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Abstract—Brain-computer interface (BCI) is a rapidly
evolving technology that has the potential to widely influ-
ence research, clinical and recreational use. Non-invasive
BCI approaches are particularly common as they can im-
pact a large number of participants safely and at a relatively
low cost. Where traditional non-invasive BCIs were used
for simple computer cursor tasks, it is now increasingly
common for these systems to control robotic devices for
complex tasks that may be useful in daily life. In this review,
we provide an overview of the general BCI framework as
well as the various methods that can be used to record
neural activity, extract signals of interest, and decode brain
states. In this context, we summarize the current state-of-
the-art of non-invasive BCI research, focusing on trends in
both the application of BCIs for controlling external devices
and algorithm development to optimize their use. We also
discuss various open-source BCI toolboxes and software,
and describe their impact on the field at large.

Index Terms—BCI, brain-computer interface, deep learn-
ing, electroencephalography, manifold classification, motor
imagery, motor-related cortical potentials, neural decoding,
neurotechnology, robotic arm, transfer learning.

I. INTRODUCTION

A BRAIN-computer interface (BCI) is a neurotechnology
that enables direct brain-based communication between

an individual and the rest of the world [1], [2]. While BCIs
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could have broad applications in various patient cohorts and
even the general population, they have specifically targeted users
suffering from neuromuscular impairments such as amyotrophic
lateral sclerosis (ALS) [3], [4], [5], spinal cord injury (SCI) [6],
[7], [8], or stroke [9], [10], [11], but whose cognitive function
remains intact. Indeed, clinical applications of BCIs, while still
limited to research use, have become more accepted than ever
and often complement other therapeutic strategies [10], [12],
[13], [14]. This technology has also recently gained recreational
popularity (e.g., “brain games”) [15], [16] as neural record-
ings become increasingly accessible due to low-cost systems
and open-source toolboxes. As such, the concept of human
enhancement and restoration through brain-controlled channels
now allows individuals to connect with others on a level not
previously achievable.

In its most basic form, a BCI is a system that decodes the
user’s mental state or intention and maps such information
to the action of a device that interacts with the surrounding
environment [17], [18]. These interactions can convey infor-
mation that range from answering simple yes/no questions, to
constructing word-based communication, to the navigation and
control of devices such as robotic arms, wheelchairs, and more.
Nevertheless, the widespread research space of BCI has also
facilitated new and creative applications for this technology.
For example, rather than decoding an intended sentence from
a word or letter bank presented on a computer screen, modern
BCIs can now decode handwriting signals directly from the
brain [19]. In addition, extra-sensory BCIs have been proposed
that detect and in some cases provide closed-loop feedback to
alter various affective states [20], [21], [22]. Other interesting
avenues of BCIs investigate how sensory feedback, whether
provided to the peripheral (i.e., haptic feedback) [23], [24] or
central (i.e., intracortical micro-stimulation [25], transcranial
electrical stimulation [26], or focused ultrasound stimulation
[27]) nervous system, impacts the performance of these systems
for completing various tasks.

While these examples represent exciting and innovative av-
enues for the field of BCI, the direction of BCI subfields is often
guided by how easily and robustly mental intention can be de-
coded from brain recordings. As such, there are various methods
available to acquire neural signals, including both non-invasive
and invasive approaches that exhibit different signal-to-noise
ratios, spatial coverage, spatiotemporal resolution, etc. This
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spectrum of signal acquisition techniques is accompanied by
a broad collection of mental states and tasks that can be incor-
porated into the BCI system. For invasive BCIs, high-resolution
recordings provide information regarding detailed brain states
and dynamics (often related to motor function), however, these
systems are often constrained to a limited number of clinical
participants or basic research in rodents and non-human primates
(NHPs) [28], [29]. Non-invasive BCIs, on the other hand, mini-
mally impact the user without safety concerns, are easy to use in
everyday life, and facilitate long-term performance tracking in a
large number of participants. Nevertheless, current non-invasive
BCIs exhibit limited performance due to the limited signal-to-
noise ratio and information transfer rate that occurs when neural
signals transmit from brain tissues, through the skull, and to the
scalp. The easy access to many suitable participants, however,
offers opportunities that enable non-invasive BCI researchers to
push the limits of robust paradigms and decoding techniques
to optimize task accuracy, information transfer, and system
reliability for human applications.

In the current review, we focus on recent innovations in the
field of non-invasive BCI research. We first recount traditional
BCI signal acquisition methods and describe various new ap-
proaches to measuring information from the brain. We then
provide detailed accounts of different non-invasive signal types
and highlight how these signals have been utilized to achieve
the current state-of-the-art demonstrations of brain-based device
control. We further outline various relevant algorithmic trends
that enable high-performance EEG-based brain state decoding.
Finally, we review different BCI toolboxes and software that are
available to aid in performing reliable BCI experiments at a large
scale.

II. INVASIVE AND NON-INVASIVE BCI

All BCIs have the common goal of decoding an individual’s
mental state or intention. However, there exists an implicit
dichotomy between invasive and non-invasive BCI technology.
A middle ground of minimally invasive techniques that require
direct brain access but that do not penetrate neural tissue has also
shown promise (Fig. 1). In general, there are notable differences
in the complexity of deploying these various techniques, many
of which also provide varying levels of brain coverage and signal
quality. Currently, invasive BCI technology is limited to patients
enrolled in clinical trials and the use thereof involves a lengthy
timeline that encompasses surgical planning and task training.
While invasive BCIs reach a limited number of individuals, the
detail of control has seen significant advancements due to the
high-fidelity signals that are available. In this regard, notable
achievements include the control of robotic arms and lower limb
exoskeletons, speech decoding, and more.

Invasive BCIs that leverage motor-related signals (e.g., motor
cortex, posterior parietal cortex, etc.) have traditionally utilized
Utah arrays or other multi-site recording probes. These arrays
provide detailed multi-unit activity (MUA) from hundreds of
recording sites and have enabled the control of robotic arms,
patients’ own arms, and speech decoding [30], [31], [32], [33],
[34]. However, chronic use of these electrodes is hindered by a

Fig. 1. Neural recording modalities used for brain-computer inter-
face applications. (top) Non-invasive techniques include magnetoen-
cephalography (MEG), electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS). (middle) Minimally invasive ap-
proaches involve electrocorticography (ECoG) and relatively novel tech-
nologies such as endovascular electrodes (i.e., the Stentrode) and
functional ultrasound (fUS). (bottom) Invasive techniques include stereo-
EEG (sEEG) with penetrating electrodes and multi-unit arrays (i.e., the
Utah Array). Nearly all these techniques measure electrophysiological
signals with the exception of fNIRS and fUS, which measure an indirect
hemodynamic readout of neuronal activity.

lack of long-term signal quality and the high power requirements
needed for high temporal sampling of the signals of interest.
As such, invasive recording methods often require physically
wired connections between the brain implant and the decoding
hardware, power supply, etc. Therefore, in addition to the need
for surgical implantation of the recording device, these technical
constraints limit widespread clinical use. Nevertheless, there are
ongoing attempts using both lower fidelity signals and more
advanced silicone electrodes (i.e., Neuropixels) that may, in the
future, enable wireless systems that can be utilized in a larger
patient population [35], [36]. Stereo-electroencephalography
(sEEG) is an alternative invasive technique that utilizes pene-
trating electrodes inserted into deep regions of the brain. These
electrodes are typically used for monitoring brain pathologies
such as epilepsy but are also gaining recognition for closed-loop
stimulation [22] and other BCI applications [37].

An alternative to these invasive and penetrating electrode
arrays is minimally invasive electrocorticographic (ECoG) grids
that record neural activity from the surface of the brain [8], [38].
This approach covers a larger area of the brain than penetrat-
ing arrays, records lower fidelity signals, and enables wireless
data transfer. ECoG-based BCIs have long shown promise for
clinical use, but were often limited to individuals undergoing
temporary brain monitoring when a craniotomy was required
for other purposes. However, the introduction of self-contained
devices such as the WIMAGINE system [39], which consists
of an implantable ECoG grid that can be stably mounted to the
skull, has been useful for BCI-specific purposes. In fact, using
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the WIMAGINE device has gained notoriety for facilitating
the restoration of walking ability by combining motor-related
brain signals with either robotic exoskeletons or spinal cord
stimulation [40], [41]. These individual demonstrations have
shown significant clinical BCI translation, and the similarity
in signal characteristics between ECoG and EEG gives rise to
the question of when and if similar achievements can be made
completely non-invasively.

Within the past few years, the field of BCI has also seen
the rapid rise of two relatively novel approaches to minimally
invasive neural recordings. One promising approach to recording
signals from the brain is through the use of an endovascular
electrode placed within the lumen of large cortical vessels such
as the superior sagittal sinus [42]. This type of electrode, termed
the Stentrode, resembles a simple stent that also contains several
recording/stimulation sites and can be inserted into the brain
using standard endovascular medical procedures. However, as
this device relies on vessel location in the brain, the recording
coverage is limited to tissue within the cleft between the two
brain hemispheres, often targeting contact with the precentral
gyrus. With the topographic organization of the motor homuncu-
lus, these electrodes primarily detect motor commands related to
the feet, but may, in the future, incorporate other mental states as
well. Nevertheless, the Stentrode received approval for human
BCI use from the United States Federal Drug Administration
(FDA) and has already shown successful control of computer
cursor-related tasks in patients [43], [44].

Functional ultrasound (fUS) has also recently demonstrated
feasibility in decoding motor intentions directly from the brain.
fUS measures an indirect hemodynamic readout of neuronal
activity at a relatively slow temporal resolution (∼2–10 Hz)
and requires a cranial window and/or an acoustically transparent
skull prosthetic for high-quality signal acquisition [45], [46].
Despite the need for this procedure, fUS offers a potential
alternative to chronic electrical recordings that can degrade over
time. The use of this technology for BCI applications is still
in its infancy, but has already demonstrated the presence of
discriminable motor intention signals in the parietal cortex in
NHPs that can be detected in real-time [47], [48]. Importantly,
fUS has recently also been used to record motor-related signals
in a patient with a sonolucent cranial implant [46], indicating that
human BCI applications are on the horizon. Nevertheless, tran-
scranial fUS has yet to be realized in healthy adult individuals
or patients at a spatio-temporal resolution (and without contrast
agents) that would benefit large-scale BCI studies. While matrix
mixing and aberration correction approaches [49], [50] show
promise for transcranial fUS imaging, these concepts need to be
further validated in vivo.

Non-invasive BCI technology primarily utilizes EEG record-
ings that measure electrical potentials from the scalp. Other
approaches utilize magnetoencephalography (MEG) or func-
tional near-infrared spectroscopy (fNIRS) that respectively mea-
sure magnetic and hemodynamic information from the brain,
however, these are less popular. As EEG is cheap, completely
non-invasive, easy to set up, and temporary, it can be employed
by large studies with as many as thousands of human participants
to obtain robust statistical conclusions [51], [52]. Furthermore,

non-invasive recording modalities uniquely record whole-brain
activity and provide a variety of signal types that can be used
individually or in a hybrid fashion to construct a BCI. These
signal types (as described in the next section) are often robust
and can be extracted for BCI purposes using minimal processing
steps. The ease-of-use and low barrier-to-entry have, in turn, led
to more creative BCI applications for both research and con-
sumer applications that incorporate mobile use. As such, there
are now dozens of wireless and/or dry electrode EEG systems
that enable the acquisition of up to 128 channels at> 2 kHz [53],
[54]. Importantly, wireless systems avoid artifacts associated
with cable movement and facilitate use in ambulatory tasks
that will eventually be required to perform neural recordings
in naturalistic settings. However, mobile tasks and locomotion
also introduce other distortions related to the gait cycle and head
movement that must be further characterized and accounted for
[55], [56].

III. NON-INVASIVE BCI SIGNALS

For the remainder of this review we discuss various types of
signals used for non-invasive BCIs (see Fig. 2).

A. Visual Evoked Potentials

Visual evoked potentials (VEPs) rely on the conscious recog-
nition of a target in the user’s visual field. VEPs depend on
external stimuli, which generally consist of lights flickering
with different temporal profiles. These profiles fall into five
broad categories: 1) frequency modulation (f-VEP), 2) time
modulation (t-VEP), 3) code modulation (c-VEP), 4) phase
modulation (p-VEP), and 5) motion-onset (m-VEP). In all of
these cases, each stimulus carries a unique temporal pattern
according to the modulation scheme that can also be detected in
the scalp EEG to indicate the selected stimulus. For example, in
the case of t-VEPs and c-VEPs, different stimuli are presented
at varying delays from trial onset, which can then be detected in
the time-domain EEG signal [57], [58], [59]. However, due to
noisy time-domain signals, these VEP variations require a high
number of trial averages for robust results. By contrast, f-VEP
and p-VEP stimuli flicker at different frequencies and/or phases.
Attending to a particular target increases the band power of the
corresponding oscillation in electrodes covering the occipital
cortex. Thus, f-VEPs and p-VEPs are collectively also known as
steady-state VEPs (SSVEPs). In practice, SSVEP-based BCIs
provide some of the highest information transfer rates as the
combination of frequency and phase modulation can be decoded
with high accuracy [60]. This combination also now allows
for the successful detection of >100 target options [61], [62],
which can be further expanded in hybrid systems when com-
plementary signal types are utilized [63]. Finally, the m-VEP
stimuli consist of moving lines across a virtual keyboard to
induce visual motion-based event-related potentials [64] to form
a BCI speller. In particular, the N200 component of these evoked
signals is considered to be primarily related to motion-onset
visual processing. These fast and high-dimensional BCIs work
well with a variety of applications, including spellers and, less
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Fig. 2. Overview of neural signals used for noninvasive brain-computer interface control. These signals can be broadly categorized according to
being endogenous or exogenous in origin, frequency or time domain, and by the brain region/electrode coverage from which they are acquired.
Motor imagery tasks generate an event-related (de)synchronization that can be detected from motor electrodes and which generate a velocity-based
signal for end effector control direction. Overt spatial attention refers to a gaze-based action that is detected in electrodes covering the parietal cortex
and which drives an end effector in a particular direction. Steady-state visual evoked potentials (SSVEPs) refer to increases in narrow band power in
electrodes covering the visual cortices upon attending to a stimulus flickering at the corresponding frequency. The P300 response is elicited during
an oddball-type context when a user’s choice is selected. Finally, slow cortical potentials refer to electrical potential deflections that are time-locked
to movement events or that correspond to limb kinematics.

often, spatial navigation, where individual commands need to
be correctly identified during relatively narrow time windows.

B. Overt Spatial Attention

Overt spatial attention (OSA) tasks leverage activity patterns
generated in the parietal cortex in response to the user’s spatial
attention. Similar to motor imagery (MI) tasks, OSA signals do
not require external stimuli and generate focal patterns of alpha
band activity. This makes OSA tasks well suited to complement
other endogenous signals, such as those generated from per-
forming MI tasks [65], [66], by increasing control dimensions
without sacrificing overall performance of the BCI. While this
relatively new BCI paradigm shows promise for higher dimen-
sional control, users and experimenters must still consider the
interaction effects of overt gaze control and other BCI-related
tasks [67], [68].

C. P300

The P300 is an endogenous event-related potential (ERP)
within the EEG, and is detected in electrodes covering the
parietal cortex. P300 signals occur in the context of an oddball
paradigm [69], and rely on a user’s implicit ability to distinguish
a rarely presented target stimulus from other more common
non-target stimuli. This structure makes such an event-related
response useful for spelling applications where a specific letter
must be chosen from a larger set of irrelevant letters. Most
P300-based BCIs use the visual row/column paradigm, in which
a matrix (e.g., 6 × 6 cells or variable) containing the alphabet,
numbers, and other items is presented to the user for selection
[70], [71]. A P300 response is then elicited when the rows
and columns of the matrix, flashing in random order, converge

on the desired item being attended to. The P300 was docu-
mented well before BCI use and has long been implicated as
a biomarker of various clinical disorders, including depression
[72] and schizophrenia [73]. While these signals can be gaze- and
space-dependent, advances in stimulus design such as variations
of the rapid serial visual presentation approach have significantly
improved information transfer rates as well as task reliability and
performance [74], [75].

D. Movement-Related Cortical Potentials

Other broadband time-domain strategies that are favored for
the identification of both cued and continuous mental states
involve slow cortical potentials, otherwise known as movement-
related cortical potentials (MRCPs). When closely examining
voluntary movement, changes in low-frequency activity (delta
band, ∼1 – 4 Hz) occur in the movement planning and execu-
tion stages and are time- and phase-locked to movement onset
[76], [77]. After averaging across numerous trials, a so-called
MRCP becomes visible; the main components are the “Bere-
itschaftspotential” or readiness potential, the motor potential
(negative peak), and the positive rebound potential. It has been
shown in the literature that such an MRCP occurs after different
voluntary actions and can be derived from sensorimotor areas.
Over the last decade, MRCP features have been heavily exploited
for decoding movement detection [78], [79], [80], [81], [82],
[83], [84], but also for the classification of movement-related
parameters such as speed [85] and force [79].

While the success rate of the MRCP-based motor control is
modest compared to some other signal types, the burden of imag-
ining different types of movement is dramatically reduced. For
example, during the MoreGrasp project [86], study participants
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Fig. 3. Neuro-structural model and general trial structure to elicit
ERD/ERS. a) Neurostructural model for the description and interpreta-
tion of resulting EEG patterns. M1 and S1 symbolize primary motor and
somatosensory cortex, respectively, and both carry bidirectional path-
ways to the deep brain and brainstem (DB/BS). M1 projects directly to
the spinal cord, which is also connected to the DB/BS via ascending and
descending fibers. Efferent and afferent connections in the peripheral
nervous system are indicated by double lined arrows. b) The general
structure of a task trial consists of a preparation phase (grey box),
followed by the “Task” (red box) and a post-movement phase (blue box).
Movement onset is indicated by the vertical black line.

described a low burden during the calibration and use of the
BCI, suggesting that a successful transfer of MRCPs towards
natural control can be achieved. Nevertheless, the false positive
and success rates can still be improved, which is a matter of
ongoing and future work (see [87] for a comprehensive review).

E. Event-Related (De)Synchronization

Event-related desynchronization (ERD) or event-related syn-
chronization (ERS) refers to a band power decrease or increase,
respectively, relative to a reference period [88], [89], [90]. These
phenomena are usually induced in response to a motor task
and produce a reliable contralateral ERD and ipsilateral ERS
in the alpha/mu (8–13 Hz) and/or beta (14–30 Hz) bands of
scalp EEG. Thus, projecting the different ERD/ERS traces into
a time-frequency plot for each electrode can further generate
so-called ERD maps [91] to identify the spatial, temporal, and
spectral characteristics of these signals. These features are based
on a traditional neuro-structural model and have been robustly
exploited using a simple task paradigm illustrated in Fig. 3 [92].

Fig. S1 provides an overview of the typical ERD/ERS patterns
that are generated during various movement conditions for both
able-bodied and participants with spinal cord injury (SCI). Here,
we differentiate these conditions into: a) active, voluntary move-
ment; b) passive movement and movement induced by functional
electrical stimulation (FES); c) complex finger movement and
peripheral stimulation; d) continuous finger, hand/arm move-
ments; and e) motor imagery. We also indicate the same condi-
tions for people with SCI, however, due to physical limitations
of these individuals, there is no counterpart to c), and f) describes
attempted movement instead of real movement.

The most classical ERD/ERS patterns appear in able-bodied
participants when performing voluntary hand movements
(Fig. S1a, h) [90], [93]. These contexts often produce a mu/beta
ERD before and during movement, as well as a post-movement
beta ERS (PMBS), also called the beta rebound. Active foot
movement (Fig. S1a, f) can also induce a clear beta ERD
followed by a PMBS [94], [95], [96]. These oscillatory activities
are often also accompanied by an MRCP [97], [98].

During passive hand movements (Fig. S1b, h), there is no
pre-movement ERD, however, a mu/beta ERD is present during
hand movement (either completely passive, or facilitated by
FES), followed by a PMBS [93]. A beta ERD and PMBS are
also observed during passive dorsiflexion of both feet (Fig.
S1b, f) [95]. A similar pattern occurs in the case of complex
finger movement (Fig. S1c, h; cube manipulation) and additional
median nerve stimulation. These tasks also induce a contralateral
mu/beta ERD; where ipsilateral beta ERS returns quickly to
baseline, the mu ERD/ERS oscillates [99]. These tasks also
produce sensory evoked potentials that are much larger than
the rest condition [100].

In addition to changes in oscillatory activity, movement tra-
jectories (Fig. S1d, h) can be decoded from delta band activity
[101]. For example, in [102], a mu ERD and characteristic delta
band activity was observed when participants performed rhyth-
mic finger movements (flexion, extension, repetitively). Along
these lines, low-frequency time domain (LFTD) signals have
been shown to encode hand/arm kinematic movement [103],
[104], [105]. Importantly, for these and other works [106], there
also exists a mu and beta ERD during movement as well as
PMBS after the termination of movement.

Very early after the investigation of executed movements
in EEG research, imagined movement or motor imagery (MI)
(Fig. S1e, h) played a major role in BCI development. Mu and
beta ERD occur during MI [90], [107], and are often followed
by a PMBS [96], [108], [109] (Fig. S1e, f). These ERD/ERS
signals are often focal phenomena that arise according to the
topographic organization of the motor homunculus, similar to
what was previously observed for motor execution tasks. For
example, multimodal work using EEG source imaging and fMRI
has revealed strong co-localization of sensorimotor cortex acti-
vation for hand and foot movement execution and imagery tasks
[110], [111]. Similarly, common patterns of BOLD elevation
observed in fMRI have also been observed using EEG source
imaging [112] in the form of ERD in the sensorimotor cortex.
Based on these findings, MI tasks involving body parts with
spatially separated motor cortex representations often define the
number of control signals that can be used. Many online BCI
paradigms include four or more MI tasks of different body parts
to control an end effector in multiple dimensions. Common tasks
include imagining the action of the right hand, left hand, both
hands, rest, foot, and tongue.

Studies have shown that the speed of hand movement or
imagined hand movement is also correlated to EEG activity
[113]. Many of these tasks can be easily detected and sep-
arated by a standard set of electrodes covering sensorimotor
areas [114], [115], however, including subject-specific features
from larger groups of electrodes can improve both offline and
online performance [116], [117], [118]. Furthermore, successful
discrimination of more specialized MI tasks of the same body
part (i.e., hand gestures, limb joints) has shown promise in offline
scenarios and may, in the future, be integrated into online control
as well [119], [120], [121], [122].

In people with SCI, MRCPs are apparent for different move-
ment attempts (Fig. S1f, h) as well as a beta ERD and, in some
cases, a beta ERS [94], [123]. In a study on foot movement
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attempts, only a slight ERS was visible, which indicates that
the PMBS is not solely triggered by afferent input but also by
internal processes [95]. Passive foot movement in SCI patients
(Fig. S1g, f) exhibits no visible patterns, which makes sense
since there is no afferent feedback to the brain in these individ-
uals [95]. In incomplete SCI patients, however, there may exist
slight ERD/ERS activity.

Overall, when examining the existence of ERD/ERS patterns
in people with SCI, several concerns need to be considered.
First, attempting continuous hand/arm movement can lead to
activity in sensorimotor and centro-parietal areas (hand-eye
coordination). For example, in Pulferer et al. [124], delta band
activity could be used for kinematic decoding in a SCI patient.
Furthermore, a mu and beta ERD can also be observed in SCI
patients performing hand and feet MI (Fig. S1i, f,h) [125], [126],
[127], [128], [129], [130]. Finally, these patterns vary widely
across patients and depend on the severity of their injury, the
time since injury [94], [131] and also whether the individual
had previous BCI training experience.

IV. CAPACITY OF NON-INVASIVE BCI

BCIs consist of three main pillars that facilitate the mutual
learning of both the user and system with the intent to accomplish
a task as easily as possible [132]. Considering and optimizing
all three pillars - the user, the application, and the machine – is
important to ensure the success of a BCI. While some labs and
studies attempt to address all three of these pillars, focusing on
a single one is much more common. Here, we will address some
promising approaches to these concepts reported recently.

A. The User–Training Strategies

While some non-invasive BCI signals can be inherently pro-
duced, others must be learned throughout an often long training
period. Some users never learn to successfully control a BCI
despite lengthy training experience, which is often referred to
as “BCI illiteracy” for a specific BCI paradigm. Thus, it is
important to identify human factors that cause illiteracy and
formulate strategies that promote BCI skill acquisition and
optimal performance. One popular theory within the field posits
that user attention plays a key role in the success of user training
and achieving BCI control. This is often portrayed in terms of
the Yerkes-Dodson law [133], which describes an inverted U-
shape relationship between a user’s engagement and habit/skill
formation. In this sense, tasks or contexts that are too simple
can cause boredom, and those that are too difficult can cause
stress, both of which negatively impact performance (Fig. 4). To
address this, researchers have developed novel or adaptive tasks
that appropriately engage subjects and improve BCI training and
performance [134].

Along similar lines, many complementary technologies have
been employed in BCI research to increase user engagement
and avoid reduced performance due to boredom. Traditional
BCI tasks that rely on endogenous signals utilize simple vi-
sual feedback paradigms involving a computer cursor, how-
ever, recent trends show an increased usage of virtual reality
(VR) [135] and anthropomorphic feedback using computerized

Fig. 4. BCI strategies leverage principles of the Yerkes-Dodson law
to improve performance. Virtual and augmented reality paradigms have
been integrated into BCI control to increase user engagement. By con-
trast, various mediation-based practices help reduce anxiety levels. In
both cases, the user’s mental state is driven towards an optimal perfor-
mance zone where skill acquisition and execution can be maximized.

arms [10]. Previous cognitive studies have found that virtual
hands and arms can elicit a strong sense of embodiment that
is use-dependent [136], and suggest that these tools may also
benefit BCI training. In fact, VR feedback with MI tasks has
been commonly explored for motor recovery training in stroke
patients with overall positive, but still varying levels of success
[10], [14], [137]. These studies often focus on motor function
rather than BCI performance and must accommodate highly
variable brain damage, making it difficult to draw conclusions
regarding the efficacy of VR aids.

Nevertheless, the use of VR tools with healthy individuals has
shown much more promise by providing immersive contexts
that enhance the embodiment of virtual limbs. Many of these
studies have shown an increased amplitude of the respective
ERD/ERS signals and a further improvement in online BCI
performance compared to classic computer cursor feedback
[138], [139], [140]. Using VR is currently a relatively low-cost
addition to BCI systems; however, its full occupancy of the visual
channel makes this technology somewhat impractical for future
integration into daily life. By contrast, augmented reality (AR)
is more compatible with everyday tasks and has been shown to
be compatible with at least SSVEP-based BCIs [141], [142].
However, these contexts can create crowded visual scenes that
must be considered so as not to overwhelm and distract the user
[143].

At the other end of the spectrum, anxiety has been shown to
impart a significant negative bias on BCI learning and perfor-
mance for both MI and SSVEP-based BCIs [144], indicating that
the self-regulation of mental state can lessen these effects. This
factor has recently been creatively addressed through the use
of meditation practice that can help alleviate elevated anxiety
levels. Exemplary meditation-based strategies such as mind-
body awareness training (MBAT) and mindfulness-based stress
reduction (MBSR) training [145], [146], [147] have improved
MI-based BCI performance. Overall, this suggests that acute
and chronic stress levels impact BCI performance. Therefore,
the ability to control a BCI may scale with the amount of
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stress-reduction training experience and the improved ability
to produce stronger EEG signals associated with MI tasks.

B. The Application–External Device Control

Modern brain-based navigation of external devices in-
cludes the control of computer cursors, quadcopters/drones,
wheelchairs, and robotic arms. Computer cursor paradigms re-
main robust testbeds for exploring new decoding algorithms,
tasks/signal types, and more. Currently, non-invasive cursor con-
trol can be performed in two [107] and three dimensions using
MI tasks [116], [148], [149] or hybrid systems that utilize MI
and OSA [66]. More sophisticated navigational control has also
been achieved using virtual helicopters or drones [150], [151].
However, this application comes with additional complexity as
continuous flight often requires an asynchronous control strategy
with ongoing commands/tasks rather than discrete trials, such
as the center-out paradigm. BCI-controlled continuous flight
of a physical quadcopter in three-dimensional space was first
demonstrated using ERD/ERS signals corresponding to MI tasks
[152]. This feat was achieved using right- and left-hand MI for
one dimension of control, and MI of both hands and rest for
the second [152]. More recently, a combination of SSVEP and
MI tasks was also used to control various aspects of quadcopter
flight [153].

Another important application of BCI is the brain-based
control of a wheelchair [154], [155]. Such a task allows BCI
technology and the use of various brain signals, such as P300
or SSVEP responses, in addition to MI tasks, to assist impaired
patients in situations resembling daily life [156], [157], [158].
A recent study demonstrated that tetraplegic patients with SCI
can operate a self-paced wheelchair during complex navigation
tasks using an MI protocol [155].

In recent years, multiple non-invasive BCI studies have fo-
cused on robotic arm control. Controlling robotics is far more
complex than the previously described devices, as the increased
physical skill required for grasping tasks requires a correspond-
ing mental strategy. Initial demonstrations of robotic arm con-
trol via scalp EEG focused on endpoint velocity or position
control. However, as more detailed control of reach-and-grasp
tasks practical for daily assistance became desired, this work
branched into additional threads that focus on individual task
segments. These segments can be broadly categorized into nav-
igational robotic device control (“reach”) and dexterous hand
commands (“grasp”). Along these lines, the reaching aspect was
initially demonstrated in three-dimensional movement decoding
of center-out and motor execution tasks [159] and has since
greatly expanded [160], [161], [162].

Other than movement execution, MI paradigms have been
pursued using ERD/ERS signals to control a robotic’s arm
reach, grasp, and movement. He and colleagues have developed
a unique and comprehensive framework for reach and grasp
using MI. Along these lines, Meng et al. first demonstrated
online non-invasive BCI control of a robotic arm in a group
of human subjects, in whom MI tasks were used to reach for
and grasp a Lego block (Fig. 5) [163]. Eight subjects com-
pleted all tasks and demonstrated well over 80% accuracy for

Fig. 5. EEG-BCI based control of a robotic arm using motor imagery
tasks. Motor imagery was performed to control the “reach” of a robotic
arm in one and two dimensions. Similar motor imagery protocols were
also used to perform the “grasping” of a lego block. Task complexity
increases from 2 to 5 during subject training. Reproduced from Fig. 1 of
[163].

completing reach tasks requiring two-dimensional navigation.
Similar performance was achieved for more complex sequences
of tasks in three-dimensional space involving grasping blocks off
of a shelf, reaching over 70% accuracy. Edelman et al. further
demonstrated the continuous reaching of a robotic arm through a
combination of source-based decoding and a continuous pursuit
control paradigm in a group of six human subjects [164], [165].
This work first demonstrated that the extended target-chasing
task significantly improved MI-based BCI learning compared to
traditional discrete trial protocols by increasing user engagement
throughout training. By integrating real-time electrical source
imaging, BCI performance was further enhanced across the
skill spectrum in naive and experienced users. These works
represent major advancements in the reach and grasp of BCI
robotic arm control. When combined, this framework may, in
the future, enable individuals with neuromuscular dysfunctions
to autonomously perform daily tasks using only MI-based brain
signals.

Robotic arm control has also been pursued from decoding
movement execution. As such, to decode control initiation,
Pereira et al. [166] developed a paradigm for online detec-
tion of self-initiated movements in a realistic scenario. EEG
signals were time-locked to saccade onset, with participants
shifting their gaze during goal-directed reach-and-grasp tasks.
This strategy enabled relevant feature extraction and gaze in-
corporation with careful artifact handling [167]. A hierarchical
classification approach utilizing LFTD features achieved a 54%
true positive rate (compared to a chance level of 12%). This
work expands possibilities for realistic settings, incorporating
motor and visual processing in real-world tasks. Kobler et al.
[103] further designed an experiment that involved center-out
and continuous goal-directed movements, and considered two
conditions (observation, execution) to study different volitional
states. In either condition, the participants fixated on a target
stimulus with their gaze in a 2D workspace. During motor
execution trials, participants controlled a cursor by moving their
right arm (on a flat surface) in a pursuit tracking task (PTT) to
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investigate the tuning characteristics of position and velocity.
These temporal tuning characteristics indicated that neural ac-
tivity preceded cursor velocity by approximately 150 ms [103].
These observations from EEG are in agreement with the tuning
characteristics of spiking activity of M1 neurons [168].

In a follow-up study, Mondini et al. [105] investigated the fea-
sibility of continuously decoding voluntary hand/arm movement
trajectories from EEG to achieve closed-loop online control of
a robotic arm. This work also implemented a PTT where the
participants were asked to track a moving object on the screen
by controlling a robotic arm. Kobler et al. [104] then suggested
that integrating information about non-directional kinematics
(e.g., distance, speed) in the decoding model can alleviate the
amplitude mismatch problem. This non-directional kinematic
information has been found in both ECoG [169] and MEG
activity [170]. Provided that distance and speed are nonlinearly
related to position and velocity, the previously introduced partial
least squares Kalman filtering (PLSKF) approach [105] was
extended to an unscented Kalman Filter (PLSUKF). Kobler
et al. [104] re-analyzed EEG [103] and MEG data [170] to
evaluate the performance of the PLSUKF with respect to both
the PLS and the PLSKF during both observed and executed
movements. Indeed, the correlation between the executed and
the decoded trajectories was stronger for PLSUKF compared to
other algorithms. Further, with the integration of non-directional
kinematics in the decoding model, the amplitude mismatch
between recorded and decoded trajectories could be reduced,
overcoming the limitations of previous work [105]. Follow-up
studies by Müller-Putz et al. and Pulferer et al. investigated
the viability of decoding attempted movement, mimicking the
limited motor function of SCI patients (by strapping each par-
ticipant’s dominant arm to a chair) [86], [171]. They examined
potential learning effects that may arise when a user performs
the same motor control task multiple times [171]. Within five
days, ten able-bodied participants performed three sessions. The
selected timeframe aimed to allow participants to recover from
the mental strain of various tasks while ensuring they maintained
a distinct memory of previous sessions. After calibration, EEG
decoding was gradually included in online feedback until it
reached 100% EEG control. Overall, this longitudinal study
revealed learning effects across the various days of training,
indicating a positive effect of training on decoding performance.

While extensive effort has been dedicated to improving the
navigation aspect of robotic arm control, considerable work has
also focused on incorporating EEG-based grasping signals into a
BCI. First attempts to restore hand movements in paralyzed per-
sons were purely pragmatic in that BCIs were directly connected
to an orthosis or the patients’ arm using FES [127], [128], [129].
These works demonstrated the possibility of connecting a BCI
with closed-loop FES, recording EEG from the scalp, and stim-
ulating a body part. However, they remained proof-of-concept
studies. Study subjects were able to switch through pre-defined
grasping patterns, but BCI control remained rather artificial in
that they used the imagination of different limbs (foot and right
hand) [129], or only the left hand [126] to trigger the different
neuroprosthesis steps.

Nevertheless, in recognition of the various complexities in-
volved with grasping objects of different sizes, shapes and
orientations, further studies have since investigated how relevant
grasping actions and features are encoded in scalp EEG. In par-
ticular, the use of MRCPs has helped support the hypothesis of
natural control of a neuroprosthetic device. MRCPs vary across
different types of movements or grasps, which may be useful
as a natural control signal for a BCI-based neuroprosthetic.
In fact, studies with able-bodied participants have shown that
different movement types (right arm: hand open, hand close,
pronation, supination, elbow flexion, elbow extension), grasp
actions (i.e., palmar, pincer, lateral, rotation), grasp laterality
(i.e., unimanual vs bimanual) and grasp force (i.e., power vs
precision) can be successfully decoded from scalp EEG using
MRCPs [172], [173], [174], [175], [176], [177], [178], [179].
Importantly, similar differences across multiple grasp types at
the single-trial level could also be observed in individuals with
SCI [123].

While these studies show promise for neurorobotic control,
they were primarily employed in offline classification settings.
Translating these offline studies into online performance greatly
increases the potential utility in patient-oriented BCIs. Work-
ing towards this goal, some studies that integrate decoding
paradigms that simulate online control, have shown successful
above-chance performance for the execution of three different
grasp types (i.e., palmar, lateral, wrist supination) [180]. More
recent work has successfully moved to complete online control
of four grasp types (i.e., cylindrical, spherical, lateral, pincer)
using MI tasks [181].

This demonstration indicates that dexterous grasping can be
performed in real-time using scalp EEG, however, it is difficult
to suppress reaching signals during the grasp portion of the task,
and vice versa. In this case, mode switching would be greatly
beneficial in informing the BCI whether the user is focusing
on positioning the arm or grasping an object. Similar to the
previously described movement onset detection, various BCI
“switches” have been proposed, but have also yet to be seam-
lessly integrated into online control paradigms [182]. Therefore,
an easier solution to robotic arm control for daily tasks that
has been widely adopted by the field is to utilize shared control
strategies [183], [184], [185], [186]. In this sense, shared control
refers to partial autonomous control by the user and partial
automatic task recognition and execution by the BCI [187]. In
these cases, such a strategy allows the user to control the BCI in
up to three dimensions using a variety of MI and SSVEP signals
(often hybrid) to select a pre-established task/action that is then
automatically carried out. Nevertheless, the degree and complex-
ity of shared control vary. Some systems utilize custom image
processing pipelines for object identification using off-the-shelf
camera components such as the now-discontinued Xbox Kinect.
However, this approach can be limited to objects with similar
shapes consistently viewed in the same orientation [184], [185],
[188]. Other strategies utilize depth cameras and more advanced
pose estimation methods [189] or simple QR codes [186] to
identify objects that may be approached from different angles
or perspectives, potentially offering a more versatile solution.
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To ensure effectiveness and safety, the user and machine
must consider practical considerations when utilizing a real-life
robotic arm. Recent work on robotic arm control utilizes SSVEP
signals for at least one control dimension. However, the visual
attention required for these signals can be distracting when
integrating these systems into everyday life. Similar issues have
been observed when controlling a robotic arm using MI tasks
– while the visual channel is reserved for observing the robotic
arm rather than the flickering stimuli, impaired sightlines can
still cause a slight drop in performance [165]. It has also been
shown that other cognitive distractions accompany the user
when controlling an interactive device, which can reduce its
effectiveness [190], [191]. Another practical consideration for
robotic device control that has been recently addressed is the
need to impose physical constraints such as obstacle avoidance
or trajectory correction [192], [193] to ensure the user’s and
others’ safety. Controlling a robotic arm is a highly complex
cognitive process, and various precautions and aids should be
added to BCIs to maximize their effectiveness.

C. The Application–Clinical Use

Non-invasive BCIs have emerged as a transformative tech-
nology with significant clinical applications, and carry immense
potential for improving the quality of life for individuals with
various neurological conditions and disabilities. Using BCI
technology for clinical applications can complement traditional
strategies for disease diagnosis, treatment, and rehabilitation.
For example, BCIs facilitate the early detection of EEG biomark-
ers for epilepsy monitoring and intervention. In addition, BCIs
interact directly with the brain, enabling precise targeting of
neural pathways. This can lead to more accurate and effective
treatments of specific bodily functions and provide immediate
feedback based on brain activity. Finally, the interactive nature
of BCIs can be more engaging and motivating for patients than
repetitive physical exercises.

BCI technology has two primary clinical applications: 1)
assistive BCI and 2) rehabilitative BCI [194]. Assistive BCI
seeks to bypass damaged neural pathways, providing a con-
tinuous and permanent means of communication and control
of external devices. Assistive BCI systems are designed for
individuals with severe motor impairments. These systems use
SSVEP, P300, or MI signals to control various external devices,
such as spellers [195], computer cursors [196], robotic devices
[197], or speech synthesizers [198], thereby improving the user’s
quality of life and independence. Rehabilitative BCI aims to
recover damaged neural connections, restoring impaired func-
tional abilities by effectively facilitating neuroplasticity. This
approach offers comprehensive and personalized functional,
cognitive, and affective rehabilitation therapies. Restoring motor
function is one of the most promising clinical applications of
BCIs for individuals with SCI, stroke, or neurodegenerative
diseases such as ALS. Since conditions like stroke do not affect
the ability to form motor intentions, BCIs can decode neural
signals related to these activities. This allows for neurofeed-
back training through assistive devices such as robotic systems,
virtual reality, and functional electrical stimulation. Despite

the significant attention BCI-based rehabilitation has received
for motor function, applications in cognitive training remain
underexplored. Evidence suggests that BCI-based neurofeed-
back training can improve cognitive functions in conditions like
attention-related hyperactivity disorder [199] and mild cognitive
impairment [200], and may similarly benefit post-stroke cogni-
tive impairments [201]. These findings highlight the potential of
neurofeedback-based cognitive training to induce neuroplastic
changes essential for rehabilitation. BCI-based interventions
have also demonstrated significant potential in emotion and
mood regulation, offering solutions to address critical challenges
such as depression. By leveraging real-time neural feedback,
these interventions enable individuals to consciously modulate
their brain activity and promote more positive emotional states.
Advanced BCI systems can detect and respond to specific neural
patterns associated with mood disorders, providing personal-
ized therapeutic feedback that encourages neural reorganization
and emotional resilience. Such interventions not only com-
plement traditional treatments but also offer a non-invasive,
self-regulated approach to managing and mitigating depressive
symptoms, thus opening new avenues for mental health care.
We believe the future of BCI for clinical applications lies in
integrating functional, cognitive, and affective rehabilitation
into a holistic approach. This comprehensive strategy enhances
motor recovery and supports cognitive and emotional health,
paving the way for more robust and inclusive rehabilitation
solutions.

Compared to BCIs targeted at healthy users, BCIs designed
for clinical applications still present several unique challenges.
Patients usually show higher individual variability in neurolog-
ical conditions. Patients may also experience higher levels of
fatigue and cognitive load when using BCI systems. Further-
more, neurological impairments can affect the quality of neural
signals that the BCI relies on. Many neurorehabilitation patients
may have limited mobility or dexterity, making it difficult for
them to use BCI hardware comfortably. Consequently, recent
advancements propose the use of advanced decoding methods
[202], [203], [204], [205] and the integration of other medical
interventions, such as transcranial direct current stimulation
(tDCS), transcranial magnetic stimulation (TMS), and transcra-
nial focused ultrasound stimulation (tFUS) [10], [26], [27],
[206], [207], [208] to develop more robust, calibration-free, and
user-friendly BCIs for clinical applications.

D. The Machine–BCI Decoding Algorithms

EEG decoding involves developing algorithms and models
to analyze recorded EEG signals, with the aim of understanding
and interpreting the underlying neural processes. EEG decoding
is crucial for BCIs because it enables the translation of neural
signals into actionable commands, realizing communication and
control between the human brain and external devices. Brain
signal decoding is always a challenging part of BCI, especially
for non-invasive EEG. As EEG signals travel from their source
in the brain to the scalp surface through the low-conductive
skull, they encounter various instances of noise caused by both
biological and non-biological factors.
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Fig. 6. Overview of recent decoding methods used in EEG-based BCI. These methods can be broadly separated into five main categories:
Deep learning, transfer learning, manifold classificiation, adaptive learning, and EEG source analysis. Each of these categories consists of detailed
algorithms that aim to improve various aspects of EEG decoding and BCI performance. In the end, all of these approaches aim to develop robust,
calibration-free and user-friendly BCIs.

While EEG signal decoding can be viewed as a specific type of
classification problem, this topic presents unique complexities.
In typical classification tasks, larger datasets enhance perfor-
mance by providing richer information. However, in EEG classi-
fication, more data necessitates longer acquisition times, which
can lead to participant fatigue and distraction. This degrades
data quality, introduces noise and inconsistencies, and negatively
affects model training. Therefore, proper EEG classification
needs a balance between data quantity and quality. It is gen-
erally recommended to limit EEG recording sessions to 30–60
minutes, with regular breaks, to maintain high data quality. For
intra-subject training, a model is trained and tested on data from
the same subject. By contrast, inter-subject training involves
training a model on data from multiple subjects and testing it
on different subjects. This requires a large and diverse dataset to
capture the variability in EEG signals across individuals, along
with more complex operations to create a model capable of
handling EEG data with different distributions.

The traditional classification pipeline in BCI typically en-
compasses an initial filtering process applied to EEG signals,
followed by the classification of the filtered data. This fil-
tering operation is designed to extract pertinent information
from temporal, spectral, or spatial dimensions, depending on
the specific BCI paradigms. However, traditional methods face
many challenges when decoding EEG. First, the feature ex-
traction and classification processes in traditional methods are
optimized separately using distinct objective functions. This
could result in a suboptimal solution for the decoding process.
Second, traditional methods strongly rely on hand-crafted fea-
tures, a manual selection process that can be time-consuming and
subjective. Finally, while these approaches prove effective in a
specific subject, their performance tends to decline when applied

in subject-independent applications. Therefore, more advanced
methods are explored to address these limitations.

In this section, we comprehensively explore recent progress in
decoding methods for EEG-based BCI. We outline the principles
underlying these methods, how these methods relate to one
another, and provide guidance on their appropriate application.
The methods discussed in this section are summarized in Fig. 6
and Table I.

1) Deep Learning-Based Methods: Deep learning is a sub-
field of machine learning that focuses on the development and
application of artificial neural networks to solve complex prob-
lems such as computer vision, speech recognition, and natural
language processing [209]. With their ability to automatically
learn hierarchical representations from raw data, deep learning
approaches offer a promising alternative for EEG decoding and
have achieved state-of-the-art performance.

A convolution neural network (CNN) is among the most
popular and successful deep learning methods for EEG de-
coding. CNNs are designed for signal processing and analysis,
especially for those contexts that provide spatial information.
The convolutional layer is a fundamental building block of
CNN that extracts features by sliding small filters across the
input. Each filter is equipped with learnable weights designed to
detect specific patterns, and the aggregation of multiple filters
results in the creation of a feature map. During the training of
a CNN, backpropagation is adopted to calculate the gradients
of the loss function with respect to the weights of the network,
allowing for weight updates that minimize the overall loss. When
adopted into EEG decoding, CNNs are generally initiated with
an input layer that accepts the pre-processed EEG data. Then, the
CNN extracts spectral and spatial features by deploying a spatial
convolution layer along the channel dimension and a temporal
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TABLE I
SUMMARY OF CURRENT ADVANCED DECODING METHODS FOR EEG-BASED

BCI

convolution layer along the sample dimension. After this step,
several layers will be followed to project the feature into higher
dimensions. Between two convolutional layers, there always
exists one pooling layer to reduce the parameter dimension
and eliminate overfitting. In the final phase, the fully connected
layer serves as a decision-making layer, mapping the high-level
representations to the specific classes related to the decoding
task. Many current approaches are completely or partially based
on a CNN. In a typical and pioneering work, Cecotti & Graser
[210] proposed a CNN-based method for P300 decoding. This
network was quite simple yet effective, with only two convolu-
tion layers and one fully connected layer. As one of the initial
papers to apply the CNN to BCI, Sakhavi et al. [211] designed
a framework to learn temporal information from EEG, and
achieved the best classification performance on BCI competition
IV-2a dataset. Subsequent efforts aim to enhance performance
by incorporating structures with varying convolution depths and
by employing advanced training strategies. Two CNN-based
classifiers named Shallow ConvNets and Deep ConvNets were
introduced for MI decoding in Schirrmeister et al. [212]. The
Shallow ConvNets were initiated with a spatial convolution layer
and a temporal convolution layer to extract features from the
spatial and spectral domains, respectively. Deep ConvNets was
equipped with three more convolution layers that project outputs
into higher dimensions, facilitating the learning of features in
more complex spaces. Results showed that Deep ConvNets
reached at least as good performance as filter bank common
spatial patterns (FBCSP), a staple of the field [213]. The EEGNet
proposed by Lawhern et al. [214] demonstrated a high level
of versatility of the CNN-based method on four different BCI
paradigms, i.e., P300, error-related negativity (ERN), MRCP,

and ERD/ERS. This method introduced depthwise and separable
convolutions for feature extraction and achieved high classifica-
tion accuracy while using fewer parameters than other models.
In more recent work, Mane et al. [215] proposed a filter-bank
convolutional network (FBCNet) to classify MI tasks from
EEG for both healthy and stroke subjects. FBCNet employed
a multi-view data representation followed by spatial filtering to
extract spectro-spatially discriminative features. A similar work
introducing multi-scale CNN to learn spatial-temporal features
for epileptic seizure detection can be found in [216].

EEG signals are collected by multiple electrodes positioned
on the scalp, inherently forming a spatial network. To consider
the physical distribution of EEG signals, graph convolutional
networks (GCNs) were introduced as an extension of CNN. In
a graph, data are represented by nodes and edges, and convolu-
tion involves aggregating information from neighboring nodes.
The concept of a “neighborhood” holds different meanings for
traditional convolution and graph convolution. For traditional
convolution, a neighborhood refers to local patches or regions
of the input data. For graph convolution, however, it refers to the
set of adjacent nodes connected by edges. When decoding EEG
using a GCN, the data are first represented as a graph with nodes
(electrodes) and edges (relationship between electrodes). This
can be realized by calculating the absolute Pearson’s matrix of
EEG data [217]. Then, the initial feature vectors are assigned to
each node in this graph. Finally, graph convolutional layers are
implemented to capture relationships between connected nodes.
GCNs have been used for MI classification [218], P300 decoding
[219], and cognitive analysis [220] by learning the intrinsic
relationship between different EEG channels. Recently, a CNN
variation that considers the “neighborhood” of EEG electrodes
– PointNet – has been introduced to study continuous tracking
in MI BCI [221].

A recurrent neural network (RNN) assumes that there are
long-term dependencies in sequential data. RNNs capture infor-
mation from previous time steps by maintaining hidden states
[222], are capable of decoding temporal and spectral information
from EEG. Long short-term memory (LSTM) is a typical RNN,
which was proposed to address the vanishing gradient problem
in RNN by incorporating a memory cell and three gates named
forget gate, input gate, and output gate. The memory cell is
capable of maintaining long-term memory, while the three gates
control the flow of information into and out of the memory cell.
This structure enables LSTM to handle sequences of varying
lengths and retain important information over extended periods.
Totora et al. [223] proposed an LSTM network with two separate
layers, allowing the network to capture both low-level and
high-level gait patterns from brain signals.

Despite the effectiveness of CNNs and LSTM in capturing
spectral and temporal features in sequential EEG, they encounter
challenges when dealing with long-range dependencies and may
experience a long training process to selectively focus on crucial
elements in EEG. To address this limitation, attention mecha-
nisms were introduced [224]. In EEG decoding, the relevant
information for making a prediction is not equally distributed
across the entire trial. Attention mechanisms enable the model
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to dynamically weigh different parts of the input, giving more
importance to relevant regions. In the attention mechanism, the
“query” represents the current position or context that the model
is focusing on and the “key” represents different positions or
elements in the input data. Attention is realized by calculating
attention scores, which represent the importance of each key
with respect to the current query. The attention mechanism has
been used in ERP classification [225] and VEP detection [226].
One typical attention-based method is the transformer, which
uses multi-head attention. This involves multiple parallel self-
attention mechanisms, allowing each position in the sequence
to attend to all positions. Transformers have been used for MI
decoding [227], ERP detection [228], SSVEP recognition [229],
etc.

The previously presented deep learning methodologies are
characterized by singular architectural frameworks. Hybrid deep
learning (hDL) methods, on the other hand, combine the di-
verse strengths of different decoding approaches to effectively
integrate temporal, spectral, and spatial features from EEG
data, thereby offering a comprehensive solution for EEG decod-
ing. The most common hDL approaches combine homogenous
CNNs together, or integrate CNNs with other neural networks,
including RNNs, transformers, and other variants. [230] com-
bined a CNN with a multilayer perceptron (MLP) to facilitate
epileptic seizure prediction. A CNN-LSTM framework was
proposed to extract the spectral, spatial, and temporal fea-
tures from EEG to address the BCI illiteracy problem in MI
paradigms [231] and also to boost the classification of SSVEP
paradigms [232]. Song et al. [233] introduced a compact con-
volutional transformer to enhance the decoding of SSVEPs by
encapsulating local and global features in a unified framework.
Despite hDL’s potential for a more comprehensive analysis of
EEG signals, its elevated model complexity and computational
costs still pose challenges in BCI.

The appeal of deep learning methods for EEG decoding lies
in three main reasons. First, the EEG signal is inherent with high
variability across time and subjects, leading traditional methods
to fail to generalize well across these diversities. On the contrary,
deep learning methods are capable of integrating high-level
knowledge directly from raw EEG, significantly reducing the
reliance of the decoding algorithm on prior knowledge. Second,
deep learning methods are trained in an end-to-end manner rather
than the two-step phases employed in traditional methods, ensur-
ing a global optimum during the decoding process. Finally, deep
learning methods automatically extract features, avoiding the
highly time-consuming and labor-intensive extractor designing
process of traditional methods. However, it is important to note
that deep learning methods assume the training and testing data
share the same distribution, an assumption that may not hold
in many real-world scenarios. Furthermore, the challenge of
obtaining extensive and diverse labeled training data for training
a deep learning model is often not feasible in practical cases
like clinical applications. Therefore, despite their advantages,
deep learning methods still face challenges, and more advanced
methods should be explored.

2) Transfer Learning-Based Methods: Transfer learning
is currently a hot topic in machine learning and data mining.

Different from deep learning methods, transfer learning assumes
that the distribution of training and testing data is different, and
tries to utilize knowledge learned in one group to solve problems
in another [234]. In transfer learning, the domain comprises
the feature space X and the probability distribution P (X),
where X = {x1, x2, . . . , xn} ∈ X , with n being the number of
feature vectors. In a specific EEG decoding problem, X is all
available EEG feature vectors in this decoding task with xi de-
noting one particular vector extracted from one single EEG trial.
n can therefore also be considered as the number of EEG trials,
andX the feature space of all EEG samples. In transfer learning,
the domain holding known knowledge is termed the source
domain, typically denoted as DS . The domain encompassing
unknown knowledge to be acquired is termed the target domain,
usually represented as DT . The learning goal is referred to as
a task T , which consists of a label space Y and the prediction
function f(·), and Y = {y1, y2, . . . , yn} ∈ Y is the label space
in that training dataset. More formally, given a source domainDS
with task TS and a target domain DT with task TT (DS �= DT ),
transfer learning aims to utilize the information learned fromDS
to facilitate the prediction function fT (·) [235]. According to the
label type of available data, transfer learning can be divided into
inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning. In inductive transfer learning, the
labels of the target domain are known, and the target task and the
source task are different (DS �= DT ). In unsupervised transfer
learning, data from both the source and target domains are un-
labeled, and tasks in the two domains are different (DS �= DT ).
Most BCI research focuses on transductive transfer learning,
where DS �= DT , but TS = TT . For instance, in the context of a
group of subjects performing an identical MI task, the labeled
EEG data from some subjects (source domain, DS ) are used
to improve the decoding of the unlabeled EEG signals in naive
subjects (target domain, DT ).

To date, the predominant approach in transfer learning for
BCI has largely relied on fine-tuning techniques. In one typical
cross-subject fine-tuning application, one subject-independent
model fS(·) will be pre-trained on all of the data from DS ,
and then the data from DT will be used to fine-tune a subject-
dependent modelfT (·)onfS(·) [236]. Zhang et al. [237] demon-
strated the efficacy of fine-tuning using a pre-trained model
from other subjects in cross-subject applications. Besides this,
fine-tuning method can also be used in cross-session scenarios,
where the data from the calibration session are pre-trained to
initialize a model, while data from the subsequent sessions are
adopted to fine-tune a session-specific model [238]. Fine-tuning
has been widely used in MI decoding [239], SSVEP detection
[240], and P300 recognition [241]. Previous studies with deep
learning have shown that fixing some of the initial weights in
fS(·), while adjusting others by the optimizer, will improve
the performance of transfer learning. This technique is termed
frozen and has been adopted into BCI to enhance the decoding
performance of the fine-tuning strategy [242]. Notably, not all
subjects from the target group will benefit from the performance
of the source group. Coarsely performing a transfer regardless of
the dissimilarity between the source and target domain will lead
to even worse decoding accuracy. This phenomenon is called
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“negative transfer” [243]. To tackle this issue, domain adaptation
techniques are proposed in EEG decoding.

Domain adaptation techniques are employed to adapt the
source domain information to better align with the features of
the target domain. This approach was introduced in EEG decod-
ing to help mitigate the variability between different subjects,
sessions, or experimental conditions. Domain adaptation can
be realized by conditional distribution adaptation and marginal
distribution adaptation, i.e., with or without considering the
relationship between variables. Conditional adaptation consid-
ers the joint distribution of multiple variables, seeking to pre-
serve the relationships that exist in the data. It not only aligns
individual feature distributions but also aims to capture the
interdependencies and relationships between features. On the
other hand, marginal distribution adaptation performs domain
adaption without considering the relationship between variables.
Chen et al. [244] proposed a multi-source marginal distribu-
tion adaption method. First, a common feature extractor was
designed to map the sources and target data from the original
feature space into a common shared latent space. Then the EEG
from the target domain and source domain was combined as
pairwise inputs to learn domain-specific features. In order to
project the data from the target and source domain as closely as
possible, they adopted a maximum mean discrepancy (MMD)
loss to obtain domain-invariant features. So far, more and more
work on domain adaption concern both marginal distribution
and conditional distribution to adapt models to new subjects or
datasets while preserving task-specific information [245], [246].

Domain adversarial is a relatively new approach to realize
domain adaptation, aiming to learn a model that cannot identify
the domain of origin of the input observation. This idea is
based on the belief that if an algorithm cannot distinguish the
source domain based solely on the transformed representation,
it indicates that the representation has effectively abstracted
domain-specific information. When performing domain adver-
sarial, data with both class labels and domain labels are initially
input into a feature extractor. These representations are then
directed towards a label predictor and a domain classifier. The
objective is to minimize loss in the label predictor while em-
ploying a gradient reversal layer to maximize loss in the domain
classifier. This process reduces domain-specific information
within the representation space and significantly improves the
generalization ability of the label predictor. Inspired by this idea,
Li et al. [247] trained subject-independent models by reducing
the impact of subject-specific information on the EEG emotion
recognition process. Liu et al. [248] proposed a unified multi-
source optimization framework to realize multi-source domain
adaption by learning the weight distribution and fusion results.

Besides realizing domain adaptation, adversarial training is
also adopted to perform data augmentation by generating artifi-
cial samples resembling the real data distribution it was trained
on. A generative adversarial network (GAN) is another transfer
learning method. It consists of a generator to create EEG data and
a discriminator to distinguish between the real and artificially
generated samples. The training process of a GAN involves a
continual back-and-forth struggle between the generator and
the discriminator. It succeeds when the generator can produce

synthetic data that are indistinguishable from the real data by the
discriminator. Typically, this method can be used for EEG data
augmentation [249], [250] and artifact detection [251]. Training
a GAN using EEG is widely acknowledged as a tough task due to
prevalent instability issues. One notable challenge arises when
the discriminator quickly reaches an optimal state, effortlessly
differentiating between the synthetic samples and the real EEG
samples. As a consequence, this will lead to no meaningful
gradients and bring no progress for model training.

While improving classification accuracy, transfer learning
is also capable of achieving a calibration-free BCI. Few-shot
learning is an effective transfer learning tool for achieving this
goal [252]. This approach trains models to make accurate predic-
tions or classifications with very few labeled examples, or even
without any supervised information (zero-shot learning). There
exist three primary approaches to facilitate few-shot learning.
The first option is to augment the training dataset. Besides the
above-mentioned GAN, data augmentation can be realized by
incorporating various representations with temporal EEG trials
(such as spatio-temporal features and power spectral density)
[253], by designing a sliding window to crop EEG data into
smaller segments across the temporal domain [212], by injecting
various types of noise (such as Gaussian, Poisson, etc.) into
clean EEG to create new EEG trials [254], and by performing
oversampling [255] or subsampling [256] on EEG trials. The
second option is to constrain the hypothesis space within the
model. An et al. [257] proposed a few-shot learning method
by using two branches of embedding modules to extract data
from support data and query data. This work was applicable to
few-shot learning because, instead of learning features within
each EEG trial individually, it focused on learning the rela-
tionships between EEG trials, which significantly constrained
the hypothesis space. The third option is to modify the search
strategy within the hypothesis space. The previously mentioned
fine-tuning approach serves as a common search strategy, re-
fining existing parameters from source tasks to optimize the
parameter for the target task.

BCI datasets typically have limited samples due to the chal-
lenges in collecting brain data, making transfer learning an
ideal solution for signal decoding. Transfer learning has shown
its priority in training subject-independent models. It is worth
noting that prior to executing the transfer process, careful con-
sideration of domain adaptation is recommended to prevent
negative transfer.

3) Manifold-Based Methods: Manifold approaches are dif-
ferent from the classification algorithms we have discussed
until now. The feature space of these algorithms is defined in
Euclidean space, which is flat everywhere. Manifold space, on
the other hand, exhibits flatness at a specific point and its vicinity
[258]. The manifold theory assumes that the higher-dimensional
EEG feature space is mapped from a lower-dimensional space.
Throughout this mapping procedure, the feature space intro-
duces dimensionality redundancy and interferes with the fea-
ture extraction process. Consequently, manifold-based classifi-
cation aims to unveil the inherent structure or geometry of this
high-dimensional data, represent it in a more concise lower-
dimensional space, and then perform classification.
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Among different manifold-based classification methods, the
Riemannian manifold is the most commonly used for EEG
decoding [259]. This method aims to pull symmetric positive
definite (SPD) features of the same class toward their barycenters
and separate other features of different classes farther away
in Riemannian space [260]. SPD features are important for
calculating the Riemann distance because its symmetry ensures
the Riemann distance remains invariant under coordinate trans-
formations and its positive definiteness guarantees the well-
defined nature of the Riemannian metric, ultimately resulting
in a meaningful distance measure. In EEG decoding, the SPD
matrix is typically derived from the covariance matrix of EEG
trials, represented as C = 1

N−1XXT ∈ RN×N , where N is the
number of EEG channels. This SPD matrix characterizes the
relationships among various electrodes and serves as an effective
tool for capturing the characteristics of EEG signals. Given
the two SPD matrices C1 and C2, the affine-invariant Riemann
distance δ between them can be calculated by [317], [318]:

δR (C1, C2) = ‖log

(
C

−1/2
1 C2C1

−1/2
)
‖F =

[
N∑
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1

2
log2λi

]1/2

(1)
where λi, i = 1 . . . N are the real eigenvalues of
C

−1/2
1 C2C
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1 . By using the Riemann distance, the centroid

of I SPD matrices on a Riemannian manifold (also known as
the Riemannian geometric mean point) can be obtained through
the following formula:

G (C1, . . . , CI) = argmin
C∈C(n)

I∑

i=1

δ2R (C,Ci) (2)

where C(n) is the space of the SPD matrices and C is the
SPD matrix representing one point in the manifold. When de-
coding EEG in a Riemannian manifold, all SPD matrices of
the EEG trials are first mapped into the Riemannian manifold
space. Subsequently, the Riemannian geometric mean points of
every class are computed. When new test data are introduced,
the Riemann distances between this point and the Riemannian
geometric mean points of each class are calculated. The point
is then classified into the class associated with the minimum
Riemann distance. This method is called Riemannian Minimum
Distance to Means (RMDM) [319], and is parameter-free, robust
to noise, and therefore exhibits better generalization capability.
Other solutions try to introduce traditional classifiers like linear
discriminant analysis (LDA), support vector machine (SVM),
and neural networks into classification. As these methods rely
on Euclidean geometry assumptions (LDA and SVM assume
the decision boundaries are linear in the input space, and neural
networks heavily rely on optimization using gradient descent
based on Euclidean geometry), additional operation projecting
data points from Riemannian space into tangent space is em-
ployed. The flat and linear nature of the tangent space at a specific
point serves as an approximation of Euclidean geometry at that
point and thereby meets the assumption of traditional classifiers.
This concept has led to the development of Tangent Space LDA
(TSLDA) and Tangent Space SVM (TSSVM) for EEG decoding.

Manifolds based on Riemannian geometry have been suc-
cessfully adopted in EEG decoding. A novel geometric deep
learning-based model was proposed in [261] to learn spatiotem-
poral representations of EEG data fully on a Riemannian SPD
manifold. This work was tested on MI, ERP, and SSVEP
datasets. Apart from the Riemannian manifold, many other
manifolds have been explored in recent years. Gunawardena et
al. [262] proposed a kernel-based non-linear manifold classifier
to identify important channel inter-relationships within the EEG
data. Li et al. [263] extended the low-rank representation method
from the Euclidean space to the Grassmann manifold, aiming to
investigate subspace information and re-represent EEG signals.

Manifold-based classification can be performed in an unsu-
pervised manner, allowing the decoding of EEG data without
the need for labeled examples. Moreover, the robustness of
manifold-based methods extends to their ability to handle noise
and outliers in the EEG signals, making them more applicable
to real-world scenarios.

4) Adaptive Learning-Based Methods: An adaptive clas-
sifier is a type of classification algorithm that can adjust its
parameters or structure based on the characteristics of the data
it is processing. The adaptability of such a classifier allows it
to respond to changes in the input data distribution, making
it more flexible and potentially better suited for dynamic or
evolving environments. Adaptive classifiers can be categorized
into three types: supervised adaptation, unsupervised adaptation,
and semi-supervised adaptation. For supervised adaptation, all
data used for adaptation are supposed to be labeled. Most of the
adaptive methods for EEG decoding are based on supervised
adaptation. One typical application is cross-session adaptation
for the long-term utilization of BCI, which requires the method
to continuously adapt to the subjects’ mental state with the
incoming unlabeled data. In this case, the decoding algorithms
aim to retrain a new model to classify the unlabelled data from
session i with the data from session 1 to i− 1 in a supervised
manner [238].

On the contrary, for unsupervised adaptation, no labeled data
are available in the target domain. In such cases, the model has
to rely on domain information or other unsupervised learning
techniques to adapt itself to the new domain. Most works using
unsupervised adaptation for EEG decoding attempt to learn
domain-invariant features by training a domain-adversarial or
domain-alignment model [264], [265].

For semi-supervised adaptation, most of the EEG used for
model training is unlabeled, while only a fraction of them is
labeled. Given that data labeling can be time-consuming and
tedious, semi-supervised adaptation may have more potential
than supervised adaption in EEG decoding. Pseudo-labeling,
self-training, and co-training are three semi-supervised methods
used for EEG decoding. In pseudo-labeling, the initial EEG
decoding model is trained on the labeled EEG dataset. Then, the
trained model is applied to the unlabeled EEG data to generate
pseudo-labels. Finally, the labeled and pseudo-labeled datasets
are combined together to retrain the model. This process is
usually iterated many times to refine the model and update the
pseudo-labels [266]. Self-training is similar to pseudo-labeling,
except only those predictions with high confidence are added
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to the labeled set for the next iteration of training [267]. In
co-training, multiple models are trained on different subsets
of EEG features. The models then vote on the labels for the
unlabeled EEG, and the most confident predictions are added
to the labeled set [268]. It has been proven that when using the
proper method, the semi-supervised method can reach a similar
performance as the supervised method [269].

Compared with static methods, adaptive learning-based meth-
ods show more advantages in the real-time adjustment and
robustness to non-stationarity for EEG decoding. Therefore,
they are particularly well-suited for real-world applications.

5) EEG Source Analysis: The adoption of source domain
analysis for EEG decoding introduces a departure from the
conventions observed in sensor domain analysis that have been
previously discussed. Sensor domain analysis deals directly with
the signals recorded by EEG sensors on the scalp, focusing on
patterns and features at the sensor level. On the other hand,
source domain analysis seeks to go beyond the scalp-level sig-
nals to estimate the neural sources responsible for those signals,
providing more detailed spatial information about brain activity.
He and his colleagues have pursued source domain analysis
[270], [271], [272] for BCI for years and have achieved equal
or superior performance compared to sensor domain analysis
[121]. Early work on this topic investigated the performance
of using EEG source imaging using cortical current density
or equivalent dipole models to classify MI tasks without BCI
feedback [121], [273], [274]. EEG source imaging was further
used offline to localize and image cortical activation during MI
tasks performed during online BCI experiments where the online
decoding was based on sensor data only [110], [111], [112].
This approach was also implemented in real-time online MI BCI
experiments for continuous cursor and robotic arm control [164],
[165], where the online decoding was based on estimated source
signals. To perform EEG source imaging, an inverse transform
such as minimum norm estimate (MNE) and low-resolution
electromagnetic tomography (LORETA) is applied to convert
EEG data recorded on the scalp (the sensor domain) into cortical
source estimates (the source domain). Second, a region of inter-
est in the brain cortex is selected according to the specific task or
by a data-driven approach to realize an adaptive selection [275].
Then, the data can be treated according to traditional decoding
methods or deep learning methods [276].

Source domain analysis is well suited for deciphering the
precise movements of distinct arm segments. It further enables
the decoding of fine MI movements [166] and realizes motor
control for a robotic arm through the interpretation of MI tasks.
While the computational demands of this approach can be high,
source analysis has been successfully deployed in online MI BCI
applications [164], [165].

6) BCI Decoding Methods Outlook: Presently, decoding
methods prioritize three main goals: elevating classification
accuracy, establishing calibration-free BCIs, and enhancing the
robustness of BCIs. The need for higher classification accuracy
is evident, as it facilitates effective communication, precise
control of external devices, and an improved user experience.
Calibration-free BCIs contribute to a more user-friendly and
efficient experience, particularly crucial for real-world applica-
tions where users can swiftly engage with the system without

undergoing lengthy calibration sessions. Robust BCIs address
session-to-session non-stationarity and inter-subject variability,
ensuring consistent performance across sessions and subjects,
thereby enhancing overall BCI effectiveness.

While the decoding methods are categorized into distinct
sections, it is important to note that these divisions are not strictly
separated. Rather, there is often interconnectivity and overlap
between these categories. For instance, transfer learning may be
equipped with a CNN for intra-subject classification and using
a strategy by adaptive learning to realize inter-subject transfer.
Compared with offline applications, online evaluations provide a
more realistic and dynamic assessment of a decoding method’s
performance in practical, real-world scenarios. While current
decoding methods in BCI research predominantly undergo of-
fline testing using pre-recorded datasets, there is a crucial need
to encourage and prioritize online applications, especially for
emerging machine learning-based methods. In fact, a recent
study implementing EEGNet and PointNet demonstrates the
merits of deep learning for continuous tracking of a virtual object
using MI paradigms in an online setting [221].

V. BCI SOFTWARE

As the previous sections demonstrate, there is now ample
evidence that non-invasive BCI systems can be used, together
with appropriate feedback/conditioning protocols, to replace,
restore, improve, enhance, or supplement functions lost due to
different neurological disorders [1], [277]. The realization of
these possibilities crucially hinges on the effective and efficient
implementation and validation of various BCI approaches. Un-
fortunately, the implementation of any new BCI system involves
complex technology and the result may need to support different
situations.

BCI systems are technically complex; they acquire signals
from the brain and possibly other physiological or behavioral
sources, analyze them to produce output commands, and finally
realize the output and associated feedback. The acquisition of
these signals is accomplished using specialized hardware and
requires the implementation of proprietary software interfaces
to configure the device and acquire data simultaneously. As an
additional complication, the acquisition of all signals often needs
to be synchronized. This is technically challenging as different
sampling rates and acquisition delays must be accounted for
across the different input devices. Finally, all of the involved
device interactions and processing functions must occur in real
time, with minimal delays and consistent timing. While there
is no formal definition of these timing requirements, it is clear
that feedback must be perceived as continuous (e.g., must be
provided >20 times per second). Thus, the BCI software has
less than 50 ms to store, visualize, and process the acquired data,
and to produce all necessary outputs. These timing requirements
necessitate highly optimized coding that minimizes CPU load
and latency variation that may be introduced by the operating
system or other factors. Implementing and integrating these
functions is challenging, time-consuming, and costly.

Large multi-center BCI research or development efforts create
additional challenges. These efforts usually involve different
personnel who conduct experiments or analyze data in different
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TABLE II
OVERVIEW OF BCI TOOLBOXES AND SOFTWARE PLATFORMS

locations. Thus, such large BCI efforts require the creation of
many different BCI systems that all must store the resulting data
in a standard format that is properly annotated. This means that
all experimental parameters and event markers must be included
to make the data practical for analysis by a person who is not
intimately familiar with all experimental and technical details of
a particular BCI experiment. Thus, there is an important need to
facilitate such large BCI research and development efforts that
vary in technical or neuroscientific approach, people, site, and
are executed over long periods of time.

The following two sections summarize the existing toolboxes
and BCI software platforms that can address these relatively
simple or more complex needs, respectively (Table II).

A. Toolboxes

Toolboxes relevant to BCI development provide functions
that simplify the development of an individual BCI system.
BCI toolboxes are usually developed on top of commercial
high-level platforms (MATLAB, SIMULINK, or LabVIEW) or,
more recently, using scripting languages such as Python.

MATLAB provides the basis for a number of BCI tool-
boxes for the presentation of behavioral paradigms (e.g., Psy-
chophysics Toolbox [278]) and the post-hoc analysis and vi-
sualization of biosignals (e.g., EEGLab, [279]; BioSig [280];
Brainstorm [281]; FieldTrip [282]; and MNE [283]). EEGLab,
BioSig and FieldTrip have been extended into toolboxes for
rapidly prototyping and evaluating online BCIs, called BCILAB,
rtsBCI and FieldTrip buffer, respectively.

SIMULINK provides the basis for g.BCIsys [284], a com-
mercial SIMULINK-based toolbox that provides a front-end

interface for rapid BCI research and development to users
of g.tec hardware. LabVIEW has been the basis for several
BCI demonstrations and has been used to implement the BCI
toolbox Craniux [285]. The popularity of Python in the BCI
community has increased over the past decade, and quite a few
toolboxes have been implemented to facilitate BCI development.
They include BciPy [286]; PyBCI [287]; MEDUSA [288]; Lab
Streaming Layer [289]; pySPACE [290]; PsychoPy (for presen-
tation of stimuli) [291]; and a set of toolboxes from the Berlin
BCI group: Pyff – a framework for feedback applications and
stimulus presentation [292]; Mushu – a toolbox for BCI signal
acquisition [293]; and Wyrm – a BCI analysis toolbox [294].

B. BCI Software Platforms

Just like BCI toolboxes, BCI software platforms offer func-
tions that facilitate the development of BCI systems. To do this,
they contain support for different signal acquisition hardware,
signal processing and visualization routines, and different types
of user feedback. They also have complete implementations of
different BCI approaches that have been validated in different
contexts, contain ample documentation, are maintained consis-
tently to adapt to variations in a device’s software interface
or operating systems, and provide a whole ecosystem of tools
to interact online and offline with other tools or programming
languages.

BCI software platforms are usually implemented in low-
level programming languages (e.g., C++), compiled into native
machine code, and executed without dependencies on com-
mercial libraries. Mature platforms also support economical
development and deployment across many laboratories and
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users. While many general-purpose BCI software platforms have
been proposed, e.g., BCI++ [295], xBCI [296], TOBI [297],
MindDesktop [298], and UniPA BCI [299], only BCI2000 [300],
[301] and OpenViBE [302] have been consistently developed for
many years, and have enjoyed widespread adoption across many
laboratories.

1) OpenViBE: The OpenViBE software platform has been
developed since 2007 [302]. OpenViBE is implemented in C++
and can be compiled on Windows and Linux; binaries are pro-
vided for Windows. OpenViBE is based on an architecture that
facilitates the integration, expansion, and configuration of modu-
lar functionality, while the graphical interface makes OpenViBE
easy to use for a wide range of investigators, including engineers,
scientists, and clinicians. These two factors make OpenViBE
well-suited to supporting the implementation of different BCI
approaches.

2) BCI2000: The BCI2000 software platform has been de-
veloped since 1998 [300], [301]. BCI2000 is implemented in
C++ and can be compiled on Windows and Linux; binaries are
provided for Windows. Its implementation is based on a model
that can describe any BCI system [300], [303]. In accordance
with this model, BCI2000 has four modules that communicate
with one another: Source (data acquisition and storage); Sig-
nal Processing; User Application; and Operator interface. The
modules communicate through a documented network-capable
protocol based on TCP/IP. The implementation of BCI2000 is
highly optimized, so that it can support even very demanding
BCI configurations with good timing characteristics [304].

BCI2000 provides interfaces to Matlab, SIMULINK, Lab-
View, and Python. It has extensive scripting functionality that
can be used on the command line using various approaches that
include Matlab, Python, through a Telnet interface, or with a
Windows dynamic link library (DLL). With these capabilities,
BCI2000 can be used to implement applications with a com-
pletely custom graphical interface.

The BCI2000 data storage format accommodates variations
in the digitized signals (e.g., in number of channels, sampling
rate), defines the operating protocol, and includes a record of
all events (e.g., feedback to user, device control, artifact de-
tection) that occur during operation. BCI2000 has a roster of
existing implementations with primarily technical documenta-
tion. These implementations can realize different BCI designs
and readily usable methods, and employ commercially available
and relatively inexpensive hardware components. BCI2000 is
described in detail in a book [301], as well as in multiple
book chapters [305], [306], [307], [308], [309], [310], [311]
and peer-reviewed articles [300], [304], [312].

C. Considerations for Designing BCI Software

The initial and important choice for designing BCI software
is whether to implement it from scratch using a particular
programming language, or whether to proceed using the existing
toolboxes or BCI software platforms described above in order
to reduce the time, complexity, and cost associated with BCI
software development [313].

Implementing BCI software from scratch can be appropriate
(and is only practical) if the technical demands are relatively

low, such as, for example, in a student project that aims to use a
consumer BCI headset to create simple visualizations/feedback
of a particular brain signal. It may also be the best choice for
clinical BCI systems that need to pass regulatory approval and
whose functionality is relatively fixed.

Using BCI toolboxes can be appropriate when the technical
demands are somewhat more complex but when there is an
expectation that BCI software design, data collection, and data
analysis are performed by the same person. Example situations
are the development of a BCI system to support one research
study by an individual graduate student.

Using BCI software platforms is most appropriate when the
technical demands are complex (such as the simultaneous use
of different hardware), and when there is an expectation that
over the course of several years, many different BCI systems are
needed to support diverse experimentation executed by different
people in potentially different locations.

D. Impact of BCI Software

The ultimate purpose of BCI software is to facilitate the
implementation and testing of different BCI approaches. Thus,
the success of BCI software in achieving this purpose can be
measured by the number of scientific studies that they have
supported. The illustration in Fig. S2 indicates the number of
publications that have been supported by different BCI software
packages. The benefit of the use of BCI software platforms is an
improvement in practicality or cost associated with BCI system
development [313].

VI. CONCLUSION AND OUTLOOK

This review demonstrates that the field of non-invasive BCI
research is active and prolific. The substantial progress in BCI
research and the increasing availability of affordable and capable
hardware, software, and signal processing/AI components have
attracted an increasing number of scientists, engineers, and clin-
icians to participate in the field. Current research incorporates a
broad range of neural signals that can be detected non-invasively,
various classes of modern decoding algorithms, and different
types of output devices such as robotic arms, motor neuropros-
thetics, wheelchairs, or spellers. It also successfully transfers
and adapts knowledge from other areas such as cognitive neuro-
science (e.g., user training) or AI (e.g., sequence-to-sequence
learning). Game- or meditation-based training protocols that
target a particular mental state can also be combined with virtual
and augmented reality technologies to facilitate a more cooper-
ative communication between brain and machine. Despite these
creative approaches, BCI illiteracy persists in some participants,
calling for further innovations in neuroscientific protocol design
and ML/AI algorithms. Moreover, AI algorithms, computer
vision techniques, and increasing computer power continue to
push the limits of neural decoding and help adapt various BCI
applications to scenarios that better represent daily life.

There is no doubt that the field of non-invasive BCI research
has made substantive progress in broadening its scientific and
technical approaches and is now a mature research enterprise that
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has produced BCI demonstrations across the world. As the gen-
eral public has become aware of this increasingly common ac-
complishment with healthy individuals, commercial technology
companies have also become interested in further developing
BCI systems. Indeed, companies such as Neuralink, Synchron
and Meta have recently invested in similar technologies that may
also allow healthy users and various patient populations to one
day augment their lives [314], [315]. Ideally, further placing
BCI technology in the public eye in this way may open new
opportunities for larger collective innovation across the field.
As such, additional resources would be greatly beneficial to
address various technical problems that will certainly continue
to occupy the attention of the BCI community for years to come.
These issues include, but are not limited to the construction of
deep learning models that can better extract and decode mental
intention signals buried within noisy EEG, the development of
robust wireless hardware for easy BCI experimentation in natu-
ralistic settings, practical electrodes that can be used without gel
but have a research-like impedance, the generalization of BCIs
across subjects or tasks, the appropriate integration of large lan-
guage models, the elimination of eye-blink or ambulation-based
artifacts, and the development of more capable and versatile BCI
software.

It is evident that publications and participant numbers used
to demonstrate and validate technical advances far outnumber
those applying such progress to patient populations. This is
somewhat counterintuitive as the non-invasive nature of these
systems should help facilitate more widespread clinical transla-
tion and acceptance. Such phenomena may be a result of the high
level of heterogeneity across individual patients and conditions,
relatively small effect sizes for neuromuscular rehabilitation
metrics, and/or patient compliance. It may also be due to the
lack of robust decoding techniques. In the future, integrating BCI
technology with on-demand and closed-loop neuromodulation
technologies, such as transcranial focused ultrasound stimula-
tion, transcranial electric stimulation, or transcranial magnetic
stimulation could enhance feedback directed at the brain and
increase the intended effects while further lowering the effort and
burden placed on users. The integration of neuromodulation with
brain decoding may help bring BCI technology into the clinic for
patients that require further facilitation of communication [27]
or better control of a computer/robotic device [26], and expand
its applications to patient populations extending beyond the neu-
romuscular realm, such as those suffering from neuropsychiatric
disorders [316].

In summary, the field of non-invasive BCI research has wit-
nessed substantial progress over the past decade. Continued
research efforts on neuroscientific paradigms, ML/AI algorithm
innovation, and the increased attention on BCI by the scientific
community and larger society will further stimulate and facil-
itate research progress on non-invasive BCI. Future research
shall be directed at innovating fundamental BCI technology by
leveraging recent technological breakthroughs such as AI, im-
proving individual system components and producing technical
demonstrations, and by identifying and solving pressing prob-
lems of patients and clinicians.
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