMPose-t (i.e., the smallest version of RTMPose)
combined with YOLOv8s achieves the best performance on
all evaluation metrics except for PCK@0.005. The accuracy-
computation trade-off makes us select YOLOv8s 320×320 +
RTMPose-t 256×256 as our final light source detector.

For the 330 images in the ULDB test set, the average posi-
tioning error of this method is only 4.66 pixels. When α is set as
0.03, the PCK reaches 100%, indicating that this method detects
all light sources in the test set with considerable accuracy. Since
the ULDB dataset covers abundant and various misalignment
cases, these results demonstrate that the range of misalignment
our method can handle is significantly expanded. For the scenes
with a terminal-camera distance ranging from 1 m to 32 m
and a terminal deviation angle (absolute value) ranging from
0° to nearly 180°, our method can provide sufficiently accurate
predictions of light source positions.

Our method is also lightweight enough as its FLOPs are 8.1G,
and its inference time on GPU is only 9.1 ms. It is worth noting
that the inference speed was tested without any skip-frame
detection, quantization, or deployment techniques, all of which
can further accelerate the inference process. This suggests that
the proposed method has the potential to be executed in real time
on low-power underwater devices.

Fig. 10 illustrates the training process of YOLOv8s and
RTMPose-t, respectively. In the early stage of the training

Fig. 10. Training process of (a) YOLOv8s and (b) RTMPose-t. The perfor-
mance was tested on the ULDB validation set.

Fig. 11. Comparison with the grayscale centroid method on the ULDB test
set. GC represents the grayscale centroid method. Values in parentheses indicate
the thresholds used for extracting the light spot.

process, AP50 of both models quickly approach the upper bound
of 100%. As the training progresses, the scores on other metrics
(more stringent) continuously improve. On the one hand, this
indicates that the proposed method is easy to converge. On
the other hand, it also demonstrates that the ULDB dataset
is well representative and enables continuous improvement of
the detection capability of the deep learning models without
overfitting.

We also evaluated the performance of two single-stage detec-
tion models. As these models lack a coarse-to-fine refinement
process, we set their input size to 640×640 to help them perceive
as many image details as possible. By adding a keypoint detec-
tion head after the neck module of YOLOv8, YOLOv8-pose can
simultaneously output the results of object detection and key-
point detection in one inference [34]. This scheme allows the two
detection tasks to share a set of feature representations, and thus,
high-precision keypoint localization is difficult to take into ac-
count. For instance, the YOLOv8m-pose has 81.2G FLOPs, but
its AP is less than half that of our method, which does not meet
the practical alignment requirements. The single-stage RTM-
Pose directly detects the light source based on the original image.
Although the RTMPose-t (single) has a significant advantage
in computational complexity, its PCK@0.005 and PCK@0.01
decrease by 56.5% and 26.7%, respectively, compared with our
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TABLE V
COMPARISON WITH OTHER DEEP LEARNING-BASED LIGHT SOURCE DETECTION METHODS ON THE ULDB TEST SET

Fig. 12. Visualization results of our method. The red bounding box represents the light spot region, while the red dot represents the light source. These images
were captured at distances of approximately (a) 5-m, (b) 10-m, (c) 20-m, and (d) 30-m from the light source, respectively.
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Fig. 13. Comparison with the light spot extraction method based on grayscale in scenario (a) ∼ (f). Top row: Results of grayscale-based method. The extracted
light spot is marked using the green contour line. The largest spot in each image is marked by a red bounding box. Bottom row: Our results.

method. This result indicates that the high-precision light source
positioning results are greatly reduced. While the RTMPose-
l (single) is close to our method in several evaluation met-
rics, its FLOPs is up to 68.2G, which is bigger than that of
our method by over eight times. In conclusion, considering
both detection accuracy and computational cost, the cascaded
detection method of YOLOv8s + RTMPose-t is the optimal
choice.

On the ULDB test set, we compared the average positioning
error of our method with the classical grayscale centroid method.
In the grayscale centroid method, the light spot is first extracted
from the image based on a grayscale threshold, and then the light
source position is calculated based on the spot. To ensure the
representativeness of the results, we extracted the light spot using
different thresholds, including 180, 220, 250, and the brightest
pixel value. If more than one spot is extracted from an image,
only the spot with the largest area is used to calculate the light
source position. As shown in Fig. 11, even in the best case,
the average positioning error of the grayscale centroid method
reaches 142.08 pixels. Note that many relatively dark spots are
not detected in this case.

C. Qualitative Evaluation

Fig. 12 visually shows some of the results predicted by our
method. It is worth noting that the images presented in this

subsection are all from the test set, and the model has never
“seen” them during training. It can be observed that our method
works well regardless of how the terminal-camera distance
changes or how the terminal deviation angle varies. In particular,
when the terminal-camera distance exceeds 20 m, both the light
spot region and the light source become unclear. Furthermore,
there is severe reflection interference from water surface in the
images. However, our method can still efficiently eliminate the
interference and accurately predict the light source position.

The light source positioning algorithms presented in [17],
[21], [22] all rely on the grayscale-based method for extracting
light spots. The performance of this spot extraction method
is visually demonstrated in Fig. 13. As described in [22], we
first applied Gaussian filtering to the grayscale version of the
original color image, and then the brightest area in the gray
image was identified as the light spot. In Fig. 13, the light spot
extracted by this method is marked by a green contour line, and
the spot with the largest area in each image is marked by a red
bounding box. For (a) and (b), the images are seriously disturbed
by reflection, and the false light spot induced by reflection is even
more dominant than the real one. Although the real spot is also
extracted in (a), it is challenging to exclude interference through
post-processing because the area of the real spot is smaller. Thus,
the grayscale-based method cannot work in this situation. In
(c)∼(e), due to the large |θd| of the terminal (the |θd| of the
terminal in (d) is close to 180°), the light spot appears dim and
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is no longer the brightest area of one image. As a result, the
real light spot is not noticed by the grayscale-based method.
In contrast, the irrelevant but brightest areas are mistakenly
recognized as light spots. Scene (f) is a pure background without
any terminal. In practice, such pure background images are
frequently captured while the terminal rotates to search for the
other terminal. However, the grayscale-based method always
extracts areas with the largest gray value from an image. For
a pure background image, this method fails to report the result
that there is no light spot in the image and instead provides an
incorrect position, which misleads the alignment system. All
the above examples illustrate that the grayscale-based method
is difficult to meet the practical alignment requirement.

Fortunately, our method provides accurate detection results
when facing these complex scenarios. This is attributed to
the powerful feature extraction capability of the DNN. During
inference, the DNN not only focuses on low-level semantic
information such as image intensity, but also continuously re-
fines and combines various potential features such as shape and
texture. Moreover, in principle, the deep learning method makes
predictions based on whether specific features exist in the image.
As a result, for a pure background image where no specific
feature is present, our method can output a lower prediction score
to indicate that no light spot region or light source is detected.

V. CONCLUSION

For the camera-assisted UAA system, the terminal-camera
misalignment degree can be arbitrary before the alignment pro-
cess. This implies that the position, size, brightness, and shape
of light spots in captured images are all variables. Existing spot
positioning methods mainly rely on simple image features and
have a limited capability to handle the wide range of misalign-
ment. In this paper, a deep learning-based cascaded light source
detection method is proposed to obtain accurate light source
position from various images. Thanks to the powerful feature
extraction capability of the DNN, the proposed method can
work well under a wide range of misalignment. The cascaded ar-
chitecture provides better comprehensive performance in terms
of accuracy and speed. As a necessity for deep learning, the
ULDB dataset is constructed, which includes diverse misalign-
ment scenarios. On the ULDB test set, the proposed method
achieves 99.1% AP and 92.1% PCK@0.01. For the 4K images,
the average positioning error of the proposed method is only
4.66 pixels, compared to 142.08 pixels for the grayscale centroid
method. Additionally, our method is lightweight in the deep
learning field, with 8.1G FLOPs, making it suitable for real-time
operation on specialized underwater mobile devices.

In conclusion, our work presents an effective and practical
solution to the alignment problem in LD-based UWOC systems.
We believe that this work is merely the beginning rather than
the end. There are still many interesting topics to explore in the
field of light source detection. In the future, we will focus on
acquiring light source image data across different water bodies
with varying turbidity. Developing more accurate and faster light
source detection algorithms will also be a key area of future
research.
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