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Abstract—Blockchains, with intricate architectures, encompass
various components, e.g., consensus network, smart contracts,
decentralized applications, and auxiliary services. While of-
fering numerous advantages, these components expose various
attack surfaces, leading to severe threats to blockchains. In this
study, we unveil a novel attack surface, i.e., the state storage,
in blockchains. The state storage, based on the Merkle Patricia
Trie, plays a crucial role in maintaining blockchain state.
Besides, we design NURGLE, the first Denial-of-Service attack
targeting the state storage. By proliferating intermediate nodes
within the state storage, NURGLE forces blockchains to expend
additional resources on state maintenance and verification,
impairing their performance. We conduct a comprehensive
and systematic evaluation of NURGLE, including the factors
affecting it, its impact on blockchains, its financial cost, and
practically demonstrating the resulting damage to blockchains.
The implications of NURGLE extend beyond the performance
degradation of blockchains, potentially reducing trust in them
and the value of their cryptocurrencies. Additionally, we fur-
ther discuss three feasible mitigations against NURGLE. At
the time of writing, the vulnerability exploited by NURGLE
has been confirmed by six mainstream blockchains, and we
received thousands of USD bounty from them.

1. Introduction

Blockchains, with intricate architecture, have evolved
various components, e.g., consensus network, smart con-
tracts, decentralized applications, and auxiliary services [1].
These components expose various attack surfaces, leading
to severe threats to blockchains [1]. Among these threats,
the frequency and severity of Denial-of-Service (DoS) at-
tacks have been rising [2]. DoS attacks deny the service of
corresponding components, and compromise the operations
of blockchain. For instance, the DoS incident [3], [4] on the
consensus network induces a hard fork and abandons over
30 blocks (worth 8.6M USD) atop the Ethereum [5].

Academic communities continuously explore new attack
surfaces of blockchain under DoS threats, involving four
attack surfaces, i.e., consensus network, txpools, auxiliary
services, and smart contracts (cf. details in §8). However,
despite serving as the major performance bottleneck of
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Figure 1: The workflow of NURGLE. The attacker first sub-
mits the crafted payload by transactions to the P2P network.
Once the transactions are included in the blockchain, they
can manipulate the state storage of the MPT structure, and
finally impair the performance of the blockchain.

blockchain [6]–[8], DoS security concerning state storage
of blockchain has never been explored.

To our best knowledge, we first reveal a new DoS attack
surface of blockchain, i.e., state storage, which is used to
maintain the blockchain state [8], [9]. Blockchain state is the
persistent data of the blockchain (e.g., account balance and
contract persistent variables [9], [10]). Besides, blockchain
state is managed by a storage structure, typically Merkle
Patricia Trie (MPT) [11]. Hence, modifying the blockchain
state consumes numerous resources. Specifically, the state
storage of MPT structure (termed by MPT) utilizes a tree
structure to manage blockchain state. A leaf node in MPT
stores the value of persistent data (e.g., account balance),
and all intermediate nodes in the path from the root node to
the leaf node correspond to the key of the data’s value (e.g.,
account address) [6]. As the first systematic study on the
security of blockchain state storage, our study sheds light on
the importance of securing the state storage, and facilitates
researchers and developers to propose more robust designs.

Threat goals. In our study, we propose NURGLE, a novel
DoS attack towards blockchain state storage. NURGLE aims
to cripple blockchain’s performance by raising time cost in
interacting with its state storage. The design of NURGLE is
inspired by our two observations:

• Heavy burden of state maintenance (§4.1). We categorize
four classes of time-consuming blockchain operations (Ta-
ble 1). Besides, we unevil that the time cost of the operations
significantly relies on the number of MPT nodes involved
within the state storage during blockchain execution.

• Flaw of gas mechanism (§4.2). Gas mechanism [12] is
responsible for determining the financial cost incurred by
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users when accessing blockchain’s resources. However, this
mechanism fails to consider intermediate nodes in state stor-
age, which are updated when the state is modified (Fig. 5).

According to our two observations, NURGLE can pro-
liferate intermediate nodes with few cost to increase ex-
tra resource consumption for maintaining the intermediate
nodes, thereby degrading overall blockchain performance.
Fig. 1 displays NURGLE’s workflow. Specifically, NURGLE

first constructs data and submits the crafted payload to the
P2P network. Once the payload is included in blockchain,
NURGLE can manipulate MPT , and finally impair the per-
formance of the blockchain. Furthermore, as the manipu-
lated MPT persists on the blockchain, NURGLE persistently
threatens the blockchain in all subsequent blocks.
Attack scope. Blockchains, adopting MPT [11] for handling
state storage [6], [13], [14], are under threats of NURGLE.
In practice, MPT structure is widely applied in mainstream
blockchain platforms, e.g., Ethereum [5], Binance Smart
Chain (BSC) [15], Polygon [16], Avalanche [17], Opti-
mism [18], and Polkadot [19]. To our best knowledge, 588
blockchain platforms (cf. lists in Appendix C.1) are under
threats of NURGLE, which are compatible with Ethereum
ecosystem [20], [21]. In addition, other 153 blockchain plat-
forms (cf. lists in Appendix C.1) compatible with Polkadot
ecology are also affected by NURGLE [22] (§7).
Attack design. NURGLE strategically manipulates MPT
to impair blockchain performance. Specifically, NURGLE

aims to raise MPT’s depth by proliferating intermediate
nodes, i.e., nodes between the root node and leaf nodes.
When MPT’s depth increases, blockchain consumes more
resources to maintain expanded intermediate nodes in MPT .

Within MPT , which is organized as a prefix tree [11],
each node is located by a unique value (denoted as indexing,
e.g., acd3f in Fig. 2). Besides, all MPT nodes are ordered by
the prefixes of their indexing [11] (§2). Hence, to proliferate
intermediate nodes in a specific path of MPT , NURGLE

needs to craft a leaf node, whose indexing contains a desired
prefix (Fig. 4). However, such a task is challenging. This
is because, for a leaf node storing blockchain state (e.g.,
account balance), its indexing is derived from the keccak256
hash value [23] of the information used to identify the leaf
node (e.g., account address). Hence, to construct a leaf node
whose indexing contains a specific prefix, NURGLE needs to
collide the indexing of the leaf node, which is derived by
keccak256 hash calculations [23].

Furthermore, in consideration of the trade-off between
attack impact and cost, we propose an optimized strategy to
reduce NURGLE’s cost while retaining most of its original
attack’s impact (§5.1). We achieve this by selectively deep-
ening the leaf nodes that correspond to the most frequently
accessed accounts (i.e., active accounts in §5.1).
Evaluation. To uniformly measure consumed resources of
blockchain, e.g., CPU and disk, we utilize the time required
for state modification as the metric [24], and comprehen-
sively and systematically evaluate NURGLE in four aspects.

First, we determine reasonable strategies of NURGLE

with considering computing resources of launching attacks.
Please note that, with commodity hardware resources, NUR-

GLE needs to collide a keccak256 hash value with the
specific prefix for manipulating MPT . As a result, under
the computing resources of single RTX3080 GPU (Table 2),
NURGLE can threaten MPT by manipulating its structure at
the depth of the first 15 layers (§6.1), via colliding the first
13 nibbles of the hash values.

Second, we evaluate NURGLE’s impact on Ethereum
from the block height of #14.99M to #15M. As a result,
with the computing resources of single RTX 3080 GPU,
an adversary can persistently increase the time cost of state
modification by 111% of Ethereum (§6.2) in a period of
10,000 blocks. We further propose models to estimate attack
impact of NURGLE. Our assessment shows that the models
can estimate attack impact of NURGLE before launching it.

Third, we further evaluate the financial cost of NURGLE

in exploiting seven popular blockchains. Table 3 enumerates
the cost of NURGLE. It shows that the lowest cost of
NURGLE is 39.64 USD while degrading the performance
of Optimism in a period of 10,000 blocks. Besides, our
optimization further reduces the cost of NURGLE. Specif-
ically, by striking the active accounts in MPT (§5.1), the
cost of NURGLE can be further reduced to 3.5% of original
cost with retaining 54.66% of the original attack impact.
Our results indicate that, by targeting active accounts in
MPT , the adversary can optimize the cost of NURGLE to
a reasonable range (§6.3).

Fourth, we practically evaluate the effectiveness of NUR-
GLE on Ethereum and BSC testnets. Please note that,
unlike previous studies [2], [25], [26] which only have
non-persistent attack impacts, NURGLE’s impact persists in
blockchain. Hence, due to ethical concerns, we evaluate the
effectiveness of NURGLE in Ethereum and BSC testnets to
minimize the potential negative impact. Besides, we care-
fully adjust attack parameters to light the attack impact. As
a result, when we witnessed that NURGLE caused the time
of state modification on Ethereum (resp. BSC) testnet to
increase by 15% (resp. 18%), we ceased the attack (§6.4).

At the time of writing, vulnerabilities under NURGLE

have been confirmed by six blockchains (i.e., Ethereum,
BSC, Polygon, Optimism, Avalanche, and Ethereum Clas-
sic), and we received thousands of USD bounty from them.
Contributions of this work are listed as follows

• Novel attack at new attack surface. Based on a new attack
surface (i.e., the state storage of blockchain), we propose
a novel DoS attack, NURGLE. By manipulating the MPT
structure of state storage, NURGLE can persistently ag-
gravate the consumed resources during blockchain state
modification, including CPU, memory, and disk resources.

• New observations. To our best knowledge, we are the first
to categorize the four classes of heavy time-consuming
operations of blockchain. Besides, we reveal the flaw
of gas mechanism, i.e., it fails to accurately reflect the
actual consumed resources of state modification in MPT .
Our two observations further inspire the design and the
mitigation strategies of NURGLE.

• New understandings. We conduct a comprehensive and
systematic evaluation of NURGLE, including assessing
factors affecting NURGLE, evaluating the attack impact
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of NURGLE, measuring financial cost of NURGLE in
exploiting seven mainstream blockchains, and validating
the effectiveness of NURGLE on two testnets. Our ex-
perimental results demonstrate that NURGLE can widely
exploit various mainstream blockchain platforms, leading
to a significant degradation of blockchain’s performance
at a reasonable cost. Furthermore, we discuss the severe
implications brought by NURGLE.

• Mitigations. We elaborate on three classes of feasible
mitigations that can reduce the attack impact of NURGLE,
and discuss their advantages and disadvantages.

We release materials of our work in https://github.com/
hzysvilla/Nurgle Oakland24 for future research.

2. Background

We introduce basic concepts of blockchain (§2.1), ex-
plain how blockchain adopts the MPT structure to maintain
its state storage (§2.2), and provide an example to illustrate
how to exacerbate consumed resource in MPT (§2.3).

2.1. Blockchain basic concepts

We use the implementation of Ethereum [5] to introduce
the basic knowledge of blockchain, because Ethereum is a
widely used blockchain platform. The native cryptocurrency
of Ethereum is Ether. According to its specification [5], the
basic structure of its data is the block, which comprises the
block header and block body. The block header involves a
reference to the preceding block and the information used
for state validation [5], while the block body contains a se-
quence of transactions. The transactions are signed by users
to transfer funds and communicate with smart contracts.

There are two types of accounts in Ethereum, i.e.,
smart contract accounts (CA) and externally owned accounts
(EOA). An EOA is controlled by a private key held by a user,
while a CA holds the pre-defined logic and persistent vari-
ables. A contract is a Turing-complete automation program
on Ethereum. The execution of contracts is facilitated by the
Ethereum Virtual Machine (EVM), which is an underlying
component of Ethereum supporting a set of instructions [5].

The gas mechanism [12] establishes the cost associated
with users utilizing the blockchain’s resources. For example,
each operation in Ethereum, which modifies the state data,
will introduce the cost of gas, e.g., executing contracts and
transferring funds (e.g., Ether) [5].

2.2. Blockchain state storage of MPT structure

In this study, we focus on blockchains like Ethereum,
whose state storage is organized in MPT structure (i.e.,
MPT), comprising account data and contract data [8].

In Fig. 2, we display the state storage of MPT structure
(left), and its flat layout (right). Account Data 1 maintains
all accounts’ information, e.g., balance, nonce, code hash,
and storage root of each account. Besides, the account in-
formation of each account is separately reserved in a unique

Figure 2: The left part shows state storage in the MPT struc-
ture. We display the flat layout of corresponding information
at the right part to facilitate intuitive understanding.

leaf node. In Account Data 1 , the account information of
each account is mapped by the indexing of the leaf node
reserving the account information. As mentioned in §1, the
indexing (e.g., abc6d) is used to locate a leaf node in the
MPT structure [11]. If an account is a contract, its storage
root 5 in Account Data 1 points to its Contract Data 2 .
Contract Data 2 contains the data of the contract to store
persistently [5]. Specifically, Contract Data 2 is a mapping
from the slots [27] of a contract’s storage to the values
stored in corresponding slots [28]. In MPT structure, each
data, mapping to a contract storage slot, is reserved in a
unique leaf node, and the indexing of the leaf node is derived
from its slot. In addition, each contract has an independent
Contract Data 2 [5]. Account Data 1 and Contract Data
2 are maintained in State Trie 3 and Storage Tries 4 ,
respectively. Besides, both State Trie 3 and Storage Tries
4 are in MPT structure for managing and verifying state.

MPT structure manages and indexes data by compress-
ing the prefix tree [29]. In MPT , the indexing of leaf nodes is
a 256-bit byte array [5], i.e., containing 64 nibbles. Please
note that, we denote the length of indexing as the number
of nibbles (i.e., half byte) in it. Taking the indexing abc6d

(Fig. 2) as an instance, the length of its indexing abc6d is
5. To obtain the data reserved in the leaf node, we need to
locate the leaf node with the indexing abc6d by searching for
the intermediate nodes holding the prefix of abc6d (i.e., the
three intermediate nodes a, bc, and 6d in Fig. 2).

MPT performs the state verification for consensus in the
idea of the Merkle tree [30]. Each parent node maintains
the keccak256 hash value of all its child nodes’ data. The
keccak256 hash value of the root node atop State Trie 3
is used as the metadata of a block’s header, named as state
root 6 . The orange arrow in Fig. 2 displays the procedure
of verifying state. When the state of an account (e.g., Ether
balance) changes, since the account’s data is stored on a leaf
node, it will force all the hash values from the leaf node to
the root node to be changed, and the information within
nodes in the path is required to be updated accordingly.
Taking the account with the indexing acd3f in Fig. 2 as
an example, when the information of the account changes,
the hash values maintained by nodes a and cd3f will be
changed, resulting in both the two nodes to be updated.
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Figure 3: A simplified MPT , constructed by two leaf nodes
with indexing as 111234d and 111d12f. The extension node
(111) handles the common prefix (111) of the two leaf
nodes’ indexing. The branch node forks to point the two leaf
nodes by two pointers (i.e., 2 and d). Finally, the two leaf
nodes keep the unique part of their indexing as 34d and 12f.

2.3. Exacerbating consumed resource in MPT

We depict the detailed design of MPT in Ethereum, and
illustrate an example of MPT manipulation, which causes
the resource consumption of Ethereum to be exacerbated.
There are three types of nodes in Ethereum’s MPT , i.e.,
branch nodes, extension nodes, and leaf nodes. A branch
node stores up to 16 pointers (from pointer 0 to pointer
f). A pointer can point to a leaf node, an extension node,
or another branch node. An extension node reserves a byte
sequence, which is used to point to nodes with the common
hash sequence. An extension node also contains a pointer to
its child node. A leaf node stores a pointer targeting the data
reserved in the leaf node (e.g., Ether balance). We deliver
a simplified MPT in Fig. 3, where there are two leaf nodes
storing data. The indexing of the two leaf nodes are 111234d

and 111d12f. The common prefix of the two indexing is 111,
which is handled by the extension node 111. The branch
node forks to point the two leaf nodes by utilizing the two
pointers 2 and d, respectively. Finally, the two leaf nodes
keep the unique part of their indexing, i.e., 34d and 12f.

Inserting and deleting nodes can trigger the node split-
ting and collapse in MPT , which leads to extra resource con-
sumption [31]. Fig. 4 illustrates the node splitting triggered
by inserting a leaf node (whose indexing is 111d1f3) into the
MPT . Since the indexing 111d1f3 of the inserted leaf node
has a common prefix (i.e., 111d1) with the indexing 111d12f

of an existing leaf node in the MPT . Therefore, the leaf node
(i.e., 12f) is split into an extension node 1, a branch node
(containing two pointers as 2 and f), and two leaf nodes
(i.e., f and 3). During the whole procedure of inserting the
leaf node 111d1f3, it additionally consumes resources (e.g.,
CPU, memory, and disk resources) for maintaining and veri-
fying the newly generated intermediate nodes. Furthermore,
the node collapse will happen by deleting leaf nodes from
MPT . Taking the right part of Fig. 4 as an example, during
deleting the leaf node 111d1f3 from the MPT , it additionally
consumes resources to discard nodes (which are marked
with red dotted lines), and re-verify all involved nodes.

leaf node
34d

extension node
111

branch node
0 1 2 … d e f

leaf node
f

leaf node
3

branch node
0 1 2 3 4 … f

extension node
1

1 1 1 2 3 4 d
1 1 1 d 1 2 f

indexings values
value1

value2

extension node
111

branch node
0 1 2 … d e f

leaf node
12f

leaf node
34d

value1 value2

delete

insert
1 1 1 d 1 f 3 value3

1 1 1 2 3 4 d

1 1 1 d 1 2 f

1 1 1 d 1 f 3

indexings values
value1

value2

value3

value1

value3value2

Layer 3

Layer 5

Figure 4: After inserting a leaf node 111d1f3 into the MPT ,
the leaf node 12f splits into an extension node, a branch
node, and two leaf nodes. Finally, the MPT is proliferated
with new nodes, and its depth is deepened into two layers.
Newly generated nodes are marked with red dotted lines.

3. Threat model

The threat model of NURGLE involves two actors: an
adversary and a victim blockchain. The adversary submits
crafted payload by transactions to the victim blockchain,
resulting in impairing the blockchain’s performance. In the
threat model, the victim blockchain supports the execution
of smart contracts, and adopts the MPT structure to maintain
and update its state storage. Besides, there is a P2P network
atop the victim blockchain, accepting users to submit trans-
actions to be included in the victim blockchain.

The adversary controls an externally owned account
(EOA) and necessary assets for sending transactions to the
P2P network of the victim blockchain. Besides, the adver-
sary controls a modified client of the victim blockchain,
by which the adversary can monitor and analyze the status
quo of the victim blockchain’s MPT to construct the attack
payload. Moreover, the adversary has limited resources, e.g.,
GPUs, for constructing the payload to mount attack.

It is reasonable for a financially rational adversary to
launch NURGLE for two reasons. i) NURGLE can yield
economic returns by arbitraging during the price volatility
of cryptocurrency assets on the victim blockchain [25]. For
example, the adversary can first utilize NURGLE to impair
the performance of the victim blockchain and weaken the
trust of related ecology, leading to a decline in the asset
price of the cryptocurrency. After that, the adversary can
just conduct the short selling [32] on the corresponding
cryptocurrency assets to obtain a considerable profit. ii)
Adversaries running the blockchain can utilize NURGLE to
disrupt competitors. By striking competitors, it drives the
customer base of the victim, flocking to the adversaries [25].

The cost of NURGLE consists of two parts, i.e., the fee
of computing resources and the gas fee. The major fee of
computing resources comes from GPUs, which are used to
collide a leaf node with a desired prefix for inserting it
into a target position of the MPT (cf. details in §5.1). It is
necessary to undertake gas fee for the adversary because the
adversary needs to submit transactions with crafted payload
in the victim blockchain for launching NURGLE (§5.1).
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TABLE 1: Four operations that involve heavy burden of state maintenance

Operation type Description Major consumed resources

[OP1] MPT update
During the state modification, the MPT will update nodes in MPT (i.e., nodes

in State Trie 3 , and Storage Tries 4 ) that are required to be modified.
Disk read, and memory read and write

[OP2] MPT verification

To verify whether MPT holds the latest state, MPT derives the keccak256 hash

value of the root node of the whole State Trie 3 from all other nodes in MPT
at a bottom-up manner.

CPU computation

[OP3] MPT holding in memory

To mitigate consumed disk resource in accessing nodes in MPT , the blockchain

holds partial nodes in MPT (e.g., nodes in State Trie 3 and Storage Tries 4 ) in
memory, and can determine which nodes holding in memory to be discarded.

CPU computation, and memory read and write

[OP4] MPT persistence MPT persistently stores nodes representing the latest state of blockchain into disk. Disk write

4. Observation of blockchain state storage

In this section, we illustrate two observations, i.e., the
heavy burden of state maintenance (§4.1) and the flaw of gas
mechanism (§4.2), which inspires the design of NURGLE.

4.1. Heavy burden of state maintenance

Operations with MPT (e.g., maintaining, verifying, mod-
ifying, and assessing state in MPT) are the major perfor-
mance bottleneck of blockchain. Previous studies [6]–[8]
report that over 81% execution time of blockchain costs in
interacting with MPT . To make it worse, we further uncover
that the time cost of major time-consuming operations in
interacting with MPT linearly increases with the number
of nodes in MPT involved in these operations, leading the
performance of blockchain heavily depend on the number
of nodes in MPT . We categorize the operations into four
classes in Table 1 and depict them as follows.

• OP1 (MPT update). Blockchain updates nodes in MPT
involved in state modification (e.g., node splitting in §2.3).
In OP1, both nodes, corresponding to Account Data 1
in State Trie 3 and Contract Data 2 in Storage Tries 4 ,
can be modified. For example, when an account’s balance
changes, the leaf node (corresponding to the account) in
State Trie 3 will update its reserved data, e.g., updating
to the account’s latest balance. OP1 consumes disk read,
and memory write and read, because intermediate nodes
and leaf nodes associated with the account can be absent
in current memory, and they have to be accessed from the
disk accordingly in such cases.

• OP2 (MPT verification). According to §2.2, to achieve
the consensus of blockchain state, MPT needs to derive
the keccak256 hash value of the root node of the whole
State Trie 3 from all other nodes in MPT at a bottom-up
manner (§2.2). We denote the operation for computing the
hash value of the root node as MPT verification (OP2),
since the hash value is used to verify whether MPT holds
the latest state during consensus. Specifically, OP2 will
first derive the hash value of the root of each Storage
Trie 4 from all nodes in the Storage Trie 4 , and then
calculate the hash value of the root node of the whole State
Trie 3 (§2.2). OP2 consumes expensive CPU resource to
calculate the keccak256 hash value for each node [7].

• OP3 (MPT holding in memory). To ease consumed disk
resource in accessing nodes in MPT , blockchain holds

partial nodes of MPT (e.g., nodes in State Trie 3 and
Storage Tries 4 ) in memory, and can determine which
nodes holding in memory to be discarded from memory.
We denote the operation for holding nodes of MPT in
memory as OP3. Besides, discarded nodes are expired
nodes that have been replaced by other latest nodes during
state changes [33]. Since discarded nodes will not be
written to disk, OP3 mainly consumes CPU and memory
resources for maintaining nodes of MPT in memory.

• OP4 (MPT persistence). The MPT persistently stores
nodes representing the latest state of blockchain into disk
(OP4), and generates heavy overhead of disk writes.

Please note that, OP1-4 can trigger each other. For Fig. 4
as an example, once the intermediate nodes and leaf nodes
are modified in OP1, the keccak256 hash value of them
should be updated, including the root node of the whole
State Trie 3 (OP2). Besides, since new nodes are generated
in MPT , the nodes of MPT in memory can also be replaced
and discarded (OP3). Furthermore, the newly generated
nodes can also be written into disk for persistently main-
taining (OP4). In addition, the time complexity to finalize
all OP1-4 is O(n), where n is the number of nodes in MPT
involved in OP1-4. It means that the more MPT nodes need
to be maintained, the more resources will be consumed. Our
first observation assists NURGLE to exacerbate consumed
resources by involving more nodes in MPT to increase more
time cost for handling the four classes of operations.

Figure 5: There are two transactions tx1 and tx2 transferring
Ether, and each of them consumes 21,000 units of gas.
However, when executing tx1 and tx2, the number of nodes
in MPT to be updated (§2.2) is different (marked as red and
purple boxes in Fig. 5). After finalizing the two transactions,
although the two transactions cost the same amount of gas,
they consume different resources for updating the MPT .
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(a) An example of Strategy 1

leaf node
34d

extension node
111

branch node
0 1 2 … d e f

leaf node
f

leaf node
3

branch node
0 1 2 3 4 … f

extension node
1

1 1 1 2 3 4 d
1 1 1 d 1 2 f

indexings values
value1

value2

extension node
111

branch node
0 1 2 … d e f

leaf node
12f

leaf node
34d

value1 value2

1 1 1 d 1 f 3 value3 1 1 1 2 3 4 d
1 1 1 d 1 2 f
1 1 1 d 1 f 3

indexings values
value1

value2

value3

value1

value3value2

insert

layer #1

layer #2

layer #3

layer #4

layer #5

layer #6

(b) An example of Strategy 2 (c) An example of Strategy 3

Figure 6: Examples of utilizing the three strategies (S1-3). Nodes before and after splitting are marked with red dotted lines.

4.2. Flaw of the gas mechanism

To our best knowledge, we are the first to uncover the
flaws of gas mechanism in the view of state storage. We use
an example in Fig. 5 to illustrate the flaw of gas mechanism
revealed by us. There are three EOAs in Fig. 5. The leaf
nodes reserving the three EOAs’ information are located by
their indexing as aab3e, abc6d, and acd3f (marked as blue
boxes). In the example, there are two transactions (i.e., tx1

and tx2), where tx1 transfers Ether from aab3e to acd3f,
and tx2 transfers Ether from aab3e to abc6d. According
to Ethereum’s specifications [5] , each of tx1 and tx2 costs
21,000 units of gas. However, the resources consumed by
the two transactions are different. Specifically, during the
execution of tx1, six nodes (marked as red boxes) in the MPT
are required to be updated. However, during the execution
of tx2, nine nodes (marked as purple boxes) are required to
be updated. Therefore, although the two transactions cost
the same amount of gas, the amount of resources consumed
by them is different for updating the MPT . Similarly, the
flaw of gas mechanism can also be observed in updating the
data reserved in contract storage (Storage Tries 4 ). The root
cause for the flaw is that the current gas mechanism (e.g.,
gas mechanism of Ethereum [5]) does not consider the exact
resources consumed for maintaining and verifying state in
MPT (e.g., the resources for modifying intermediate nodes).
Our second observation inspires NURGLE to exacerbate
consumed resources of state modification by introducing
more intermediate nodes involved in the state modification.

5. The design and implementation of NURGLE

In this section, we elaborate on the design of NURGLE

(§5.1) and NURGLE’s detailed implementation (§5.2).

5.1. The design of NURGLE

Inspired by our two observations (§4), NURGLE aims to
expand intermediate nodes of MPT by inserting leaf nodes
into desired positions of MPT . Specifically, to expand the
intermediate nodes in MPT , we utilize the node splitting
(§2.3) triggered while inserting leaf nodes into MPT . After
that, the expanded intermediate nodes will increase the con-
sumed resources for the operations of modifying, updating,
and verifying nodes in MPT (e.g., OP1-4 in §4.1).

Inserting a leaf node in MPT by different strategies can
trigger node splitting in different ways, causing distinct re-
sults (§2.3). In the following, we categorize three strategies,
which split nodes and deepen a target leaf node (nodev) by
inserting a leaf node (nodeinsert) in different ways. We denote
that, the length of the whole indexing of nodev is m, and the
length of the unique part of nodev is n. For the leaf node
acd3f in Fig. 2 as an example, the length of its whole indexing

and the length of its unique part are 5 and 4, respectively.
• S1. nodev splits into a leaf node, and a branch node, when
the length of the common prefix between the indexing of nodev

and nodeinsert equals to m-n. S1 deepens nodev by 1 layer, and
adds an intermediate node. For example, when inserting the
leaf node 111dd3e (Fig. 6a), leaf node (whose unique part is
12f) splits into a branch node (containing the two pointers
1 and d), and a leaf node (whose unique part is 2f).
• S2. nodev splits into an extension node, a branch node,
and a new leaf node, when the length of the common prefix
between the indexing of nodev and nodeinsert is larger than m-n.
S2 deepens nodev by 2 layers, and adds two intermediate
nodes. For example, when inserting the leaf node 111d1f3

(Fig. 6b), the leaf node (whose unique part is 12f) splits
into an extension node 1, a branch node, and a leaf node
(whose unique part is f).
• S3. An extension node in the path from the root node to
nodev splits into a branch node and a new extension node,

Algorithm 1: NURGLE

Input: nodev, the leaf node to be deepened in MPT
Input: noderoot, the root node of MPT
Output: nodesinsert, the leaf nodes to be inserted for deepening nodev

1 nodesinsert ← []
2 nodescollided = HashCollision(nodev)
3 do
4 nodesintermediate = TraverseNodes(noderoot, nodev)
5 for node ∈ nodesintermediate do
6 if Type(node) is ”extension” then
7 if IsSplittable(node) then
8 nodeinsert = MatchS3(node, nodescollided)
9 if nodeinsert �= null then

10 nodesinsert.append(nodeinsert)
11 else if Type(node) is ”leaf” then
12 if IsSplittable(node) then
13 nodeinsert = S2Match(node, nodescollided)
14 if nodeinsert �= null then
15 nodesinsert.append(nodeinsert)
16 else
17 nodeinsert = S1Match(node, nodescollided)
18 if nodeinsert �= null then
19 nodesinsert.append(nodeinsert)

20 while New nodeinsert has appended into nodesinsert;
21 return nodesinsert
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when i) the common prefix between the indexing of nodev and
nodeinsert cannot cover the prefix maintained in the extension
node, and ii) the length of the prefix maintained in the
extension node is larger than 1. S3 deepens nodev by 1 layer,
and adds an intermediate node. For example, when inserting
leaf node 11d2dcd (Fig. 6c), extension node (maintaining
111) splits into an extension node 11 and a branch node.

Algorithm 1 presents the process of NURGLE. NURGLE

crafts a list of leaf nodes (i.e., nodesinsert). By inserting in
MPT , nodesinsert expand intermediate nodes by node splitting
and deepen nodev. Specifically, for a given leaf node nodev,
under a predefined timeout, NURGLE collides the indexing of
nodev with aiming to maximize the length of common prefix
between nodev and collided nodes (Line 2). After the timeout,
NURGLE collects all collided nodes in nodecollided. In Line 4,
NURGLE then retrieves all nodes in the path of MPT from
the root node of MPT to nodev (i.e., nodesintermediate). NURGLE

iterates nodes in nodesintermediate to determine whether they
can be split by node splitting (Line 7 and 12). If a node
in nodesintermediate can be split, NURGLE generates the leaf
node nodeinsert for splitting the node, by matching whether
the three strategies are satisfied (Line 8, 13, and 17). NUR-
GLE then collects nodeinsert into nodesinsert (Line 10, 15 and
19). NURGLE will continue the whole procedure (Line 4 -
Line 19), until there are no more new leaf nodes for node
splitting. It is worth noting that, during the whole procedure
(Algorithm 1), to improve the efficiency of NURGLE, we
also record the nodes that can not be split, which helps
NURGLE to directly skip these nodes in Line 7 and 12.

For a leaf node in MPT , Lemma 1 guarantees that NUR-
GLE can deepen the leaf node by triggering leaf splitting.

Lemma 1. Given a leaf node nodev that the length of the
unique part of its indexing is greater than 2, if NURGLE

can collide out nodes nodesinsert whose common prefix length
with nodev is at most x, then nodev can be deepened up to the
layer x+2 (where x+2 is no larger than the maximum depth
of MPT) by inserting nodesinsert in MPT.

Proof of Lemma 1. Under node splitting triggered by NUR-
GLE, the first x nibbles of indexing of nodev will be maintained
in x intermediate nodes, because leaf nodes crafted by
NURGLE can deepen nodev (S1-2) and split the extension
nodes whose maintained prefix length is larger than 1 (S3),
and the length of pointers maintained in a branch node is 1
(§2.3). Hence, nodev locates in the layer x+1 in MPT (i.e., x

intermediate nodes are in front of nodev). NURGLE can then
deepen nodev by 1 layer (i.e, deepening to the layer x+2),
with the length of the common prefix between the indexing

of nodev and the inserted leaf node equaling to x (S1).

To trigger node splitting for a leaf node, NURGLE needs
to craft leaf nodes, whose indexing has a common prefix with
the leaf node, and insert crafted leaf nodes in MPT (S1-3).
However, it is challenging, because indexing of the leaf node
is derived from keccak256 hash computation, and hash al-
gorithm is irreversibility [34] (§1). To address the challenge,
we design new methods to craft leaf nodes triggering node
splitting by colliding the prefix of target leaf node’s indexing.

Specifically, based on the parallel computing of GPUs, we
adopt OpenCL library [35], [36] to collide the indexing by
parallelized computing keccak256 hash (Appendix A.1).
Multi-target hash collision. There are multiple leaf nodes
in MPT , whose indexing is required to be collided by NUR-
GLE. A trivial idea is to collide each leaf node’s indexing

one by one. We denote the counts of hash calculations to
collide a specific indexing as θ. Hence, the expected number
of keccak256 hash calculations required for hash collision
(denoted as Eφ) grows linearly with the number of leaf nodes
whose indexing is required to be collided (denoted as φ), i.e.,
by the trivial method, Eφ = θ × φ. Compared with the trivial
idea, we propose a new multi-target hash collision strategy
to collide all target leaf nodes’ indexing simultaneously, and
by which, Eφ decreases to be as θ × ln(φ).

Lemma 2. Given φ leaf nodes whose indexing is required
to be collided, if NURGLE costs θ keccak256 hash cal-
culations to collide a specific indexing, NURGLE costs θ ×
ln(φ) keccak256 hash calculation to collide all target indexing

simultaneously by multi-target hash collision.

Proof of Lemma 2. According to the multi-target collision
search [37], [38] which investigates how many calculation
counts are required to achieve one collision against multiple
targets, NURGLE costs θ

φ calculations to collide a indexing of
all target leaf nodes. In addition, according to the coupon
collector’s problem [39], Eφ grows with φ as the complexity
of O(n × ln(n)) [39]. Hence, under our multi-target hash
collision strategy, the required calculation counts for achiev-
ing hash collision against all target leaf nodes (Eφ) equals to
the product of the calculation counts for colliding a indexing

of all target leaf nodes ( θφ ) and the complexity of how Eφ

grows (φ× ln(φ)). Hence, Eφ can be derived by Eq. 1.

Eφ =
θ

φ
× φ× ln(φ) (1)

Leaf node insertion. After obtaining the leaf nodes to be
inserted in MPT , NURGLE uses different methods to insert
leaf nodes in State Trie 3 and Storage Tries 4 , respectively,
e.g., transferring 1 wei Ether (i.e., 10−18 Ether) to a target
EOA account. We elaborate on the methods in the following.
• Insert leaf nodes in State Trie 3 . The indexing of a leaf
node in State Trie 3 is derived from the address of an
EOA. Hence, after the hash colliding, NURGLE will finally
determine an EOA in such cases. To insert the corresponding
leaf node in MPT , NURGLE directly sends 1 wei Ether (i.e.,
10−18 Ether) to the EOA account by transactions.
• Insert leaf nodes in Storage Tries 4 . Storage Tries 4 hold
the persistent data for a contract’s storage, and the indexing

of a leaf node in Storage Tries 4 is derived from the slot of
the contract storage. To insert a leaf node in Storage Tries
4 , NURGLE can only modify the data reserved in corre-
sponding slot by interacting with the contract [5]. Please
note that, for a key-value pair in a mapping [40], e.g., k and
v, v stores in a storage slot, and the slot is derived from k by
keccak256 hash computation. Hence, to insert a leaf node
corresponding to a specific slot, NURGLE crafts elements
(e.g. k) in mappings of contracts. Specifically, after hash
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Figure 7: The implementation consists of seven steps. Step
1© and 2©: NURGLE extracts the list of all accounts 1 and
MPT 2 from blockchain. Step 3©: The indexing retriever
3 retrieves target accounts from the list of all accounts 1 .
Step 4©: The indexing retriever 3 locates target leaf nodes
in MPT 2 , and derives indexing of them. Step 5©: The index-
ing retriever 3 forwards derived indexing to the computing
unit 4 for colliding indexing. Step 6©: The computing unit
4 generates the crafted data (e.g., addresses of accounts)
from indexing with the desired prefix, and sends the crafted
data to agent contract 5 . Step 7©: The agent contract 5
manipulates MPT by inserting crafted leaf nodes.

colliding, NURGLE determines the parameters [41], [42] to
invoke a function in the target contract, which will update
data in the target slot (corresponding to the target leaf node
in Storage Tries 4 ). Taking ERC20 token contract [43]–[45]
as an example, NURGLE finally determines the parameters
for invoking transfer() by transferring the smallest unit of
token (e.g., 10−6 USDT) to a target account address, where
transfer() inserts the crafted leaf node in Storage Tries
4 , and set the data of the desired slot to be 1.
Optimization strategy. To launch NURGLE, its cost should
be considered (§3). Expanding intermediate nodes asso-
ciated with all accounts is impractical, because there are
billions of leaf nodes in MPT , and the corresponding cost
is beyond the limited computing resources and assets of
the adversaries in our model (§3). To reduce the cost, we
propose an optimized strategy of NURGLE to only deepen
the leaf nodes associated with active accounts. Active ac-
counts are the accounts that keep conducting frequent trades
over a period of time [8], and they can be trivially captured
by querying the frequency of each account being accessed
and modified from blockchain. According to the captured
list, adversaries can strategically delineate the range of leaf
nodes deepened by NURGLE, e.g., the leaf nodes associ-
ated with the accounts modified no less than six times
in a specific range of time. Since nodes associated with
active accounts are keeping updating the reserved data, the
resource consumption brought by NURGLE will be further
exacerbated with limited cost.

5.2. The implementation of NURGLE

Fig. 7 shows the overview of NURGLE’s implementation.
There are seven steps in NURGLE encompassing three core
portions: i) Blockchain serves as the data source and attack
target. ii) Probe engine analyzes the accounts information
and MPT , and retrieves the indexing of target leaf nodes.
iii) Attack module wields computing resources to generate

the crafted data from the retrieved indexing, and invokes the
agent contract to insert the crafted leaf nodes into MPT . We
portray the implementation of NURGLE by steps 1© to 7©.

Blockchain. In Step 1© and 2©, NURGLE collects the list of
all accounts 1 and MPT 2 from blockchain. The account
list 1 is used to capture active accounts. Besides, we record
the frequency of each account being accessed and modified
in the account list 1 . MPT 2 is used to retrieve the indexing

of active accounts’ leaf nodes for proliferating intermediate
nodes. We instrument logic of 1© and 2© in blockchain
client, and run the client in real-time for data collection.

Probe engine. Probe engine retrieves indexing of target leaf
nodes by analyzing the list of accounts 1 and MPT 2 ,
and NURGLE aims to trigger node splitting and proliferate
intermediate nodes associated with the leaf nodes. In Step
3©, Probe engine first retrieves active accounts from the
account list 1 . We determine an active account when the
frequency of it being modified and accessed is larger than a
threshold (e.g., 6) in a specific block range [8]. In Step 4©,
the indexing retriever 3 retrieves the leaf nodes and their
indexing corresponding to active addresses from MPT (§5.1).
In step 5©, the indexing retriever 3 sends obtained indexing

to the Attack module for the computing of hash collision.

Attack module. The Attack module generates the corre-
sponding crafted data through the computing unit 4 , and
then inserts the crafted leaf nodes into MPT through the
agent contract 5 . Computing unit 4 utilizes GPU resources
for hash computing. The agent contract 5 is deployed by
the adversary, and Fig 8 displays the code snippet of the
agent contract. In step 6©, NURGLE leverages the computing
unit 4 to collide indexing with desired prefix to generate the
crafted data (e.g., the address of an account). Computing
unit 4 then sends the crafted data to the agent contract 5 .

1 contract NurglePrototype{
2 function NurgleState(address payable[] memory

Payloads) payable public{
3 uint256 len = Payloads.length;
4 for(uint256 i=0; i < len; i++){
5 bool result=Payloads[i].send(1);}}
6 function NurgleStorage(address dst, bytes4 funcsig,

bytes[] memory Payloads, uint num) public {
7 uint256 len = Payloads.length/num;
8 for(uint256 i=0; i < len; i++){
9 bytes memory encode=abi.encodePacked(funcsig);

10 for(uint256 j=num*i;j <num*i+num;j++){
11 encode=abi.encodePacked(encode, Payloads[j]);}
12 dst.call(encode);}}}

Figure 8: Code snippet of agent contract. NurgleState()

(Line 2-5) inserts the crafted leaf nodes into State Trie 3
by sending 1 wei Ether to target accounts. NurgleStorage()
(Line 6-12) inserts crafted leaf nodes on Storage Tries 5 . As
the logic of how smart contracts access their Storage Tries
5 can be distinct, NurgleStorage() allows the adversary to
customize: i) dst, the callee contact, ii) funcsig, the func-
tion to be invoked, and iii) Payloads, the parameters for in-
voking the function. In Line 9-11, NurgleStorage() splices
funcsig and Payloads. In Line 15, NurgleStorage() in-
vokes dst with crafted payload, which executes the logic of
dst to insert the leaf nodes on Storage Tries 5 .
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TABLE 2: Time cost for NURGLE to collide different lengths of desired prefix for an indexing.

Digits Crafted data (hex encoding) indexing (hex encoding) Time cost

1 0x51b0e4b84afc9c7e935fd1c54409abda46ffff07 0x109999afd60b733da226a060260c2d9f165f0f33516c5a3230d2b9538ae197e7 <1s
2 0x7c0caee5b72d0c71a090c6f02522e89acfffff07 0x11fb9e6a64c5a7c23fb27d08e3d74ea1018fcb0c60d2010cca6c6654dd95e4b8 <1s
3 0x8f5ea3c9db43de4143e5717f44dcb43e05d0fe07 0x1110dc62b86ce4609e860381909da5480d46b2e90ea19c5afac287be805c234b <1s
4 0xbd6f8cba28b4a0218d0aedbc820a27248ee4fe07 0x111165e10752633a1ab85c219c618d6c6e6259fdb7c8d2397df9cb72d16e4149 <1s
5 0xfccedcfd14858e8b1baf9a497e99af468012b507 0x111110e0c5d11a713c428c42a03a5a7c55d66c0e61158ef13a63776b94d384d0 <1s
6 0x58b91f9cb0ffacae5d95c9e80c373d264993cc06 0x111111078c719cdc5abc2195b645a72ba7dd4d15b12ab9cce3361466c402df69 <1s
7 0x89f25e63c12c48a95c22cd4b19585f337a805f06 0x111111106b6090ca5f7027a7539dc73173e26a35b28645b47d4878db6bbddd62 <1s
8 0xa0f0722109f07edd76cc1d2b29cfbc0122ca2b06 0x11111111ce35790ede4c97cc847e55c91c0b3063f5cb56ab6ab93ee76381fa6a <1s
9 0x97637e992f835689667a48a0731ce1ebb44dc006 0x1111111110b3bf4ed6dc409fb20328970a0f23dac93761a4347fcd4c84dfe8cc 53s
10 0x2f1033b78f8fb3c04259202793d2d89169326d02 0x1111111111ce8bad4529bfef324c88454fe4e72c3cd3974c0249c9adc764802a 21.68m
11 0x267a239f1986295e996358a79f57b473ae264d05 0x1111111111100822f67e0319be36eb814ade0ca60c65c62b41641e889eb48ad8 2.8h
12 0xd4dfd776a81fcdfa2d601f1efa31a2ad8c21fe06 0x111111111111834eea3006374356f398b29f9b709272533e759348f0bb07aa11 12.57h
13 0xdf04b72b67666a59ff30c06dd079f1850b36ba04 0x1111111111111ca536d3de683a3ab986f631ee733132457eccc0d9a011aa9e55 24.58h

In Step 7©: The agent contracts 5 insert crafted leaf nodes
into MPT by invoking its functions (i.e., NurgleState()

and NurgleStorage()). NurgleState() (Line 2-5) inserts
crafted leaf nodes in State Trie 3 by sending 1 wei Ether
to target accounts. NurgleStorage() (Line 6-12) inserts
crafted leaf nodes in Storage Tries 5 by invoking specific
functions of target contracts (e.g., transfer() function of
ERC20 token contract) with crafted payload.

6. Evaluation

We answer four research questions for evaluating NUR-
GLE’s cost and impact. RQ1: How do computing resources
influence the attack impact of NURGLE? RQ2: How severe
is the attack impact of NURGLE on the current blockchain?
RQ3: How is the economic feasibility of NURGLE? RQ4:
Will NURGLE threaten the current blockchain in practice?

Experimental setup. We evaluate NURGLE on a server
with an Intel Xeon Gold 5218R CPU (2.10 GHz, 10 cores),
64 GB RAM, 1 TB SSD, and single RTX3080 GPU. We
adopt a go-ethereum client at v1.11.6 [46] to measure the
consumed resources of blockchain. We evaluate the impact
of NURGLE on blockchain by the time cost of state modifi-
cation, because it can comprehensively reflect the consumed
resources, e.g., CPU computation, and the load and read
for memory and disk, during state modification [7]. Please
note that we do not explicitly distinguish modifying and
maintaining state, since they are interwoven in OP1-4.

6.1. How do computing resources affect NURGLE?

NURGLE crafts leaf nodes that contain a common prefix
with a target leaf node, and inserts the crafted leaf nodes
to deepen the target leaf node and proliferate intermediate
nodes, causing extra consumed resources in modifying and
maintaining MPT (OP1-4) (§5.1). Besides, according to
Lemma 1, for a leaf node, if NURGLE can craft another leaf
node that contains a common prefix with the target node at
the length of x, and then NURGLE can deepen the target
leaf node to the layer x+2. Hence, the larger x that NURGLE

can find out, the deeper the target node can be deepened
(i.e., x+2). Therefore, to assess capability of NURGLE under
the different cost of computing resources, we evaluate the

required computing resources of the adversary for colliding
the different lengths of the common prefix.

To uniform the comparison of consumed computing
resources, we fix hardwares used to conduct NURGLE (e.g.,
single RTX3080 GPU), and estimate the required computing
resources by utilizing the cost time for NURGLE to collide
a desired prefix at different lengths. In our evaluation, we
launch NURGLE to collide an indexing, i.e., 0x1111..1111,
for demonstration. Besides, our evaluation relies on a prac-
tical assumption that the adversary adopts a brute force
strategy to collide the target prefix (cf. details in Ap-
pendix A.1) [47]. Under the fixed computing resources (e.g.,
single RTX3080 GPU), NURGLE can conduct 1.90 billion
hash calculations per second, and we record the time cost
until NURGLE successfully crafts the target prefix. Table 2
shows our experimental results. In Table 2, the first column
lists the length of the desired prefix in hash collision, the
second column lists the final data crafted by NURGLE, the
third column lists the corresponding indexing derived by the
crafted data in the second column, and the fourth column
lists the time cost for NURGLE to collide the desired prefix.
As a result, under a reasonable consumption of computing
resources, the adversary can collide out a desired prefix at
the length of 13, which will deepen the target node to the
layer 15 (Lemma 1 in §5.1). Please note that, the adversary
can shorten the time cost of NURGLE by just deploying
more GPUs or switching more powerful GPUs.
Answer to RQ1: Computing resources affect the length of
the collided prefix for a target indexing crafted by NURGLE.
Under a reasonable consumption of computing resources,
NURGLE can craft a desired prefix at the length of 13, which
can deepen the target node to the layer 15 in MPT.

6.2. How does NURGLE threaten blockchains?

Estimating attack impact. Time cost of blockchain for
modifying and maintaining its MPT (i.e., OP1-4 in Table 1)
linearly increases with the number of nodes in MPT involved
in modifying and maintaining state. Hence, we can estimate
the overhead raised by NURGLE in state modification and
maintenance according to the number of nodes in MPT pro-
liferated by NURGLE. Specifically, we assume that NURGLE

deepens several leaf nodes, and Eq. 2 derives the overhead
(i.e., Fnurgle) in updating and maintaining deepened leaf
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Figure 9: The nodes in MPT without and under the attack.

nodes in MPT brought by NURGLE. Fnurgle is obtained by
dividing i) the number of nodes involved in handling (i.e.,
updating and maintaining) deepened leaf nodes in MPT
under the attack by ii) the number of nodes involved in
handling deepened leaf nodes in MPT without the attack.
In Eq 2, NumStateTrie and NumStorageTries are denoted as the
number of nodes involved in handling deepened leaf nodes
in State Trie 3 and Storage Tries 4 without the attack,
respectively. Besides, Num’

StateTrie and Num’
StorageTries are de-

noted as the number of corresponding nodes in State Trie 3
and Storage Tries 4 under the attack, respectively. Please
note that, nodes in MPT can be partitioned into two parts,
i.e., nodes in State Trie 3 and nodes in Storage Tries 4
(§2.2). Therefore, the number of nodes in MPT involved in
handling deepened leaf nodes in MPT without and under
the attack of NURGLE are NumStateTrie+NumStorageTries and
Num’

StateTrie+Num’
StorageTries, respectively.

Fnurgle =
Num

’
StateTrie+Num

’
StorageTries

NumStateTrie+NumStorageTries
(2)

Num
’
StateTrie = NumStateTrie+NumAccount × (dnurgle-dbase) (3)

Num
’
StorageTries=NumStorageTries+NumSlot × (dnurgle-dbase) (4)

The number of nodes involved in handling deepened leaf
nodes in MPT can be trivially obtained by traversing MPT .
In addition, we also present models to estimate Num’

StateTrie

(Eq. 3) and Num’
StorageTries (Eq. 4), which can be used by

adversaries to estimate the attack impact by Eq. 2 before
launching NURGLE. Specifically, the number of nodes in-
volved in handling deepened leaf nodes under the attack is
the sum of i) the number of corresponding nodes without
the attack, and ii) the number of proliferated intermediate
nodes involved in handling deepened leaf nodes. Besides,
the above proliferated intermediate nodes can be derived by
the product of i) the number of deepened leaf nodes (i.e.,
NumAccount in State Trie 3 and NumSlot in Storage Tries 3 ),
and ii) the number of layers that the leaf nodes are deepened
(i.e., dnurgle-dbase). In Eq. 3 and Eq. 4, dnurgle and dbase refer
to the layers where corresponding leaf nodes are located
after and without the attack, respectively. For Fig. 9 as an
example, three leaf nodes are involved in state modification
in the State Trie 3 , and NURGLE deepens them by two
layers. Without the attack, NumStateTrie equals to 6. Besides,
NumAccount equals to 3, and dnurgle-dbase equals to 2. Hence,
according to Eq. 3, Num’

StateTrie equals to 6 + 3 × 2, i.e.,

12. It means that NURGLE causes 200% overhead (12/6)
for maintaining and updating the three leaf nodes.
Evaluating attack impact. We evaluate attack impact in the
fork of Ethereum, because it is the most popular blockchain
under threats of NURGLE. Specifically, we synchronize
an instrumented client [46] to capture the transactions of
Ethereum from the block height of #14.99M to #15M (i.e.,
10,000 blocks). By replaying captured transactions in corre-
sponding blockchain state [48]–[50], we retrieve the nodes
in MPT involved in state modification in the transactions.
Specifically, we retrieve 7,116,002 nodes from State Trie 3
and 6,506,806 nodes from Storage Tries 4 , which contain
712,565 and 2,041,719 leaf nodes, respectively. We then
launch NURGLE in our forked MPT of Ethereum at the
block height of #15M to deepen the retrieved leaf nodes to
the layer 15. Finally, we traverse MPT to count how many
intermediate nodes are proliferated by NURGLE, which will
be involved in the state modification of previously retrieved
leaf nodes. As a result, we find that the number of prolif-
erated intermediate nodes is 1.11 times of all the retrieved
nodes. It means that, under the attack, the time of state
modification from #14.99M to #15M consumes more 111%
resources, because it requires handling more 111% nodes
proliferated by NURGLE. Besides, for all future transactions
involving the nodes added by NURGLE, the time cost of
their state modification is persistently raised. Please note
that the majority of blockchain execution time is consumed
by interactions with MPT (§4.1). Hence, the increase in the
number of nodes involved in MPT can raise a considerable
overhead on the execution performance of the blockchain,
leading to performance degradation in the blockchain.

We further validate whether we can successfully estimate
the attack impact. Specifically, the values of the six pa-
rameters (i.e., NumAccount, NumStateTrie, NumSlot, NumStorageTries

dbase, and dnurgle) from our captured transactions are 712,565,
7,116,002, 2,041,719, 6,506,806, 9.5, and 15, respectively.
To simplify the estimation of attack impact, we have aver-
aged out the dbase. Based on the six parameters, we derive
that the corresponding FNurgle equals to 2.112. Our models
estimate that there are more 111.2% nodes proliferated
by NURGLE, causing 111.2% more consumed resources in
handing MPT . Our results validate that our models estimate
the impact of the attack almost perfectly (difference < 1%).
Answer to RQ2: NURGLE significantly degrades the exe-
cution performance of blockchain.

6.3. How much does NURGLE cost?

The cost of leveraging NURGLE is an essential metric
for a financially rational adversary. According to §3, the cost
of NURGLE (denoted as Gnurgle) consists of two parts, i.e.,
Ggpu, the cost of computing resources (mainly GPUs [51])
for the calculation of hash collision (§5.1), and Ggas, the
cost of gas fee for submitting attack payloads to blockchain
via transactions. Besides, Ggpu is derived by the product of
i) Numgpu, the number of GPUs utilized by adversaries, ii)
Timehours, the hours of renting GPUs from GPU markets [52]
by adversaries, and iii) Pricegpu, the USD price for renting
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TABLE 3: The cost of NURGLE on seven different blockchains

Blockchain Pricecoin (USD) Pricegas Ggas (USD) Ggpu (USD) Gnurgle (USD)
Optimized

Ggas (USD)
Optimized

Ggpu (USD)

Optimized
Gnurgle (USD)

Ethereum 1,812 22.5 G wei 11,808,917.46 39.6 11,808,957.06 413,312.11 33 413,345.11
Binance Smart Chain 252.71 2.71 G wei 198,360.95 39.6 198,400.55 6,942.63 33 6,975.63
Heco 2.81 2.5 G wei 2,034.77 39.6 2,074.37 71.21 33 104.21
Polygon 0.71 206.30 G wei 42,596.22 39.6 42,635.82 1,490.86 33 1,523.86
Optimism 1,812 9.35×10−8 G wei 0.049 39.6 39.649 0.0017 33 33.0017
Avalanche 22.66 27.76 n AVAX 182,200.15 39.6 182,239.75 6,377.00 33 6,410.00
Ethereum Classic 16.52 1.17 G wei 5,596.96 39.6 5,636.56 195.89 33 228.89

Due to the volatility of cryptocurrency and gas prices, we have calculated their average values over a one-week period, spanning from June 6, 2023, to June 12, 2023.

a GPU in GPU markets. Please note that, when multiple
GPUs are required in launching NURGLE, it is reasonable
for adversaries to minimize the cost by renting GPUs from
GPU markets (e.g., [52]) for a short period of time [51].
Furthermore, according to the specifications of gas mech-
anism [5], Ggas is derived by the product of i) Pricegas, the
cryptocurrency (e.g., Ether) price of a unit of gas, ii) Unitsgas,
the units of consumed gas for executing the transactions
containing attack payloads, and iii) Pricecoin, the USD price
of the cryptocurrency. We present corresponding equations
for assessing the USD cost of NURGLE in Eq. 5 - Eq. 7.

In the rest of this section, we estimate the cost of
NURGLE on seven mainstream blockchains (§6.3.1), and
evaluate how the cost of NURGLE can be optimized (§6.3.2).

Gnurgle = Ggas + Ggpu (5)

Ggpu = Numgpu × Timehours × Pricegpu (6)

Ggas = Pricegas × Unitsgas × Pricecoin (7)

6.3.1. Cost for attacking seven blockchains. We demon-
strate NURGLE’s attack towards seven popular blockchains
(i.e., Ethereum, BSC, Heco, Polygon, Optimism, Avalance,
and Ethereum Classic) [53], and measure corresponding
attack cost of NURGLE. Since node numbers and layers
in MPT of the seven blockchains are distinct, according to
§6.1, the attack impact of NURGLE is different on the seven
blockchains. To uniformly and fairly compare the cost of
NURGLE on different blockchains, we fix the attack impact
of NURGLE on different blockchains. Specifically, we reuse
the attack impact for the attack launched by us in §6.2 on
each blockchain to measure the cost of launching NURGLE.

We further derive actual values for parameters in Eq. 5
- Eq. 7 on seven blockchains in the following. Since the
attack impact is fixed, the corresponding attack procedure
of NURGLE should also be fixed, e.g., the procedure of
hash collision (§5.1). Hence, for the same attack impact
on different blockchains, the cost of computing resources
(i.e., Ggpu) is the same. Specifically, according to §6.2,
there are 2,754,284 (712,565 + 2,041,719) leaf nodes in
MPT to be collided for being deepened by NURGLE. To
conduct the hash collision for the leaf nodes, according to
Lemma 2 and experimental results in §6.1, adversaries need
to rent 33 RTX3080 GPUs for a period of 12 hours at least
(cf. details in Appendix B.2). We obtain the corresponding
price of GPU rental from [52], i.e., 0.1 USD/hour for
renting a GPU. Therefore, to launch the attack in §6.2,
Ggpu is 39.6 USD (0.1 × 33 × 12). Furthermore, since
the seven blockchains are compatible with Ethereum and

adopt the same gas mechanism, the units of gas consumed
for executing the transactions containing attack payloads
are also the same. Specifically, during the attack in §6.2,
after forwarding attack payloads to the agent contract 5 ,
the agent contract 5 executes its logic to insert crafted leaf
nodes (§5.1) deepening the target 7,425,484 leaf nodes to the
layer 15. As a result, it costs 289,647,227,381 units of gas.
We further acquire the price of cryptocurrency (i.e., Pricecoin)
and the cryptocurrency price of a unit of gas (Pricegas) of
each blockchain from corresponding dashboards (e.g., [53],
[54]). Since Pricecoin and Pricegas are volatile over time, we
average out them in a period of one week.

Based on the derived parameters in Eq. 5 - Eq. 7, we
list the detailed cost of NURGLE on different blockchain
in Table 3. The second and third columns list the price of
cryptocurrency and the cryptocurrency price of a unit of
gas for each blockchain. For example, Pricecoin of Optimism
is 1,812 USD, and Pricegas of Optimism is 9.35×10−8.
The fourth, fifth, and sixth columns list Ggas, Ggpu, and
G NURGLE for launching NURGLE on different blockchain. For
example, to degrade the performance of Optimism to 47%
of original performance for a period of 10,000 blocks (§6.2),
it only costs 39.64 USD for launching NURGLE.

6.3.2. Cost optimization. According to Table 3, the high
gas fee leads to the expensive cost, e.g., the cost is over 11M
USD on Ethereum. Inspired by active accounts (§5.1), we
adopt an optimized strategy to decrease the cost of NUR-
GLE by only deepening leaf nodes associated with active
accounts, costing less and achieving a trade-off between
attack impact and cost of NURGLE. Active accounts are
accounts conducting frequent trades over a period of time
(§5.1), hence, the leaf nodes associated with them are the
most frequently modified and accessed leaf nodes in MPT .

We further inspect the 2,754,284 leaf nodes deepened
by NURGLE during the attack in §6.2. It shows that
2,103,558 of them (i.e., 361,703 and 1,741,855 leaf nodes
in State Trie 3 and Storage Tries 4 ) are only modi-
fied and accessed once among transactions of the 10,000
blocks (§6.2). Compared with the leaf nodes, the other
650,726 leaf nodes (2,754,284-2,103,558) have been col-
lectively modified and accessed 5,321,926 times. Hence,
if NURGLE only deepens the 23.63% (650,726/2,754,284)
leaf nodes, the attack impact of NURGLE retains 71.67%
(5,321,926/(2,103,558+5,321,926)) of original attack im-
pact. Besides, NURGLE’s Ggas is only 19.61% of original
Ggas (§4.1). Please note that, the cost of deepening leaf

nodes in State Trie 3 and Storage Tries 4 is different
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TABLE 4: Cost optimization based on active accounts

Count Retained impact Retained cost Optimized Ggas (USD)

1 100.00% 100.00% 11,808,917.46
2 71.67% 19.60% 2,314,547.82
4 58.16% 5.76% 680,193.64
6 54.66% 3.50% 413,312.11

(Appendix B.1). We enumerate other cases in Table 4 for
launching NURGLE on Ethereum. For example, if NURGLE

only deepens the leaf nodes modified and accessed no less
than 6 times, Ggas of NURGLE is 3.5% of original Ggas,
and the retained impact is 54.66% of original attack impact.
As a result, we provide the optimized cost (e.g., Ggas) of
NURGLE on the seven blockchains in Table 3 in the cases
that NURGLE only deepens the leaf nodes associated with
the active accounts modified and assessed no less than 6
times. Since the number of leaf nodes deepened by NURGLE

decreases, the corresponding Ggpu also reduces to 33 USD
accordingly (Appendix B.2). It shows that, by optimized
strategies based on active accounts, the cost of NURGLE

on Polygon reduces from 42,596.22 USD to 1,523.86 USD,
retaining 54.66% of original attack impact.

Baseline comparison. We compare the cost of creating
spam transactions that result in the same attack impact as
NURGLE with optimized strategies. Specifically, for each
block within the range of #14.99M to #15M, we iteratively
submitted transactions sampled from Ethereum to the block,
ensuring that the number of MPT nodes handled in the
submitted transactions aligned with the number of MPT
nodes proliferated by NURGLE. As a result, the baseline
costs 3,826,037.45 USD on Ethereum, which is 9.25 times
higher than NURGLE with optimized strategies in Table 3.

Answer to RQ3: NURGLE’s cost depends on the gas fee,
and is reasonable for most cases, and our optimization
strategy further minimizes the cost of NURGLE.

6.4. Can NURGLE threaten blockchain in practice?

Compared to demonstrating NURGLE in controlled en-
vironments [6], we choose to determine whether NURGLE

can threaten the current blockchain in practice. Please note
that, unlike previous studies [2], [25], [26] that only have
non-persistent attack impact, the impact of NURGLE will
be persistent in the blockchain. This is because NURGLE

persistently proliferates the intermediate nodes in MPT , and
persistently exacerbates resource consumption for the main-
taining and updating of MPT . Therefore, due to ethical con-
cerns and inspired by previous studies [2], [26], we choose
to launch NURGLE on blockchain testnets, i.e., Ethereum
Sepolia testnet [55] and BSC testnet [56]. Please note that
testnets set the closest environment to the practice, and it is
built for researchers and developers to conduct experiments
without risk to real funds or the main chain [57]. Consid-
ering that there are other developers and researchers who
are active in the testnet, we further minimize the potential
ethical issues by carefully adjusting attack parameters from
scratch to light the attack impact on testnets.

(a) The tendency of involved MPT nodes of Ethereum testnet.

(b) The tendency of involved MPT nodes of BSC testnet.

Figure 10: During the exploitation, NURGLE proliferates
intermediate nodes in MPT , and deepens leaf nodes, leading
to an increase in the number of MPT nodes to be modified
to update a leaf node. NURGLE can cause about 32% and
39.4% more MPT nodes to be involved in state modification
per block in Ethereum testnet and BSC testnet, respectively.

In our evaluation, we synchronize blockchain clients to
obtain latest state of the two testnets. We launch NURGLE

to exploit the two testnets by following the seven steps of
NURGLE (§5.2). Specifically, NURGLE first extracts the list
of all accounts 1 in the two testnets and MPT of two
testnets 2 . We next leverage indexing retriever 3 to retrieve
the target leaf nodes and their indexing. After computing
unit 4 crafts the leaf nodes to be inserted for proliferating
the intermediate nodes, we forward the crafted data to our
agent contracts (i.e., 0xc8f2...199d in Ethereum testnet and
0xc062...a163 in BSC testnet) 5 to finalize the attack.

We launched the attack of NURGLE on the Ethereum
(resp. BSC) testnet at the block height of #3,541,798 (May
23, 2023) (resp. #34,156,452 (Oct. 13, 2023)), and ceased
the attack at the block height of #3.59M (Jun. 1, 2023) (resp.
#34.17M (Oct. 13, 2023)). During the whole exploitation of
NURGLE, we forwarded attack payloads to agent contracts
5 by 330 (resp. 53) transactions, and we inserted 100 leaf
nodes into State Trie 3 in MPT for each transaction. Fig. 10
shows our experimental results, and it depicts the tendency
of the number of nodes in MPT to be modified to update
a leaf node. Specifically, during the exploitation, NURGLE

proliferates intermediate nodes in MPT , and deepens leaf
nodes, leading to an increase in the number of nodes in
MPT to be modified to update a leaf node. As mentioned
in §4.1, the consumed resources (e.g., the time cost) for
state modification (e.g., OP1-4) linearly increases with the
number of involved nodes. Hence, Fig. 10 indicates that
the state modification is significantly exacerbated by the

2191

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17,2025 at 12:56:33 UTC from IEEE Xplore.  Restrictions apply. 



exploitation of NURGLE. To obtain a comprehensive un-
derstanding of the impact of NURGLE’s exploitation on the
testnet, we further investigate the performance overhead of
the blockchain brought by NURGLE. As a result, during
the attack against Ethereum (resp. BSC) testnet, 32% (resp.
39.4%) more nodes in MPT are involved in state modifi-
cation per block, besides, NURGLE raises the cost time of
state modification by 15% (resp. 18%). We further evaluate
the overall performance degradation caused by NURGLE by
using the Metrics module [58], which enables us to collect
execution information about blockchain clients. As a result,
NURGLE results in a 10.7% (resp. 12.4%) rise in end-to-end
execution time of Ethereum (resp. BSC) testnet.

Answer to RQ4: NURGLE threatens blockchain by causing
more nodes involved in state modification, and raises the
cost time of the overall blockchain execution.

7. Discussion

7.1. Practical attack impact of NURGLE

NURGLE can threaten blockchain in seven aspects.

i) As the ever-evolving blockchains [20], attack scenarios
of NURGLE are extremely rich, especially the emerging
blockchains. Taking a newly deployed blockchain as an
example, and assuming that its leaf nodes in MPT are in
the layer 5, NURGLE can deepen a leaf node to the layer
15 (§6.1), thereby proliferating extra 10 intermediate leaves
for the blockchain to updating the leaf node.

ii) The impact of NURGLE on blockchain is persistent,
and the victim blockchain will be impacted by manipulated
MPT in all subsequent blocks by the nodes proliferated by
NURGLE. Besides, according to §6.1, the attack impact of
NURGLE can be further exacerbated by adversaries with
more powerful computing resources (e.g., GPUs).

iii) NURGLE delays users in using blockchain and AUX
(e.g., flashbot [59], [60], infura [61], ENS [62]) in providing
services, because NURGLE exacerbates resource consump-
tion of blockchain, and increases the time cost for maintain-
ing and updating MPT . For example, an AUX like infura
can only provide their services after they finish the delay of
updating the latest state in MPT .

iv) Since NURGLE can delay the processing of user transac-
tions, attackers can launch the delay attacks [63] to threaten
the liveness of the layer 2 rollups. Specifically, attackers
can utilize NURGLE to slow down the confirmation of the
transactions for verifying the validity of layer 2 transactions.

v) NURGLE threatens the consensus security of blockchain
by increasing the execution costs of running blockchain
nodes, which subsequently results in reducing the number
of nodes participating in the blockchain network [26].

vi) NURGLE erodes trust in the affected blockchains, leading
to a decline in the value of their cryptocurrencies [25].

vii) The overhead of blockchain execution raised by NUR-
GLE (e.g., the 10.7% overall performance degradation in
§6.4) can waste the energy of all blockchain nodes.

As mentioned in §6.1, computing resources (i.e., GPUs)
of adversaries influence the attack impact of NURGLE. Con-
cretely, computing resources affect the depth of target leaf
nodes in MPT deepened by NURGLE, and the number of
intermediate nodes proliferated by NURGLE, which finally
impacts how much the resource consumption in MPT will
be exacerbated to impair the blockchain’s performance. Our
evaluation on NURGLE suffers some limitations that we do
not explore the best attack impact of NURGLE, because we
choose to evaluate the attack impact of NURGLE under a
reasonable resource cost of NURGLE (§6.1). Hence, our ex-
perimental results should be considered as the lower bound
of the potential attack impact brought by NURGLE.

7.2. On-demand attacks of NURGLE

Instead of one-time short exploitation, it is also feasible
to control NURGLE on demand. During the on-demand
attacks, attackers can craft several deeper leaf nodes con-
trolled by themselves in advance, and only update it to
slow down transactions when needed. We further evaluate
the impact and cost of on-demand attacks by examining
two distinct on-demand attacks, each targeting users of
different contracts. Our experimental results demonstrate
that on-demand attackers can slow down user transactions of
specified contracts by crafting attack payloads in advance.
Besides, while implementing attacks with the same impact
(e.g., slowing down all user transactions), the attack cost
depends on the logic of involved contracts. In the following,
we elaborate on how we evaluate the two on-demand attacks
and the detailed experimental results.
• In the first attack, the adversary slows down all users of
an AMM (Automated Market Maker) contract [64], where
users can exchange two specific tokens with the AMM
contract. Since the token balances of the AMM contract
will update when users interact with it, the adversary can
deepen the two leaf nodes storing the token balances of the
AMM contract for the two tokens to slow down all user
transactions. The cost of transaction fees is 4.06 USD on
Ethereum, and the cost of computing resources is 4.32 USD.
• In the second attack, the adversary delays all users of a
token contract. Since, for each transaction, only the token
balances of the users in the current transaction will update,
the adversary needs to deepen all the leaf nodes storing all
users’ token balances to slow down all user transactions. In
our experiments, the token contract has 10,000 users. Hence,
the cost of transaction fees is 20,154.95 USD on Ethereum,
and the cost of computing resources is 23.56 USD.

7.3. Feasible mitigations against NURGLE

In the following, we detail the three feasible mitigations,
and discuss their advantages and disadvantages.
i) Verkle tree [65]. Verkle tree mitigates the impact of NUR-
GLE by indexing fewer nodes in its tree structure and adopt-
ing a swifter authenticated method [65]. First, compared
with the prefix tree in MPT structure, the structure of verkle
tree is designed to be flatter, which compresses the distance
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from the leaf node to the root node. The verkle tree alleviates
the volume of nodes to be updated and verified associated
with OP1 and OP2 (§4.1). Second, verkle tree adopts a
polynomial commitment scheme [66] rather than the hash-
style vector commitment of MPT structure [5]. During the
verification for the latest state, the polynomial commitment
reduces the number of nodes to be verified [66]. Verkle
tree has the advantage of consuming fewer resources when
accessing a leaf node by involving fewer intermediate nodes.
However, the advantage comes at the cost of increased space
wastage in Verkle tree, as each node consumes more space.
For instance, a branch node in Verkle tree, which includes
256 pointers, occupies nearly 16 times more space than a
branch node in MPT , which only has 16 pointers.
ii) Trimming historical state (EIP-4444) [67]. EIP-4444
eases NURGLE’s impact by periodically reducing MPT’s
size. Specifically, MPT will undergo pruning by retaining
the state of blockchain for nearly one year. Ethanos [8]
has carried out its implementation in a similar manner.
Trimming historical state has the advantage of reducing the
storage space required by a blockchain node by eliminating a
portion of its historical state. However, the mitigation comes
with the disadvantage that the blockchain node cannot con-
duct complete security verification of the whole blockchain
state due to the elimination of the historical state.
iii) New patch for gas mechanism. We plan to propose
a new Ethereum improvement proposal (EIP) for the gas
mechanism to defend against NURGLE. In our EIP, gas fee
of transactions will be equivalent to actual consumed re-
sources, e.g., considering the consumed resources for mod-
ifying nodes in MPT . The mitigation has the advantage of
implementing a fairer gas mechanism. The adjusted mech-
anism ensures that the gas fee for transactions corresponds
directly to the actual resources consumed when modifying
nodes in the MPT. However, the mitigation can introduce
new attack vectors. For instance, an adversary can exploit
the adjusted mechanism by proliferating intermediate nodes
to popular contracts, thereby increasing gas fees for all
users of the contracts. Hence, it is crucial to examine the
implementation of the third mitigation thoroughly.

7.4. Vulnerability disclosure

At the time of writing, 588 blockchains compatible with
the Ethereum ecosystem (§2) are directly under the threats
of NURGLE. Besides, we reveal that other 153 blockchains
compatible with the Polkadot ecosystem [22] are also threat-
ened by NURGLE, because Polkadot also adopts the MPT
structure to handle state storage similar to Ethereum (§2).
However, there are two major differences between Polkadot
and Ethereum. i) Hash algorithm. Polkadot utilizes xxhash
algorithm [68] instead of keccak256 algorithm [23] in their
blockchain design, e.g., they use xxhash to derive the indexing

of its leaf nodes. ii) Fee mechanism. Polkadot adopts the
weight-based mechanism to cost fee for transactions rather
than gas mechanism adopted in Ethereum. Concretely, trans-
action fee is adjusted according to the congestion cost of
the block. We enumerate the above vulnerable blockchains

under NURGLE in Appendix C.1. We will explore the hash
collision of NURGLE (§5.1) against xxhash algorithm and
optimize attack parameters against the fee mechanism of
Polkadot to further investigate the vulnerability of Polkadot
under NURGLE as our future work.
Ethics concerns. We reported vulnerabilities brought by
NURGLE to seven mainstream blockchains with high market
capitalization before the paper submission. At the time of
writing, we have received responses from six of them, con-
firming the vulnerabilities and rewarding us with thousands
of USD bounty. Furthermore, before the publication, we
reported the vulnerabilities to all other affected blockchains.
Currently, an additional 16 teams from the newly reported
blockchain teams have responded with positive acknowl-
edgments. We present the details of their responses in Ap-
pendix C. Besides, we will release corresponding materials
90 days before the publication following ethical obligations
and conference committee requirements.

8. Related work

In this section, we explore closely related studies in four
aspects by the attack surfaces of DoS attacks on blockchain.
Consensus network. Based on the fault-tolerant mecha-
nism, consensus network assists blockchain nodes in achiev-
ing an agreement on the latest state. Compromising consen-
sus network incurs the blockchain to violate its consensus
functionalities [69]. Heo et al. [26] achieve the isolation
and disconnection of an Ethereum node from main network
by hijacking half of peer connections on the blockchain
network. Tran et al. [70] propose an attack that isolates
Bitcoin nodes via malicious Internet Service Providers. Chen
et al. [69] detect vulnerabilities that cause denial of service
in the consensus network through fuzz testing [71]. Prunster
et al. [72] mount eclipse attack [73] on Inter Planetary File
System (IPFS) by poisoning the node’s routing information,
so that the node is isolated from the main network. Yang et
al. [4] unveil a vulnerability that can collapse the consensus
of the blockchain. The root cause of the vulnerability is
that the state of the blockchain client implementation in
different languages is inconsistent. Saad et al. [74] propose
SyncAttack which uses fluctuations in the Bitcoin network
to achieve blockchain forks. SDoS [75] is a DoS attack
based on selfish mining. They find that an adversary can
launch a 51% attack [76] to destroy the consensus of the
blockchain with only 19.6% of the computing power.
Txpools. Txpools maintain pending transactions from
blockchain users, and miners/validators will pack transac-
tions from their txpools to blockchain. Adversaries sway
the security of blockchain by interfering with the transaction
packing involved in txpools. Deter [2] paralyzes Ethereum
transaction pool by crafting malicious transactions, and
prevents users from interacting with the blockchain. Wu
et al. [77] propose a distributed denial-of-service (DDoS)
attack against the Bitcoin mining pool with the idea of game
theory. Poster [78] denies the memory pool of Bitcoin and
traps users into paying higher mining fees. Yaish et al. [79]
leverage the censorship mechanism adopted in Ethereum to
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craft three classes of DoS attacks, resulting in burdening
victims’ computational resources and clogging their txpools.

Auxiliary services. Auxiliary services refer to entities fa-
cilitating blockchain’s efficiency at off-chain. DoS attackers
can refuse users to utilize services provided by AUX. Li
et al. [61] propose a DoS attack against RPC services
in Ethereum. It indirectly causes users to be unable to
access the Ethereum mainnet by paralyzing the RPC service.
Nguyen et al. [80] discover a flood attack against a single
shard, which undermines the performance of blockchain.
They present a scheme by the Trusted Execution Environ-
ment (TEE) to counter the flood attack.

Smart contracts. Smart contracts are automation programs
executed in blockchain. One of their security issues is under-
priced opcodes [81], whose gas cost is substantially less than
the consumed resources. Attackers can lead blockchain to
consume extremely high resources while executing under-
priced opcodes. Chen et al. [81] reveal the under-priced
opcodes on Ethereum, and attackers can wield these opcodes
to launch DoS attacks. They propose an adaptive gas mech-
anism to defend against the DoS attacks mentioned by them
by auto-adjusting the gas fee of opcodes. Perez et al. [25]
use genetic methods [82] to generate smart contracts with
low gas and high resource consumption, by leveraging the
under-priced instructions of Ethereum. eTainter [83], [84]
inspects the DoS attack based on the gas mechanism of
smart contracts through static program analysis. In addition,
the design of NURGLE is also motivated by existing studies
that exploit historical state [25], [61], [81].

9. Conclusion

We reveal a new attack surface, i.e., state storage, of
blockchains. Besides, we present NURGLE, the first DoS
attack exploiting state storage. By proliferating intermediate
nodes within state storage, NURGLE forces blockchains to
expend additional resources on state maintenance and veri-
fication, impairing their performance. We further conduct a
comprehensive and systematic evaluation of NURGLE. Ex-
perimental results show that NURGLE can significantly de-
grade execution performance of blockchains, under a reason-
able financial cost. Understanding and mitigating the threats
brought by NURGLE are crucial for ensuring the stability
and resilience of blockchain ecosystems. Our contributions
shed light on the importance of securing the state storage in
blockchain, encouraging further research and development
to safeguard against NURGLE and similar attacks.
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Appendix A.
Hash collision of NURGLE

A.1. The method of hash collision

In the following, we introduce how we collide the prefix
of a target keccak256 hash value (i.e., indexing of a leaf
node). We assume that adversaries do not have any advanced
knowledge of cryptography, and they apply the most prim-
itive brute force hash collision strategy [85]. Brute force
hash collision refers to exhausting the results of all possible
keccak256 hash calculations, until a keccak256 hash value is
crafted and satisfies adversaries’ requirements. Concretely,
the adversaries first pick a keccak256 hash value, and then
choose different inputs xi, where i ∈ N

∗. After that, the
adversaries check whether the prefix of the hash result of xi

matches the prefix of the picked keccak256 hash value.
Multi-target hash collision. Similarly, it does not rely on
any advanced knowledge of cryptography. To conduct a
multi-target hash collision, adversaries first pick φ target
keccak256 hash values, and then choose different inputs xi,
where i ∈ N

∗. After that, the adversaries check whether the
prefix of the hash result of xi matches the prefix of one kec-
cak256 hash value of the φ picked keccak256 hash values.
The adversaries finalize the multi-target hash collision until
all the φ picked keccak256 hash values are matched.

Appendix B.
Estimating the cost of NURGLE

In this section, we will elaborate on how to estimate the
cost of NURGLE before launching the attack. As mentioned
in §6.2, the attack impact can also be estimated. Hence,
the adversaries of NURGLE can strategically determine the
trade-off of their actual attack, by firstly estimating the cost
and attack impact of launching NURGLE.

B.1. The cost of units of gas

NURGLE needs to cost 289,647,227,381 units of gas
during the attack (§6.3). Here we elaborate on how to
estimate the cost of units of gas by Eq. 8 - 10. Besides, we
reuse the same symbols in §6.3 and §6.2. Eq. 8 indicates
that the units of gas consist of two parts, i.e., the units

of gas consumed for inserting leaf nodes in State Trie 3
(GasStateTrie) and the units of gas consumed for inserting leaf
nodes in Storage Tries 4 (GasStorageTries). According to §5.1,
the units of gas consumed for inserting single leaf node in
State Trie 3 and Storage Tries 4 are different. Eq. 9 and
Eq. 10 adopt the same method to calculate the units of gas
for GasStateTrie and GasStorageTries. For Eq. 9 as an example,
GasStateTrie is obtained as the product of the total number of
leaf nodes that NURGLE needs to insert (i.e., Numinsert

StateTrie)
and the units of gas required to insert single leaf node in
State Trie 3 (i.e., 21,000). The units of gas for inserting
a single leaf node in State Trie 3 is 21,000 units of gas,
because we insert a leaf node in State Trie 3 by sending 1
wei to a target account (§5.1) [5].

Unitsgas = GasStateTrie+GasStorageTries (8)

GasStateTrie = Num
insert
StateTrie × 21000 (9)

GasStorageTries = Num
insert
StorageTries × CostStorageTries (10)

The only difference between Eq. 9, and Eq. 10 is the
cost of inserting a leaf node. This is because, according to
§5.1, we insert a leaf node in Storage Tries 4 by invoking
a function of a target contract, hence, we denote the units
of gas cost by inserting a leaf node in Storage Tries 4 as
CostStorageTries, e.g., if we invoke transfer() (§5.1), it costs
44258 units of gas for inserting a leaf node in MPT .

B.2. Cost of computing resources

According to §6.3, to deepen all 2,754,284 leaf nodes,
we need 33 RTX3080 GPUs for the rental of 12 hours, i.e.,
39.6 USD. Here we detail how to estimate the amount of
GPUs and the required time. Besides, we reuse the same
symbols in §5.1 and §6.1.

First, we need to confirm the number of leaf nodes (i.e.,
φ) whose indexing are required to be collided by NURGLE.
We can then estimate the minimal number of hash collisions
that are required to be satisfied for NURGLE. According to
§6.2, and S-3 in §5.1, the minimal number of hash collisions

equals to φ× dnurgle-dbase
2 . We further adopt the multi-target

hash collision strategy (§5.1) on multiple GPUs to collide

the indexing of all φ × dnurgle-dbase
2 targets. As mentioned

in §5.1, we parallelized conduct the keccak256 hash cal-
culations, and we denoted GPUtime as the time (hours) for

TABLE 5: Response status of seven mainstream blockchains

Blockchain Response status

Ethereum Accepted the vulnerabilities.

Binance Smart Chain
Accepted with the vulnerabilities, and rewarded
us with bug bounty.

Heco No reponse

Polygon Accepted the vulnerabilities.

Optimism Accepted the vulnerabilities.

Avalanche
Accepted with the vulnerabilities, and rewarded
us with bug bounty.

Ethereum Classic Accepted the vulnerabilities.
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single GPU to finish the multi-target hash collision. We
denote θ as the calculation counts for colliding one indexing,
and P as the calculation counts that single GPU can finish
in one hour. Hence, we can estimate GPUtime by Eq. 11.
For example, according to §6.1, θ

P equals to 24.58 hours
to deepen a leaf node to the layer 15. According to §6.3,
there are 2,754,284 leaf nodes to be collided, i.e., φ equals
to 2,754,284. According to §6.2, dnurgle and dbase equal to

15 and 9.5, respectively. Hence, ln(φ × dnurgle-dbase
2 ) equals

to 15.84. As a result, GPUtime equals to 389.35 hours, i.e.,
single GPU needs 389.35 hours to collide the 2,754,284 leaf
nodes. In other words, it costs about 33 GPUs to collide the
2,754,284 leaf nodes in 12 hours (389.35/33).

GPUtime=
θ

P
× ln(φ× dnurgle-dbase

2
) (11)

Appendix C.
Response status of blockchains

We have reported the vulnerabilities exploited by NUR-
GLE to seven mainstream blockchain platforms, including
Ethereum, Binance Smart Chain, Heco, Polygon, Optimism,
Avalanche, and Ethereum Classic. In Table 5, we summarize
their latest responses for the corresponding vulnerabilities.
Specifically, six blockchains of them, i.e., Ethereum, Bi-
nance Smart Chain, Polygon, Optimism, Avalanche, and
Ethereum Classic have accepted the vulnerabilities and were
exploring appropriate countermeasures against NURGLE.
Especially, we have received thousands of USD bounty
from Binance Smart Chain and Avalanche. Furthermore,
before the publication, we reported the vulnerabilities to all
other affected blockchains. Currently, an additional 16 teams
from the newly reported blockchain teams have responded
with positive acknowledgments. Comprehensive details re-
garding their responses can be found in our repository at
https://github.com/hzysvilla/Nurgle Oakland24, and we will
keep updating their feedback.

C.1. Vulnerable blockchains

NURGLE threatens 588 blockchains compatible with
Ethereum and 153 blockchains compatible with Polka-
dot. We enumerate the blockchains in https://github.com/
hzysvilla/Nurgle Oakland24.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper presents a denial of service attack targeting
the blockchains using the Merkle Patricia Trie (MPT) struc-
ture. The attack inserts new intermediate nodes to force the
network to use more resources to keep the network state.
The attack directly applies to popular blockchains such as
Ethereum.

D.2. Scientific Contributions

• Identifies an Impactful Vulnerability

D.3. Reasons for Acceptance

1) The paper finds a novel denial service attack on popular
blockchains.

2) The attack is tested on the testnet and acknowledged by
the blockchain labs.

3) The paper demonstrates the attack is viable.
4) The paper is well-organized and easy to follow.
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