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ABSTRACT In addressing multi-agent reinforcement learning (MARL) challenges, Multi-Agent Trans-
former (MAT) has demonstrated a number of notable successes. In various benchmarks, MAT consistently
showed a strong performance. A key observation in the latest MAT frameworks is MARL modeling with
sequence modeling (SM) to represent the inter-agent relationships by self-attention mechanisms. This study
applies graph-based modeling to represent the inter-agent relationships present in agent interactions to
improve performance. To this end, we introduce the so-called MAT-GAT model, which leverages Graph
Attention Networks (GAT) to allow for individualized consideration of interactions between agents. This
enables MAT to pay more attention to information relative to inter-agent interactions within a cooperative
MARL environment. To evaluate the performance of MAT-GAT, we conducted a series of benchmark tests
across three different levels of StarCraft Multi-Agent Challenge (SMAC) tasks and the MuJoCo Half-
cheetah task. The test results indicate that MAT-GAT outperforms both the original MAT and state-of-the-art
baselines such as QMIX, particularly in complex environments. This demonstrates MAT-GAT’s improved
performance with respect to its representation capabilities and learning.

INDEX TERMS Multi-agent, reinforcement learning, transformer, GAT, SMAC, MuJoCo.

I. INTRODUCTION
Recently, the field of multi-agent reinforcement learning
(MARL) has experienced rapid development and enormous
progress especially in many complex real-world challenges
such as robot swarms [1] and autonomous vehicles [2],
because of the tremendous success of deep learning tech-
nology which allows highly complex action-value functions
and policy functions to be closely approximated without
explicit computation of all the possible values of states and
actions. The ultimate goal of MARL is to carefully balance
the policies of individual agents for the joint maximization
of the team’s rewards based on individual contributions. The
design and implementation of cooperative MARL systems,
in particular, require extensive consideration of scalability
with respect to the joint action space, which can grow expo-
nentially with the number of agents.

The associate editor coordinating the review of this manuscript and
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The main challenges of cooperative MARL include partial
observability and communication constraints, which neces-
sitate that agents determine actions based solely on local
information. The centralized training with decentralized exe-
cution (CTDE) regime [3], [4] has gained wide acceptance in
the cooperative MARL research community and has paved
the way for the recent progress of many research works [5],
[10], [11], [12], [13]. In the CTDE regime, agents decide
their actions based only on their local information. This
implies that the optimal joint actions are determined based
on each agent’s optimal action without global information,
such as the interactions among individual agents. To account
for direct interactions among agents, it is imperative to
use global information, preferably somewhat limited, not
only in training but also during execution while ensuring
scalability.

Markov games [19], [20] are powerful frameworks for
modeling cooperative MARL problems. Each agent selects
actions based on its observations, which influence the state
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and rewards of the entire system. Recent studies have applied
Markov games to complex real-world problems, thereby
highlighting their effectiveness. For example, reinforcement
learning has been used within the Markov game framework
to explore preferential cyber defense strategies for power
grids, allowing agents to optimize their defense strategies
in response to cyber threats [56]. Additionally, research
on the efficiency of reinforcement learning in decentral-
ized general-sum Markov games has provided theoretical
guarantees for the convergence of optimal policies [57].
Furthermore, the potential of Markov games for critical
infrastructure protection has been demonstrated by utiliz-
ing deep Q-learning to defend smart electrical power grids
against cyberattacks [58]. In the field of UAV-assisted com-
munication, a multi-agent reinforcement learning approach
using policy clipping and average evaluation has been pro-
posed to enhance the communication strategies [59]. More-
over, a Bayesian reinforcement learning approach in Markov
games has been presented to achieve near-optimal policies
through efficient exploration-exploitation trade-offs [60].

These studies underscore the versatility and power of
Markov games in addressing awide range ofmulti-agent rein-
forcement learning challenges, making them a foundational
element in the development of sophisticated MARL systems.
In [5], the authors propose the individual global max (IGM)
condition, which computes the joint Q values for the optimal
joint policy updates without information on other agents’
actions or rewards in decentralized execution. It defines the
optimal joint action space comprising the optimal actions of
each agent. Several other algorithms based on the CTDE have
been proposed to satisfy the IGM condition. QMIX is one of
the best-known algorithms with excellent performance [6],
[7], [8] in the StarCraft Multi-Agent Challenge (SMAC) [9],
which is a suite of StarCraft unit micromanagement [10].
It integrates the agent’s Q functions nonlinearly into a joint
Q function through a mixing network that adheres to the
monotonicity constraints of the IGM condition. In addition,
VDN [11] satisfies the IGM condition by linearly integrating
the joint Q function with additive composition. However,
satisfying the IGM condition has not been proven to induce
cooperative movements among agents [12]. Although these
algorithms exhibited strong performance in simple tasks such
as controlling a small number of uniform units, the additivity
or monotonicity conditions proposed to satisfy IGM limit
the applicable tasks, leading to poor performance in complex
tasks.

Recently, a multi-agent framework utilizing sequence
models (SM)was proposed to incorporate interactions among
agents [13]. In this work, a Multi-Agent Transformer (MAT)
models the MARL problem as an SM, leveraging the trans-
former architecture based on the theorem of multi-agent
advantage decomposition [14]. Specifically, each agent’s
local information based on local observations is dissem-
inated such that high-level interrelationships representing
agents’ interactions are embedded within the MAT’s encoder.

This can help mitigate the difficulties of CTDE with
respect to partial observability without compromising
scalability.

MAT organizes agents as a sequence in an arbitrary deci-
sion order to be used as the input to a transformer [15].
However, it is controversial to use a sequence model to rep-
resent the interactions among agents, given that the agents
are interdependent and the embedding of interrelationships
is bi-directional [17]. Furthermore, inter-agent relationships
that can be represented by a partially connected, asymmet-
rical, dynamically changing graph might not be efficiently
modeled by the self-attention mechanism of the transformer
architecture.

In military operations, for instance, various units, such
as infantries, tanks, and drones, work together to perform a
specificmission. Theoretically, this arrangement allows every
unit to share all battlefield information, which seemingly
enhances situational awareness. If agents are organized into a
fully connected graph, the continuous information exchange
required between all units may overload the entire system.
This information overload can hinder the ability of each
unit to identify crucial information and respond in a timely
manner. More specifically, distant units not directly affected
by a drone’s observational data should process all the data
unnecessarily, potentially slowing down decision-making
processes and consequently degrading the overall efficiency.
In contrast, GAT allows for a more precise and hierarchical
representation of relationships by utilizing not only the obser-
vations of agents, but also the edges that directly represent
the relationships between agents [18]. Consequently, graph-
based modeling can provide more effective communication,
resource allocation, and execution of operations.

In this study, we generalize the representation of a group
of agents by using a graph instead of a sequence. We also
propose to replacing the self-attention mechanism with a
graph attention mechanism to allow for explicit graph repre-
sentations within the transformer architecture. This approach
offers substantial benefits for strategy and policy determina-
tion aimed at fostering advancements in the comprehension
and enhancement of multi-agent reinforcement learning to
optimize the performance of the overall system. We present
the behavior and performance differences between traditional
MAT and our MAT-GAT model by performing experiments
and comparative analyses based on challenging StarCraft
maps [9].

II. BACKGROUNDS
A. MULTI-AGENT ADVANTAGE DECOMPOSITION
Multi-agent advantage decomposition is the primary theorem
for modeling MARL problems as an SM model [14]. Within
multi-agent environments, the direct application of tradi-
tional actor-critic methodologies encounters significant chal-
lenges [21]. Specifically, the actions of one agent invariably
influence the rewards perceived by others, thus complicating
the precise estimation of a policy’s gradient. This intricacy
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is intrinsically tied to the ‘credit assignment’ dilemma [22],
[23], [44], which involves allocating rewards or penalties to
specific agents and their corresponding actions. Two pre-
dominant strategies have been proposed to address this:
the first considers only individual agents’ local informa-
tion, and the second employs a counterfactual baseline
approach [14]. MAT integrates the significance of employ-
ing sequence models and adopts the counterfactual-based
multi-agent advantage decomposition theorem to accurately
represent the intricate interrelationships between agents.

The multi-agent state-action value function for agent
i1, . . . , ik can be defined as

Qi1:kθ (o, a(i1:k )) ≜ E
a−i1:k∼π

−i1:k
θ

[Qθ (s, ai1:k , a−i1:k )], (1)

where −i1:k is the set of all agents excluding i1, . . . , ik ,
called a counterfactual. When k = 0, the multi-agent state-
action value function is the same as the state-action value
function and when k = n, multi-agent state-action value
function is same as the original state-action value function.
With the state-action value function of subset i1:k defined in
Equation 3, the agents’ contribution to the joint state-action
value can be measured. Hence, the multi-agent advantage
function is defined as:

Ai1:kθ

(
o, a j1:m , ai1:k

)
≜Q j1:m,i1:k

θ

(
o, a j1:m,i1:k

)
−Q j1:m

θ (o, a j1:m ),

(2)

which is the advantage of agents i1, . . . , ik and their actions
ai1 , . . . , aik when the actions a j1 , . . . , a jm of agents j1, . . . , jm
are given. Based on these equations, the multi-agent advan-
tage decomposition is defined as:

Ai1:nθ

(
o, ai1:n

)
=

∑n

m=1
Ai1:mθ

(
o, ai1:m−1 , aim

)
. (3)

Addressing the MARL challenges through Equation 5
offers scalability analogous to, or potentially even superior to
the CTDE approach, in which agents utilize their local infor-
mation to linearly or non-linearly produce joint Q-values.
Distinctively diverging from CTDE, incorporating the advan-
tage function of agents from all prior sequences mitigates, the
challenge of partial observability.

B. MULTI-AGENT TRANSFORMER (MAT)
Beyond addressing the previously mentioned challenges of
scalability and partial observability, an SM offers flexibility
in terms of the sequence length, allowing the integration of
various agent types under a single solution [13]. Notably,
the transformer, a state-of-the-art SM, has the advantage
of concurrently updating multiple tokens, thus facilitating
faster learning rates. The proposedMAT employsmulti-agent
advantage decomposition and adopts a transformer encoder-
decoder architecture, to address the generic multi-agent joint
policy update through a sequential policy search process. The
encoder encodes high-level interrelationships that represent
the interactions between agents (i1, . . . , in). The objective

function of the encoder that attempts to minimize the empir-
ical Bellman error is

LEncoder (φ)

=
1
Tn

n∑
m=1

T−1∑
t=0

[R (ot , at) + γVφ̄

(
ôimt+1

)2
− Vφ(ô

im
t )], (4)

where φ̄ is the parameter of the target network. The decoder
computes attention through masked self-attention, so ithr and
the ithj action heads, wherein r < j, only the latter utilizes
the information from the actions of agents in the previous
sequence for policy updates. The clipping PPO objective [24]
of the decoder is

LDecoder (θ) = −
1
Tn

n∑
m=1

T−1∑
t=0

min
(
rimt (θ) Ât

, clip
(
rimt (θ) , 1 ± ϵ

)
Ât

)
, (5)

and rimt (θ) is defined as

rimt (θ) =

π
im
θ

(
aimt | ôi1:nt , âi1:m−1

t

)
π
im
θold

(
aimt | ôi1:nt , âi1:m−1

t

) , (6)

where Ât is an estimate of the joint advantage function com-
puted with generalized advantage estimation (GAE) using
the outputs Vφ

(
ôi1t

)
, . . . ,Vφ(ô

in
t ) from the encoder [13].

At every time step, the actions of all agents were sequen-
tially determined individually. The joint action space defined
by the masked self-attention is

∑n
i=1

∣∣Ai
∣∣, while the con-

ventional joint action space in MARL, which considers
bidirectional interactions, is

∏n
i=1

∣∣Ai
∣∣. Consequently, the

masked self-attention of the decoder plays a pivotal role in
solving the scalability problem.

C. GRAPH ATTENTION NETWORKS (GAT)
GraphNeural Networks (GNN) [25], [26], [27], in their initial
forms, provided a robust framework for incorporating neigh-
borhood information into node representations. The common
practice among these networks was to aggregate information
from a node’s neighbors. Most frequently, such aggrega-
tion was done using simple mean or sum pooling. While
these pooling techniques are computationally efficient and
straightforward, they come with a critical shortcoming: they
do not discern the potential difference in significance among
neighbors. Imagine a scenario where certain neighbors have
a strong influence on a central node, while others have a min-
imal one. By merely summing or averaging, the nuances get
lost, potentially leading to sub-optimal node representations.

Attention mechanisms [16], originally developed for and
predominantly utilized in NLP tasks, have a unique selling
proposition: they allow models to allocate varying impor-
tance weights to different inputs. This dynamism is starkly
contrasted with the ‘one-size-fits-all’ approach of traditional
GNNs. With attention, if certain words (or neighbors, in the
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case of GNNs) are more pertinent to context (or node), they
get higher importance, and vice versa.

GAT is an amalgamation of GNN’s structure-sensitivity
and attention’s adaptive importance assignment. Rather than
uniformly weighing neighbors, GAT lets each node decide
the significance of its neighbors through learned attention
weights. This is achieved using a shared self-attention mech-
anism across edges in the graph. So, for each node, GAT
computes a coefficient for its neighbors, determining how
much attention should be paid to each when updating its own
features.

The essence of the GAT can be captured by its layer-wise
propagation rule. Given a graph G = (V ,E), the feature
update for a node in GAT is

h′
i = σ

(∑
j∈N(i)

αijWhj
)

, (7)

where hj and h′
i are the features of node j and the updated

feature of node i respectively; σ is the activation function;
and N (i) is the neighbors of node i. The attention coefficient
αij represents how much node i should attend to node j is
computed as follows:

αij =
exp

(
LeakyReLU

(
aT

[
Whi||Whj

]))∑
k∈Ni exp

(
LeakyReLU

(
aT [Whi||Whk ]

)) , (8)

where a is the shared weight vector of the attention
mechanism.

III. MAT-GAT
In our work, we model fully cooperative multi-agents as a
Markov game which is defined as a tuple
G =< N,S, A,P,R, γ >. N = {1, . . . , n} is the set of
agents, S =

∏n
i=1 S

i and A =
∏n

i=1 Ai are the joint state
space, which is the product of the agent’s local state space
and the product of the n agent’s action space, respectively.
P : S × A × S → R is the transition probability function;
R : S × A → R is the joint reward function; and γ ∈

[0, 1) is the discount factor. At time step t ∈ T, agent
i ∈ N is at state st ∈ S. All agents take actions a1t , . . . , a

n
t

simultaneously by using stochastic policy π i
θ , where θ is

the joint parameter. ait and π i
θ are the components of the

joint action at = (a1t , . . . , a
n
t ) ∈ A and the joint policy

πθ (at | st) =
∏n

i=1 π i
θ

(
ait | st

)
, respectively. The initial states

are induced by the distribution ρπ which is determined by
the joint policy πθ and the transition probability function
P. At the end of every time step, all agents receive a joint
reward R and move to St+1. They try to maximize their total
expected cumulative returnRγ ≜

∑
∞

t=0 γ tR(ot , at ). The state
value function Vθ and state-action function Qθ are defined as
follows:

Vθ (s) ≜ Ea0∼π,a1:∞∼πθ ,s1:∞∼P[R0|s0 = s], (9)

Qθ (s, a) ≜ Ea1:∞∼πθ ,s1:∞∼P, [R0|s0 = s, a0 = a], (10)

respectively.
As stated in [13], MAT addresses Markov game problems

by applying sequence modeling. Similarly, the MAT-GAT

architecture introduced in this paper is an enhanced version of
MAT that takes a set of agents’ observations in a predefined
order as input and uses the encoder-decoder architecture of
the transformer to convert it into latent representations, which
are then used to generate a set of actions for the agents in the
same order. Specifically, MAT-GAT utilizes the multi-agent
advantage decomposition theorem to transform joint policy
optimization into an ordered decision-making process. This
allows each agent to understand how its actions impact the
overall team’s performance and to make optimal decisions
while considering the actions of other agents. In what follows,
we begin our discussion describing by graph-based modeling
and GATwhich motivated our study. Next, the architecture of
the MAT-GAT model is presented.

A. GRAPH REPRESENTATION IN MARL
Decision-making in a multi-agent environment is a highly
complex problem requiring precise methods to depict the
relationships and interactions among agents for effective
modeling and interpretation. In this section, we highlight the
pivotal roles of graph-based modeling techniques and GAT in
addressing these requirements.

In multi-agent settings, each agent’s actions influence oth-
ers and the system as a whole [48]. Graph structures serve as a
powerful means of visually and mathematically representing
complex interrelationships between agents, expressing var-
ious connections and strengths that are difficult to convey
through sequential or flat data architectures [49].
A unidirectional relationship can be established if a pre-

defined order exists between agents. Although an SM can
be utilized for modeling an MARL problem as in [13], only
a few multi-agent problems can be modeled based on an
ordered sequence of agents. In a cooperative multi-agent
reinforcement learning scenario, the actions of each agent can
affect the behavior of other agents according to a predefined
relationship. We propose using graph modeling as an alterna-
tive method to represent interdependencies and interactions
better than sequential modeling [26], [54].

Although transformers can encode sequential data, they
often require hierarchical encoding for tasks involving lay-
ered structures. Hierarchical encoding involves organizing
data into multiple layers of abstraction, which can be
complicated or unnecessary [55]. For example, in natural
language processing, this might involve encoding data at
the word, sentence, and paragraph levels successively. Tra-
ditional transformers apply self-attention mechanisms across
these layers, processing all inputs simultaneously and attend-
ing to all parts of the data. The self-attention mechanism
calculates the attention scores between every pair of tokens
in the input sequence, resulting in an attention matrix that
grows quadratically with sequence length. This comprehen-
sive approach, although powerful, can be computationally
expensive and sometimes less focused when dealing with
structured data.

GAT can focus only on the relevant connections between
nodes, which represent data points. Because graph structures
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explicitly define the relationships between nodes, the spe-
cific organization of multiple agents, such as the hierarchies
of team players, can be represented better. Moreover, GAT
computes attention coefficients only for neighboring nodes,
resulting in a computational complexity ofO(NE), in compar-
ison to self-attention, which has a computational complexity
of O(N 2). Here, N is the number of agents and E is the
number of edges, representing the number of connections
each agent has with other agents. Because E is always less
than or equal to N this significantly reduces computational
overhead. Such a restricted attention mechanism allows for
more efficient information propagation and representation
learning, thereby effectively reducing the need for multiple
processing layers. Therefore, graph modeling with GAT not
only provides an explicit representation of relationships, but
also simplifies the architecture, making it a more effective
solution for multi-agent reinforcement learning [47].
We employed GAT to elucidate the high-level interre-

lations among graph-modelled agents [53]. This involves
dynamically modulating the importance and direction of
agent interactions through attention scores computed for
adjacent agents, denoted as:

eij = a(Whi,Whj). (11)

GAT adeptly captures and interprets the intricate commu-
nication patterns and dependencies prevalent in multi-agent
environments by using structural data of graphs, such that
decisions are made based on information from interconnected
agents [29], [47]. GAT’ capability of GAT to assess the rele-
vance of specific agents in a given context is widely accepted
to surpass that of conventional neural networks [18], [50],
[51], [52].

B. MAT-GAT STRUCTURE
After the initial success of the transformer model, researchers
explored various modifications and extensions of the atten-
tion mechanism to optimize models for a wide range of
problem domains and tasks. For instance, to adapt trans-
formers not only for sequential data but also for diverse
data types, such as images or graphs, modifications such
as spatial attention and axial attention have been intro-
duced [30], [31]. Such adaptations have allowed models
to capture structural and spatial relationships better. Fur-
thermore, domain-specific attention mechanisms have been
proposed for tasks that require reflection of critical data fea-
tures or structures. Examples include attention mechanisms
that account for dependency relationships or syntactic infor-
mation in natural language processing and those tailored for
molecular structures [32], [33], [34]. There has also been
a surge in studies focusing on reducing the computational
complexity of self-attention for efficiency, as well as integrat-
ing multiple attention mechanisms for handling multi-modal
data [35], [36], [37], [38]. Such advances in research validate
the flexibility of transformers and showcase their potential
for constructing more suitable and effective models for a
multitude of problems and datasets.

FIGURE 1. The MAT-GAT architecture.

As mentioned above, we believe that utilizing graph-based
methodologies and GAT will enhance the accuracy and
efficiency of modeling complex interdependencies and inter-
actions among agents in multi-agent reinforcement learning
challenges.

In our study, rather than altering the structural design
of the transformer, we modified self-attention to adopt the
GAT structure, as illustrated in Figure 1. In other words,
GAT blocks are adopted to substitute the self-attention lay-
ers in the encoder of the basic transformer. We call these
GAT encoder blocks. The GAT encoder block in Figure 1
calculates attention scores and updates features using Equa-
tions (9) and (10), where hi and hj are the state features
of agent i and j respectively. The updated features h′

i are
used to encode the high-level interrelationships of the agent’s
team in the states. In the transformer, self-attention grants
distinct weights to each observation, ensuring that the out-
put representations are discernible, even when a team is
composed of heterogeneous agents. However, graph-based
modeling and GATs differentiate diverse or complex rela-
tionships among heterogeneous agents, allowing each agent
to assimilate the most pertinent information from its neigh-
bors. This results in agents being embedded with complex
interactions that are better represented by the encoder.
The decoder, which receives state information embedded
with detailed and differentiated interaction details facili-
tated by GATs, can make more informed auto-regressive
action decisions through masked self-attention [13]. Conse-
quently, the GAT encoder block ensures efficient task per-
formance, even in scenarios requiring hierarchical neighbor
information.
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In our framework, agents are organized into graphs that
encompass sequence information.While [13] arranges agents
sequentially, the actual state information of the agents may
not be inherently sequential, hence positional encoding is not
applied. In contrast, the agents are treated sequentially in the
MAT decoder. Therefore, the decoder’s masked self-attention
is retained in its original form, without transitioning to the
GAT approach. Additionally, the objective functions of the
encoder and decoder, which are Equations (6), (7) and (8),
were consistently applied, mirroring the conventional MAT
methodology.

IV. EXPERIMENTS
We conducted experiments using SMAC [9] and
MuJoCo [45], [46] which are two of the most representative
benchmarks in the MARL environment [13].

A. SMAC EXPERIMENTS RESULTS
Experiments were conducted using cooperative challenging
StarCraft maps within SMAC. The SMAC consists of a
collection of StarCraft micro-scenarios designed to eval-
uate methods for training independent agents to cooperate
in solving complex tasks. Initial placements, numbers, and
types of units vary across scenarios, as do the terrains, which
may or may not be traversable. Allied units are controlled by
trained allied agents, whereas enemy units are managed by
the built-in game AI using untrained heuristics. Each episode
begins with the game AI directing units to engage the allied
agents using scripted strategies. An episode concludes when
all units on either the allied or enemy side are eliminated
or when a specified max time step is reached, with the lat-
ter resulting in a defeat for the allied agents. The goal of
learning is to maximize the win rate. Maps are categorized
into easy, hard, and super hard difficulty levels. In this study,
performance analysis and comparative experiments between
MAT and MAT-GAT were performed on easy and hard tasks.
Additionally, for super hard tasks, we benchmark against the
most representative and state-of-the-art algorithms, QMIX,
to compare with theMAT,MAT-GAT, and CTDE approaches.
Table 1 lists the units used for each task. All units are from
StarCraft , and the name of each task was assigned based
on the composition of the ally and enemy units. The units

are composed of various roles, such as ranged attack units
like Marines, Stalkers, Colossi, Marauders, and Hydralisks;
melee attack units such as Zealots and Zerglings; and healing
units like Medivacs. Each task was categorized into different
levels of difficulty according to how the units counter each
other.

TABLE 1. Unit composition for SMAC challenges.

In easy tasks, which involve combat between identical
units, it is observable from Figure 2 that a peak win rate of
100% is achieved early in the learning process. Unlike the
3m and 8m scenarios shown in Figure 2, the 1c3s5z and
MMM tasks feature a diverse unit composition, with both
MAT and MAT-GAT exhibiting high performance. For hard
tasks, which require more complex tactics, such as focus
firing or utilizing terrain due to the allied units being fewer
in number compared to the enemy, agents are not presented
with varied unit combinations. Task 2c_vs_64zg in Figure 3
involves controlling two Colossi, which have greater mobility
over terrain features such as hills compared to Zerglings.
These two Colossi require a closer interrelationship due to
their terrain navigation capabilities, and MAT-GAT demon-
strates superior performance in the latter stages of training

FIGURE 2. Experimental results of SMAC’s easy tasks for performance comparison between MAT and MAT-GAT.
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FIGURE 3. Experimental results of SMAC’s hard tasks for performance comparison between MAT and MAT-GAT.

FIGURE 4. Experimental results of SMAC’s super hard tasks for performance comparison among MAT, MAT-GAT, and QMIX.

for this task compared to MAT. The other three tasks consist
of single-unit compositions where the allied units are out-
numbered, necessitating focus firing and a keen consideration
of allies’ current states. MAT-GAT outperformed MAT with
faster convergence and higher peak win rates, suggesting the
advantages of GAT over self-attention in modeling interrela-
tionships among agents. This is evidenced by the higher peak
win rates for MAT-GAT observed in the 5m_vs_6m task in
Table 2.

In the category designated as ‘‘super hard’’ tasks, the
agents are given challenges that require controlling a larger
number of units, facing off against enemy units with advan-
tageous unit compositions and superior numbers, as well
as more collaborative tactics and micro-management. It is
hypothesized that in these more complex scenarios, the
graph-based representation would offer a more advantageous
portrayal of the interactions between agents. The results,
as depicted in Figure 4, confirm this hypothesis. In the
27m_vs_30m task, MAT-GAT exhibits more stable learning
behavior compared to MAT. This scenario, characterized
by a larger number of units leading to the formation of
small groups, benefits from the connectivity of graph-based
modeling. This feature allows for the effective segmenta-
tion into smaller groups due to the explicit representation
of graph connections, enabling focused detection of sig-
nificant interactions within and between these groups and
individual assessment of each unit’s importance. In con-
trast, sequence modeling, due to its inability to effectively
segregate into smaller groups because of its linear and

FIGURE 5. MuJoCo Half-cheetah joint structure; 1: back-thigh,
2: back-shin, 3: back-foot, 4: front-thigh, 5: front-shin, 6: front-foot.

interconnected approach, fails to distinctly allocate attention
among the groups due to the large number of units, resulting
in a less effective detection of significant interactions and,
consequently, a relatively lower win rate. The outcomes for
the 6h_vs_8z, MMM2, and 3s5z_vs_3s6z tasks exhibit sim-
ilar trends, with MAT-GAT approaching convergence more
rapidly than MAT, and higher final win rates for MAT-GAT
as evidenced by Table 2. The 6h_vs_8z task, where kiting
of units is crucial, shows that MAT-GAT tend to alternate
attention promptly between attacking and retreating units.
In the MMM2 and 3s5z_vs_3s6z tasks, which involve teams
composed of multiple unit types with varying roles, GAT’s
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FIGURE 6. Inductive experiment results for verifying the adaptability of MAT and MAT-GAT in Half-cheetah; joint names specified above each graph
are disabled during training.

dynamic allocation of importance based on each unit’s role
and the situational context enable a strategic advantage even
in disadvantageous situations. In the MMM2 task, QMIX
reaches the highest win rate in the shortest time thanks to its
simple state-action value decomposition which offers greater
training stability in complex tasks. However, QMIX does not
converge stably, as indicated by a sharp drop-in win rate
after reaching the peak. On the other hand, both MAT and
MAT-GAT show a stable increase in win rate, withMAT-GAT
reaching the highest win rate faster than MAT. MAT-GAT
exhibits a consistently monotonic increase across the super
hard tasks, in contrast to QMIX, which show varying patterns
across different tasks. In the 27m_vs_30m and 3s5z_vs_3s6z
tasks, MAT-GAT achieves peak win rates more slowly than
QMIX, but ultimately recorded higher final win rates by the
end of training. In the 6h_vs_8z task, QMIX exhibits almost
no learning, whereas in the MMM2 task, it achieves the
fastest convergence and the highest final win rate amongst
the three algorithms.

B. MuJoCo EXPERIMENTS RESULTS
The Half-Cheetah task in the MuJoCo physics simulator
serves as a critical benchmark for continuous control and
reinforcement learning. This task is centered on a biome-
chanically inspired robotic cheetah designed to emulate the
musculoskeletal structure of its biological counterpart. The
objective was to propel the cheetah forward as quickly as
possible without falling over, thus maximizing the distance
covered over a fixed time horizon.

TABLE 2. SMAC experiments results.

In this task, the agents representing the half-cheetah must
learn to coordinate the actions of their joints to produce
effective locomotion. The state space includes the positions,
velocities, and angular velocities of the robot body and joints,
whereas the action space consists of torques applied to the
joints. The complexity of this task arises from the high dimen-
sionality of the state space and the need for precise real-time
control to maintain balance and forward momentum.

GAT is employed to indirectly learn the global graph
structure using only local neighborhood information [18].
This attribute makes GAT highly effective in modeling com-
plex graph structures in inductive tasks [28]. To assess
the adaptability and generalization capability of MAT-GAT,
we conduct an experiment using the MuJoCo Half-Cheetah
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task. In this experiment, each of the six joints, as seen in
Figure 5, is disabled one at a time during training, followed
by testing with all joints enabled.

As depicted in Figure 6, MAT-GAT’s final reward slightly
exceeds that of MAT in six out of six tasks. Notably,
MAT-GAT demonstrate minimal variance in rewards across
all tasks. The average final reward for MAT-GAT is 586, with
a standard deviation of 26.82. In contrast, MAT’s average
final reward is 524, with a significantly higher standard devia-
tion of 93.47. Specifically, in the back_foot task, final reward
of MAT drops to 346, which is a 33.96% decrease compared
to the average of other tasks. These results indicate that
MAT-GAT is more adaptive than MAT, consistently deliver-
ing stable and superior performance in diverse environments.
Additionally, Table 3 presents not only the average (Avg) and
standard deviation (SD) for MAT and MAT-GAT but also
their coefficient of variation (CV) and standard error (SE).
MAT-GAT also exhibited superior outcomes in terms of the
CV and SE.

TABLE 3. MuJoCo half-cheetah experiments results.

V. CONCLUSION
In this study, we explored the benefits of graph-based
modeling to represent interactions among agents in MARL
environments. To this end, we introduced MAT-GAT,
a transformer-based model that transitions from the original
MAT sequence model to graph-based modeling, replacing
the conventional self-attention mechanism with GAT to
enhance the representation of interactions. We conducted
a theoretical analysis and empirical experiments on the
application of graph-based modeling and GAT, effectively
representing interactions among agents across a variety of
MARL tasks. Empirical evaluations are performed using
representative tasks of varying difficulty from the SMAC
andMuJoCo Half-cheetah, comparing the outcomes of trans-
formers with self-attention and GAT implementations. Future
research will not only apply graph-based modeling with-
out including sequence information, but will also focus on
structuring agent teams as complete graphs, thereby robustly
accounting for inter-agent relationships in MARL problems.
Specifically, it is recommended to investigate the integra-
tion of advanced GAT variants and explore hybrid models

that combine sequence and graph-based methods to address
dynamic and heterogeneous MARL scenarios. Although
there have been numerous attempts to solve MARL problems
with graphs [39], [40], [41], [42], [43], the integration of
a transformer-based model with graph-based modeling is
anticipated to mark a new phase in this field.
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