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ABSTRACT With the rapid proliferation of drones across various domains, aerial target detection has
become increasingly crucial. However, the targets in aerial images present challenges such as scale variation,
small size, and density, leading to suboptimal performance of current detectors on aerial images. Based
on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-
YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF
neck structure, adding a small target detection head to tackle the small target size problem, using the DMC
module to fuse different scale features for enriching detailed information, and employing the DSSFF module
to construct a scale sequence space to solve the target scale variation problem. In the network backbone,
we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features
to mitigate the information disparity caused by positional changes and outperform traditional convolutional
layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes
due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the
number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments
on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in
aerial image detection tasks.

INDEX TERMS Multi-scale feature fusion, small object detection, UAV, YOLO.

I. INTRODUCTION
In the field of drones, target detection in aerial images is the
foundation of various research.With the rapid development of
artificial intelligence and mechanical manufacturing, drones,
with their excellent imaging performance and flight capa-
bilities, have aided drone technology [1], intelligent traffic
monitoring [2], agriculture [3], and other fields, improving
work efficiency and reducing manpower costs. Meanwhile,
object detection and tracking serve as prerequisites for many
subsequent visual tasks, making real-time and effective detec-
tion of objects in drone aerial images of significant research
significance [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yong Yang .

Compared to natural images, objects in drone images
exhibit characteristics such as multiscale, small size, and
dense distribution, posing significant challenges for aerial
target detection [5]. This phenomenon is primarily attributed
to four factors. Firstly, due to the varying flight altitudes of
drones, images captured by drones undergo significant scale
variations for the same target size. Secondly, these images
contain small and large targets, with noticeable differences
in scale among different targets, thereby increasing the dif-
ficulty of detecting all aerial targets. Moreover, the elevated
position of the drone results in a lower pixel ratio of captured
objects in images, leading to loss of object details and insuffi-
cient information, which hampers accurate object detection.
Additionally, the elevated position of drones provides a wide
field of view, resulting in the presence of numerous objects
of different sizes arranged densely, thus making detection
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prone to false positives and false negatives. These factors col-
lectively impede the advancement of drone image detection
technology. Mainstream object detection models are primar-
ily trained on natural scenes and are based on the Backbone-
Neck-Head architecture, including R-CNN series [6], [7],
YOLO seriesy [8], [9], and DETR series [10], [11]. However,
these models often perform poorly in aerial target detection.
To address the challenges posed by drone imagery, many
researchers have developed various detection models tailored
to the characteristics of aerial images.

To address the multi-scale issues in aerial imagery,
multi-scale feature fusion techniques utilize feature pyramid
structures to obtain different feature maps for recogniz-
ing objects at various scales. Jocher et al. [12] introduced
FPN-PAN structure in YOLOv5, which combines deep
semantic features with shallow detail features by up-sampling
high-level features to alleviate the impact of multi-scale
targets. Kang et al. [13] proposed an attention-based scale
sequence fusion algorithm to enhance the network’s capabil-
ity to extract multi-scale data. Shi et al. [14] used deformable
convolutions to guide feature fusion blocks, promoting effec-
tive integration of multi-scale features through cross-layer
and cross-scale interactions. Lin et al. [15] constructed a
multi-scale feature aggregation network based on focusing
and distributionmechanisms, utilizing features obtained from
the backbone for efficient information exchange. Zhang [16]
adopted a three-layer PAFPN structure combined with
large-size feature maps to enhance the detection of small
targets.

Aerial targets are often small and densely distributed,
increasing the difficulty of detection. Most researchers have
focused on improving feature extraction capabilities for
aerial targets by enhancing the Backbone and Head com-
ponents. Zhao and Zhu [17] combined Swin Transformer
with SPPFS to gather global information and enhance fea-
ture information exchange, improving detection of dense
objects. Sui et al. [18] introduced a dynamic detection head
incorporating self-attention, which combines scale, spatial,
and task-aware features to improve small target detection
performance. Min et al. [19] utilized a context transformer
framework to integrate global residuals and local features
for detecting minute objects. Ma et al. [20] designed the
Dense_CSPDarknet53 backbone network to extract latent
image information. Additionally, Min et al. [21] proposed the
PixED Head, which includes pixel encoders and decoders for
flexible feature extraction, and used an Aux Head for online
distillation to enhance feature representation.

Existing methods fall short of satisfactory results when
dealing with issues such as multi-scale variations in drone
imagery, small target sizes, and dense target distributions.
To address these challenges, we propose a series of object
detection algorithms specifically tailored to the characteris-
tics of drone imagery. Our proposed DMFF-YOLO network
introduces width and depth coefficients and can be divided
into five types of networks, namely DMFF-YOLO (nano,

small, middle, large, and extra), meeting different perfor-
mance requirements for drone detection accuracy. The main
contributions are as follows:

1) We use the RFCBAMConv module in the backbone
network to interact with receptive field features to mit-
igate information discrepancies caused by positional
changes, thereby improving the extraction of aerial
target features.

2) We design the DMC and DSSFF modules in the neck
network to fuse the multiscale feature maps extracted
from the backbone, solving the problem of target scale
changes.We added a structure specifically for detecting
small target features and removed the structure features
of large targets to achieve a lightweight effect.

3) We utilize Soft-NMS-CIoU, a modified strategy for
determining overlapping anchor boxes, to address the
issue of adjacent box suppression caused by dense
targets.

4) Extensive experiments on three public datasets show
that our method significantly improves the perfor-
mance on aerial images primarily containing small
targets. Comparisons with other advanced algorithms
demonstrate the superiority and versatility of DMFF-
YOLO, providing a valuable reference for related
research.

II. METHODOLOGY
The overall framework of the DMFF-YOLO detection
algorithm consists of three parts: Backbone, DMFF, and
Head, as shown in FIGURE 1. In Backbone, we employ
RFCBAMConv [22] modules to enhance feature representa-
tion within the same target. We design the DMFF structure
to fuse features from continuous scales, where the DMC
module concatenates features from different scales of the
backbone network, and the DSSFF module utilizes semantic
information from the backbone network’s feature map to
guide detailed information and address the issue of target
scale variations. The Soft-NMS-CIoU [23], [24] changes the
strategy for determining overlapping anchor boxes, improv-
ing the model’s performance in detecting small targets.

A. RFCBAMConv MODULE
In standard convolution operations, the sliding window of
the shared-parameter convolution kernel extracts feature
information, overcoming the issue of large computational
overhead in traditional fully connected layers. However,
it struggles to capture the differences in information at various
positions, resulting in a limited extraction of features. The
attention mechanism can enhance the importance of each
feature in the input feature map. By integrating the Spa-
tial attention mechanism into the standard convolution, the
limitations of parameter sharing in the convolution process
can be mitigated to a certain extent, thereby improving the
performance of the convolutional neural network. The mathe-
matical calculations for standard convolution and convolution

VOLUME 12, 2024 125161



X. Qiu et al.: DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection

FIGURE 1. Structure of the DMFF-YOLO network.

integratedwith the attentionmechanism can be represented as
follows:

FN = XN1 × K1 + XN2 × K2 + . . . + XNS × KS (1)

FAN = XN1 × AN1 × K1 + XN2 × AN2 × K2 + . . . + XNS
× ANS × KS (2)

Here,FN represents the output value after the standard con-
volution operation, FAN represents the output value of intro-
ducing the spatial attention mechanism in the convolution
process, K represents the convolution kernel, S represents
the number of parameters in the convolution kernel, N is the
total number of convolution kernels, KS represents the s-th
shared convolution parameter in the kernel, and XN and AN
represent the values of the input feature map and attention
map at different positions. However, upon careful analysis,
it can be found that when using spatial attention, the sliders of
each attention feature map overlap, such as A12 = A21,A13 =

A22 . . .. In large 3×3 convolutions, the problem of parameter
sharing is still not resolved, limiting the effectiveness of
spatial attention.

In response to these questions, We introduce the
RFCBAMConv convolution kernel to replace the stan-
dard convolution kernel in the main network as shown in
FIGURE 2. It emphasizes the importance of different features
in the receptive field slider. It prioritizes the receptive field
features, thereby solving the problem of shared sliders in
the convolution process being insensitive to information
differences. The structure of RFCBAMConv is shown in
the figure, divided into two branches, upper and lower. The
upper branch uses 3 × 3 group convolution to extract the
receptive field features of the input feature map, mapping
the original features to receptive field features. It empha-
sizes the importance of different features in the receptive
field slider through normalization and the ReLU activation
function, then adjusts the shape to obtain non-overlapping
receptive field featuresFrf . After adjusting the shape, average
pooling and maximum pooling on the channel dimension are

performed to obtain channel distribution information. The
channel attention weight ω1 is obtained through standard
convolution and sigmoid activation functions. In the lower
branch, AvgPool is used to aggregate the global information
of the input features. It enters two fully connected layers and
uses softmax to emphasize the importance of each feature
in the receptive field features, obtaining spatial attention
weight ω2. The calculation formula for the output features
of RFCBAMConv is:

F = ω1 × ω2 × Frf (3)

FIGURE 2. The RFCBAMConv structure.

B. DYNAMIC MULTI-SCALE FEATURE FUSION STRUCTURE
As shown in FIGURE 3, the neck structure is a DMFF
structure. This structure is composed of a top-down branch
and a bottom-up branch. In the top-down branch, different
layers receive features of different scales through different
feature maps in the main layer, namely the output feature
map F5 of SPPF, and the feature maps F1, F2, F3, and F4
at different stages of the main network. Two DSSFF modules
receive features of three scale sequences. The output of the
bottom-up branch consists of three feature maps of different
sizes, namely feature maps P2, P3, and P4, which are output
to the head structure.

FIGURE 3. The overall architecture of DMFF.
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The traditional FPN fusion mechanism only upsamples
small-sized detection maps, which overlooks the rich detail
information in large-scale feature layers. This results in poor
detection performance for small targets that rely on detailed
information, while requiring large computational overheads.
We propose the DMC module, which combines three dif-
ferent scale feature maps in the main network, fuses the
detail information in the feature map, and balances the spatial
information in the lower layers with the semantic informa-
tion in the higher layers. As shown in FIGURE 4, we first
downsample the large-scale feature map through maximum
pooling and average pooling to enrich the features of small
aerial targets. For small-sized feature maps, we use DySam-
ple as the upsampling method. The feature map and the set
upsampling factors are first passed through a linear layer,
then reshaped into 2g × sh × sw through a pixel shuffle
method, and finally the upsampling feature map c× sh× sw
is obtained through the offset. As it utilizes point-based sam-
pling methods and learning sampling angles for upsampling,
it completely avoids time-consuming dynamic convolution
operations and additional subnets, improving model perfor-
mance at minimal computational cost.

FIGURE 4. The DMC structure. The input consists of features with three
scales of continuous variation, and the output is the features of the
intermediate scale.

Regarding the multi-scale problem of aerial targets, the
existing method is directly using the features obtained from
the Neck part for target recognition. This structure cannot
effectively utilize the correlation mapped by the pyramid
structure of the main network. The size of the image changes
during the downsampling in the main network, blurring the
image’s details but retaining the target’s structural features.
This paper designs a DSSFF module that dynamically selects
the context on the feature map to enhance the resolution of the
featuremap, retains the target scale features after upsampling,
and then uses the scale axis to build the scale space. This
represents the range of various scales that an object can have.
Finally, three-dimensional convolution is used to extract the
scale sequence features after the three scales are stacked.
As shown in FIGURE 5, the two smaller-scale feature maps
are first adjusted to 256 channels using a 1 × 1 convolution,

then the two feature maps are resized to the largest scale
using DySample at 2x and 4x, respectively. The unsqueeze
method adjusts each feature map to a four-dimensional tensor
and stacks them into a scale sequence space along the depth
dimension. Finally, three-dimensional convolution, normal-
ization, and SiLU activation functions are used to extract the
scale sequence features.

FIGURE 5. The DSSFF structure.

Most of the targets for aerial detection present small-
size characteristics. The traditional YOLOv8 neck structure,
the PAFPN structure, has difficulty extracting features of
small targets and has many parameters. Therefore, we have
redesigned the neck structure, discarding the large target
fusion features and detection structures that are not suitable
for small target datasets, adding a small target detection head,
and using the DSSFF structure to assist in outputting fea-
tures,improving the accuracy of small targets while solving
the scale change issue. Experimental analysis shows that
deleting the detection head for large targets will significantly
reduce the number of parameters without affecting detection
accuracy. Therefore, we only output the feature maps of three
different sizes to three different detection heads to detect
tiny, small, and medium-sized targets. The DMFF output
framework is shown in FIGURE 6.

FIGURE 6. The DMFF output features with the detection head. (a) shows
the feature structure and detection head of yolov8. (b) shows the feature
structure and detection head of DMFF-YOLO.

C. SOFT-NMS-CIoU
Traditional Non-Maximum Suppression (NMS) can mistak-
enly eliminate bounding boxes that detect different objects
but are close in distance. Soft-NMS works differently
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fromNMS. Soft-NMS calculates the Intersection-over-Union
(IoU) of the highest scoring box and the bounding box,
using a Gaussian function as the weight function. It lowers
the score of the predicted boundary to replace the original
score rather than directly setting the scores for other boxes to
zero for deletion. The formulae for Soft-NMS are shown in
equations (4) and (5).

si =

{
si, iou(m, bi) < Nt
si(1 − iou(m, bi)), iou(m, bi) ≥ Nt

(4)

si = sie−
iou(m,bi)

2

σ , ∀bi /∈ D (5)

In these formulas, m represents the linear decay of scores,
meaning that detection boxes farther away will not be signif-
icantly affected, while detection boxes closer will not receive
a substantial penalty. Since overlaps are not continuous,
a Gaussian function addresses the discontinuity in penalties.

It should be noted that the IoU loss function is commonly
used to measure the overlap between predicted boxes and
ground truth boxes. However, in cases where the predicted
box and the ground truth box do not intersect, the IoU
loss function fails to reflect the distance between the two
boxes, leading to gradient vanishing issues. The DIoU loss
function considers minimizing the distance between the cen-
ter points of the predicted box and the target, solving the
non-intersecting loss stagnation problem and enabling faster
and more stable regression. CIoU, based on DIoU, addi-
tionally accounts for the aspect ratio consistency. Therefore,
we propose an improved NMS method that combines CIoU
with Soft-NMS to replace IoU. The formula for calculating
CIoU loss is shown in equation (6).

LCIoU = 1 − IOU +
ρ2(b, bgt )

c2
+ αυ (6)

In the formula, c represents the diagonal length of the
minimum bounding box covering two boxes, and ρ denotes
the Euclidean distance between the predicted box and the
ground truth box. α is a positive balance parameter, while
represents the consistency of the aspect ratio, as shown in
equations (7) and (8). The overlapping area factor is given
a higher priority when there is no overlap.

υ =
4
π2 (arctan

ωgt

hgt
− arctan

ω

h
)2 (7)

α =
υ

(1 − IoU ) + υ
(8)

To prove the effectiveness of the proposed method, this
paper compares Soft-NMS with DIoU, GIoU, EIoU, and
other loss functions. The results show that Soft-NMS-CIoU
outperforms the other methods.

III. EXPERIMENTS
A. DATASET DESCRIPTION AND EVALUATION METRICS
The VisDrone2019 dataset [25], collected and released by
the Machine Learning and Data Mining Laboratory at Tian-
jin University, consists of 8629 images captured at various

locations and heights. The dataset is divided into 10 cate-
gories, with 6471 images for training, 548 for validation, and
1610 for testing.

The UAVDT dataset [26] consists of 50 videos containing
40736 images, divided into 3 categories: cars, trucks, and
buses. Among these, 24778 images are used for training, and
15598 images are used for testing. Similar to the segmen-
tation dataset used in SMFF-YOLO [27], the training and
testing sets are obtained from different videos, each appearing
only in one dataset.

The DOTA dataset [28] is an aerial remote sensing dataset
with 188,282 manually annotated instances. The training
set contains 15,749 images, and the validation set contains
5,297 images. The DOTA dataset has 15 types of objects and
includes challenging and complex scenes. FIGURE 7 illus-
trates the challenges presented by these images, necessitating
a more accurate and robust detection model.

FIGURE 7. Images in the three types of datasets. (a) The challenge of
small dense targets. (b) Challenges of special weather (nighttime).
(c) Challenges arising from differences in occlusion and illumination.

The evaluation metrics for the experimental results include
precision (P), recall (R), Average Precision andmeanAverage
Precision (mAP) for all target categories. mAP0.5 represents
the mAP at an IoU threshold of 0.5, while mAP0.95 indicates
the average mAP across IoU thresholds from 0.5 to 0.95 with
an interval of 0.05. Params represent the number of param-
eters in the model, and GFLOPs refer to the model’s billion
floating-point operations per second. Formulas (9), (10), (11)
and (12) respectively denote the calculation formulas for
evaluation metrics P, R, AP and mAP.

P = TP/(TP+ FP) (9)

R = TP/(TP+ FN ) (10)

AP =

∫ 1

0
P(R)dR (11)

mAP =

∑N
i=1 APi
N

(12)

These formulas, TP represents the number of true positive
samples identified as positive by the model, FP represents
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the number of false positive samples incorrectly classified
as positive, and FN represents the number of false negative
samples incorrectly classified as negative, and N represents
the number of detection categories. These metrics are crucial
for calculating precision and other evaluation metrics. All
experimental results for Precision (P), Recall (R), and mAP
values are reported as percentages.

B. EXPERIMENT DETAILS
In the experiment, we used Windows as the operating sys-
tem, python 3.9, Pytorch 2.1.0, Cuda 12.1 as the desktop
computing software environment, and the NVIDIA RTX
4060 graphics card as the hardware. The neural network code
was modified based on the Ultralystic YOLOv8.1.9 version
as the base model, and all hyperparameters were kept consis-
tent during training. We provide the settings for all relevant
model training parameters in the form of TABLE 1. DMFF-
YOLO did not use pre-trained parameters during training.
In all the experimental results listed below, all YOLOv8 and
DMFF-YOLO are the results obtained from our experimental
training. The remaining model results come from the relevant
referenced papers.

TABLE 1. Hyperparameter settings for the model.

C. ABLATION EXPERIMENT
To further explore the impact of different IOUs on Soft-
NMS, this study conducted comparative experiments on the
YOLOv8-s framework using IOU, CIOU [24], DIOU [24],
EIOU [29], GIOU [30], ShapeIOU [31] methods in Soft-
NMS. The experimental results are shown in TABLE 2.

TABLE 2. Comparison experiments between conventional NMS and
Soft-NMS with different loss functions.

Here, NMS performs poorly on small and dense datasets
because it treats neighboring bounding boxes as redun-
dant during detection. Soft-NMS effectively avoids the issue
of removing redundant boxes, but IoU cannot reflect the
distance between non-intersecting ground truth boxes and

predicted boxes. CIoU can minimize the normalized distance
between the center points of the two bounding boxes and
consider the aspect ratio’s consistency. Empirical evidence
shows that using CIoU as the loss function for Soft-NMS
achieves the best detection results.

The baseline method we used in the ablation experiment is
the YOLOv8-s model, and the dataset is the VisDrone2019
dataset. The main evaluation indicators are mAP0.5, and
mAP0.95 and parameters. The results of the ablation exper-
iments are shown in TABLE 3.

TABLE 3. Ablation experimental results of DMFF-YOLO model.

Here, it can be inferred that the overall model’s mAP0.5
evaluation index value increased by 11.7%, with a parameter
reduction of 31.1%. Among the methods, Soft-NMS-CIoU
has the most pronounced improvement, with a mAP0.5 score
increase of 6.6%, indicating that Soft-NMS-CIoU can effec-
tively handle dense targets. The DMFF structure improves
the mAP0.5 by 4.4% based on RFCBAMConv, indicating that
our method improves the detection effect of small targets and
reduces the false detection of small targets, caused by scale
change. Moreover, the number of channels in the large-scale
feature map is 25% of that in the small-scale feature map,
so the number of parameters is reduced by 31.1 %. When the
RFCBAMConv structure is used as the convolution structure
of the backbone network, the result is also improved, and the
mAP0.5 index is increased by 0.7%.

D. COMPARISON WITH THE YOLOv8 NETWORK
In this section, we comprehensively compare the DMFF-
YOLO network proposed in this paper and the YOLOv8
network on the VisDrone dataset, considering detection
accuracy, detection speed and computation.

From TABLE 4, it can be seen that compared to YOLOv8,
our proposed DMFF-YOLO achieves better detection accu-
racy with fewer parameters. For instance, compared to
YOLOv8-s, DMFF-YOLO (small) improves the detection
accuracy by 11.7% while reducing the parameter amount by
31.1%. Although the computational load increases and the
detection efficiency slows down, it achieves a detection speed
of 37FPS and realizes real-time detection.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
To verify the effectiveness of the improved algorithm, the
experimental results of DMFF-YOLO are compared with
the most advanced algorithms released on this dataset
over the years. The results are shown in TABLE 5. Our
DMFF-YOLO has achieved new state-of-the-art results
in versions with the same parameter size. For the most
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TABLE 4. Comparison between DMFF-YOLO and YOLOv8 networks.

advanced YOLO algorithm, YOLOv9-C, by loading pre-
trained weights and adding auxiliary detection heads, the
mAP50 has increased to 48.1%, and GFLOPS has increased
from 102.1 to 237.8, surpassing the YOLOv8-x model, but
still lower than our proposed algorithm. This indicates that
our method has demonstrated excellent detection accuracy
on the technical difficulties unique to drone images, such
as small target size, target scale changes, and dense target
distribution, to some extent overcoming the challenges of
aerial images.

TABLE 5. Results of different algorithms are compared on the
VisDrone2019 dataset, and the best result is shown in bold.

We conducted Experiments on the UAVDT and DOTA
datasets to demonstrate the model’s generalization ability,
as shown in TABLE 6 and TABLE 7. Compared to the current
methods, DMFF-YOLO shows a significant improvement
in the mAP, mAP0.5, and mAP0.75 indices on the UAVDT
dataset, with a performance improvement of at least 3%
higher than other advanced methods. The DOTA dataset pri-
marily features small and dense targets, and does not exhibit
significant multi-scale issues compared to aerial datasets.
As a result, the performance gap compared to mainstream
models is relatively small. However, our method achieves the
lowest number of parameters while maintaining comparable
detection accuracy. In conclusion, this method shows good

detection accuracy and a lower parameter amount for small
targets and dense scenes.

TABLE 6. Comparison of results between our method and mainstream
methods on UAVDT dataset.

TABLE 7. Comparison of results between our method and mainstream
methods on DOTA dataset.

To demonstrate the competitiveness of DMFF-YOLO
compared to other lightweight models, we compared DMFF-
YOLO (nano) with several representative lightweight algo-
rithms on the VisDrone dataset, including GCL-YOLO [46]
and PP-PicoDet [47], as shown in TABLE 8.

TABLE 8. Comparison of DMFF-YOLOv8(nano) with classical lightweight
networks on the VisDrone2019 dataset with the best results in bold.

It shows that the proposed DMFF-YOLO (nano) achieved
a better accuracy compared to other lightweight models with
few parameters. Compared to YOLOv8-m, DMFF-YOLO
(nano) reduces parameters by 91.8% and computation by
84.8%while improving detection accuracy by 1.2%. This fur-
ther demonstrates that the proposed method’s lightest version
performs better.

F. VISUALIZATION
To further validate the effectiveness of our model, we con-
ducted a comparative analysis between the DMFF-YOLO
(small) model and YOLOv8-s. We extracted partial data from
the VisDrone2019 and UAVDT datasets and compared the
prediction results, as shown in FIGURE 8. In the figure,
different bounding boxes correspond to different detected
objects: yellow boxes represent cars, green boxes represent
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trucks, and red boxes represent pedestrians. The red dashed
boxes indicate the zoomed-in images.

FIGURE 8. Detection results of different YOLO-based methods in Visdrone
and UAVDT datasets.

From the comparison results in the first row of FIGURE 8,
it can be seen that DMFF-YOLO can detect smaller objects.
According to the comparison images in the second row,
it is found that in dimly lit conditions at night, YOLOv8
struggles to effectively detect pedestrians in low light, while
DMFF-YOLO can detect pedestrians next to vehicles, and the
second green box also correctly detects a truck. In the third
image, YOLOv8 often fails to detect occluded objects, while

FIGURE 9. Results of DMFF-YOLO on the DOTA dataset. Red boxes
indicate detections classified as cars, while pink boxes denote detections
classified as large vehicles.

DMFF-YOLO successfully identifies them. Lastly, even
in special weather conditions like foggy weather, DMFF-
YOLO can still detect targets. In summary, DMFF-YOLO
demonstrates outstanding detection capabilities when faced
with the common issues of missed detections and false
positives in dense, small objects. This proves the excel-
lent detection performance of the method proposed in this
paper.

To demonstrate the model’s versatility, we compared it
with the original model on the remote sensing dataset DOTA.
As shown in FIGURE 9, in the three comparison images,
DMFF-YOLO detects cars more accurately, addressing the
issue of YOLOv8-S struggling with small targets and missing
detections. This highlights the improved model’s significant
advantage in recognizing minute targets.

IV. CONCLUSION
In this study, we propose the DMFF-YOLO algorithm for
aerial object detection based on dynamic multiscale fea-
ture fusion. According to the target characteristics of aerial
images, we improve the model’s feature extraction, feature
fusion, and post-processing stages. We utilize the RFCBAM-
conv structure to address the limited feature extraction issue.
For feature fusion, we introduce the DMFF structure, which
merges feature maps at continuous scales in the spatial
dimension of the backbone network, resolving the multiscale
problem in aerial images. We incorporate feature structures
and detection heads specifically designed for small objects
while subtracting those for large objects, improving accu-
racy while reducing parameter count. Lastly, to address
the common characteristics of dense and overlapping small
objects, we replace the traditional NMS method with Soft-
NMS-CIoU, resolving the issue of type determination for
overlapping objects in dense scenarios. Experiments demon-
strate that our method significantly improves the challenging
issue of detecting UAV targets.

While our series of methods cater to the needs of different
devices, there are still some limitations. In subsequent work,
wemay use a lightweight backbone network or pruningmeth-
ods to further lighten the aerial detection model. Our focus
going forward is to achieve a better lightweight model while
maintaining the model’s excellent detection performance.
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