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Abstract— Deep brain stimulation of the subthalamic
nucleus (STN-DBS) is an established treatment for motor
impairment due to Parkinson’s disease (PD) progression.
While treated subjects mostly experience significant ame-
lioration of symptoms, some still report adverse effects.
In particular, changes in gait patterns due to the electrical
stimulation have shown mixed results across studies, with
overall gait velocity improvement described as the core
positive outcome. This retrospective study investigates
changes in the gait parameters of 50 PD patients before and
6 months after STN-DBS, by exploiting a purely data-driven
approach. First, unsupervised learning identifies clusters of
subjects with similar variations in the gait parameters after
STN-DBS. This analysis highlights two dominant clusters
(Silhouette score: 0.45, Dunn index: 0.18), with one of them
associated to a worsening in walking. Then, supervised
machine learning models (i.e., Support Vector Machine and
Ensemble Boosting models) are trained using pre-surgery
gait parameters, clinical scores, and demographic informa-
tion to predict the two gait change clusters. In a Leave-One-
Subject-Out validation, the best model achieves balanced
accuracy 80.05 ± 3.52 %, denoting moderate predictability
of both clusters. Moreover, feature importance analysis re-
veals the variability in the step width and in the step length
asymmetry during the preoperative gait test as promising
biomarkers to predict gait response to STN-DBS.

Index Terms— Deep Brain Stimulation, Parkinson’s Dis-
ease, Gait, Machine Learning, Unsupervised Learning, Step
Width, Gait Asymmetry

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
which affects millions globally with progressive cognitive and
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motor impairment. The motor symptoms of PD are varied, in-
cluding tremors, rigidity, bradykinesia, and postural instability,
all of which profoundly impact daily functioning [1], [2]. In
the context of PD axial symptoms, gait disturbances represent
a significant challenge in daily life management, affecting
mobility and independence. Gait in PD is commonly described
as a slow, short-stepped, shuffling gait [3], [4], often associated
to asymmetric lower limb movements [5], [6] and reduced
bilateral coordination [7], [8]. While medication, especially
Levodopa [9], remains the primary treatment in the early
stages, its effectiveness may diminish over time, leading to
fluctuations in symptom control and the onset of medication-
related complications, such as dyskinesia [10], [11].

Deep brain stimulation of the subthalamic nucleus
(STN-DBS) has emerged as a crucial intervention in managing
PD symptoms, particularly those resistant to pharmacological
treatment, such as tremor [12], [13]. The procedure involves
the surgical implantation of electrodes into specific brain
regions, with the subthalamic nucleus being a key target
due to its involvement in motor control regulation [14]. By
delivering high-frequency electrical impulses, the implanted
electrode disrupts aberrant neural activity, restoring balance
within the motor circuitry [15]. STN-DBS offers targeted
and continuous stimulation, thereby alleviating symptoms,
reducing fluctuations, and improving quality of life [16]–[18].

Although STN-DBS is widely accepted as an effective
treatment, it is an invasive procedure and its success may
be compromised by unpredictable efficacy limitations [19],
[20]. These shortcomings include symptoms resistant to stim-
ulation, such as postural instability, gait disorders, freezing
unresponsive to medication, speech disturbances, psychiatric
and cognitive dysfunctions, which may persist or worsen after
surgery [20]–[23]. These aspects underscore the importance
of a thorough patient selection, which is still mostly based on
the criteria included in the CAPSIT-PD standard [24]. These
criteria prioritize individuals with PD who are below the age
range of 70–75, exhibit symptom reduction when on Levodopa
(i.e., at least 30% improvement in Section III of the Movement
Disorder Society’s revision of the Unified Parkinsons’s Disease
Rating Scale (MDS-UPDRS)), possess minimal comorbidities
or psychiatric conditions, and show no significant abnormal-
ities on preoperative MRI brain scans. Moreover, eligible
candidates typically exhibit motor fluctuations or dyskinesia,
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which persist despite pharmacological therapy [24], [25].
These selection criteria are quite restrictive: in a study by
Morgante et al. [26] with 641 patients, the selection according
to the CAPSIT-PD standard would have strictly included only
1.6% of the subjects, 4.5% when considering more relaxed
constraints. Proposals for enlarging selection criteria include
the addition of genetic screening, objective axial symptoms
assessment through sensors, biomarkers related to nonmotor
symptoms as well as measures of patients’ expectation about
the effect of the treatment [21], [27], [28].

While STN-DBS is generally acknowledged to improve
gait velocity and thus confidence during walking, the overall
response varies among individuals, with an estimated 25% of
subjects experiencing exacerbation of gait abnormalities after
the surgery [21], [29], [30]. These effects may translate, for
instance, in an increased risk of falls, which are a significant
cause of disability, lost independence and reduced quality of
life in people with PD [31], [32]. This scenario highlights
the need for precise characterization of gait alterations before
STN-DBS and the identification of predictive markers to
optimize patient outcomes in this motor domain.

This retrospective study investigates the changes in the
gait of PD patients related to STN-DBS. In particular, the
main novelty of the proposed approach relies in the use
of machine learning (ML) methods for the identification of
predictive biomarkers of STN-DBS effects on gait, which may
be quantitatively measured before surgery. The first step to
achieve this aim is an unsupervised exploration of the changes
observed in the gait parameters collected through a motion
capture system, on a cohort of 50 PD patients. Each participant
was tested before and 6 months after STN-DBS surgery. The
aim is to identify clusters of subjects with similar changes
in gait parameters which may reflect different responses to
the treatment. Then, the predictability of such clusters from
only pre-surgical information (i.e., gait parameters as well
as clinical scores) is explored by employing supervised ML
techniques, to identify possible response biomarkers. The
trained models and the identified biomarkers may be integrated
into the clinical selection of candidates for STN-DBS thus pro-
viding a more comprehensive screening tool for personalized
healthcare treatment.

II. BACKGROUND

A. Effects of STN-DBS on gait

A plethora of works have investigated the effects of
STN-DBS on walking patterns before and after surgery, by
exploiting motion capture systems [29], [33]–[39]. However,
these studies often present mixed and contradictory results.
Indeed, a substantial limitation is the complexity of re-
cruiting participants for performing instrumented and long-
term follow-up studies. Most research efforts investigate the
changes in gait patterns using an instrumented gait analysis
system before surgery and 3, 6 or 12 (at most) months after,
with a sample size ranging from 5 to around 30 patients
[29], [34]–[36], [40]. The dataset employed in this study, first
described in [39], is one of the largest ones, with currently 50
recruited subjects who completed the 6-month protocol. While

larger and longer-term retrospective studies exist [20], [41],
[42], they only report changes in clinical scales, such as those
in MDS-UPDRS [43]. However, gait is undercharacterised in
such a scale, with only a qualitative subscore ranging from 0
(no impairment) to 4 (total impairment).

The most consistent outcome across quantitative studies is
an improvement in walking speed, usually associated with
an increase in stride/step length [30], [44]–[46], but poor
responsiveness in terms of cadence. This change is regarded
overall as a positive response to STN-DBS and appears to
be even more evident when electrical stimulation is coupled
with Levodopa [45], [47], [48]. However, some studies [33],
[35], [49] have found an opposite trend, suggesting that these
changes may primarily manifest during short follow-up periods
(e.g., three months), then may diminish over longer observa-
tion windows. The main explanation for such behaviour could
be the natural progression of the disease [18], [33], [41].

Additional reported positive effects include a reduction
in double-stance duration, spatial foot position asymmetry,
stride-to-stride variability, and inter-limb coordination, thus a
more regular gait cycle [34], [38], [48], [50]–[52]. Regarding
muscular coordination, Fasano et al. [51] found out that a
reduction of stimulation voltage on the side opposite the
leg with the longer step length reduced freezing of gait
(FOG) by normalizing gait symmetry and coordination, as
measured by Phase Coordination Index (PCI). Moreover, from
the perspective of muscle synergies, Ghislieri et al. [34] in a
study on 20 PD patients identified a reduced number of muscle
synergies with respect to healthy controls both in pre and post
surgery conditions. However, muscular robustness increased
overall for PD subjects both 6 and 12 months after surgery.

As for to results on gait variability, they are more complex to
interpret. While high values may be associated with ageing and
neurodegenerative processes [53], [54], even healthy subjects
exhibit some variability [55], [56]. Therefore, an excessive
reduction may also be prognostic of pathological walking [55],
[57]. Regarding asymmetry and coordination, some studies re-
ported a persistent worsening of these gait features, especially
in the lower limbs [29], [35], [37] which could be responsible
for the recurrent FOG events and falls reported after surgery
[51], [58].

From the described scenario, it emerges a lack of a com-
prehensive analysis of gait in STN-DBS, jointly considering
several perspectives (e.g., asymmetry, coordination, variabil-
ity). This lack may be the reason, together with the reduced
sample sizes, behind the inconsistencies in the outcomes found
across different studies.

B. Predictability of STN-DBS outcomes

Previous works have addressed the predictability of
STN-DBS outcomes from preoperative information. Most of
them do not employ quantitative motor parameters, but try
to perform this task by leveraging only demographic in-
formation and clinical scores [22], [59]–[64]. Moreover, a
lack of consensus exists in defining good and bad responses
to the treatment. For instance, Habets et al. [59] proposed
a linear regression model called DBS-PREDICT to predict
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Fig. 1. Summary of the complete experiment: first, the identification of clusters of patients sharing similar gait changes between PRE and
POST surgery. Second, the prediction of the identified clusters from preoperative-only data (gait features, clinical scores, and demographic data),
to identify early biomarkers of the effects of STN-DBS on gait using feature selection methods and shallow learning models. Acronyms: PCA:
Principal Component Analysis, HAC: Hierarchical Agglomerative Clustering, BikMEANS: Bisecting K-Means, MRmr: Maximum Relevance minimum
redundancy, LOSO: Leave-One-Subject-Out.

probability of being strong or weak responders, i.e., subjects
with a minimal clinical important difference (MCID) in either
MDS-UPDRS II, III, or IV scores, one year after surgery.
The model employs features such as patient’s age at the time
of surgery, disease duration, and clinical scores in Levodopa
ON and OFF states. In a multi-centric study involving data
from more than 300 patients (weak responders: 26%), the
model achieved a 77% accuracy, confirming the preliminary
results from their pilot study [23]. Also Frizon et al. [60],
trained a logistic regression model to distinguish good and
bad responders, but in terms of MCID in the quality of life
(QoL), as measured by the Parkinson’s Disease Questionnaire-
39 [65]. Their model, considering features similar to Habets
et al., achieved 81%, accuracy on a cohort of 77 patients
(bad responders: 47%). Krause et al. [22] classified good
responders as those with a decrease in the total score for
MDS-UPDRS III, and bad responders those having no change
or an increase. Then, preoperative demographic and clinical
data were combined with supervised and semi-supervised ML
models to predict these two groups. A maximum accuracy
of 81.7% was achieved when classifying records from 105
patients (bad responders: 40%).

Studies performing predictions from quantitative motor
parameters are under explored [35], [66]. Cebi et al. [35]
preliminarly investigated the predictability of FOG outcomes
6 months after STN-DBS on 18 patients using multiple re-
gression. The model included both clinical and demographic
information, as well as parameters such as stride length,
gait cycle time, walking speed, and swing time asymmetry,
evaluated during a 7-meters timed walking test, repeated
both in Levodopa ON and OFF states. Data were collected
using three inertial measurement units, placed at both ankles
and in lumbar position. Preoperative Levodopa sensitivity of
FOG and ON/OFF variations of stride length and range of
motion showed high correlation with a favourable outcome,
also reflected by the regression model (R2=0.952, p-value
< 0.001). In [66], Shin et al. used Cox Proportional hazards
analysis to predict relevant long-term clinical milestones (i.e.,
frequent falling, impaired walking, and loss of autonomy).
They considered common spatiotemporal gait parameters ret-
rospectively extracted from 96 video recordings of 63 PD

patients during a 10 meters walking test. Variability in step
length, step time, and stride time in ON condition were found
predictive of all the three milestones.

The main limitation of the described works are related
to their dependence on often arbitrarily and non univocal
thresholds to establish good or bad response to STN-DBS,
by leveraging clinical information that may be biased or
not suitable for representing subtle gait changes. Moreover,
most studies lack quantitative and objective measurements;
this limits their generalizability, and introduces a subjective
bias due to the use of qualitative clinical scales both as the
ground truth and as predictors. This study, instead, expands the
results in the direction of predicting changes after STN-DBS
by employing quantitative gait data and provides a data-driven
prediction, which does not depend on clinical scores and pre-
defined thresholds to identify good and bad responders. Such
definitions are therefore generated from the data themselves,
through an initial unsupervised exploration of the changes
observed between the preoperative and postoperative gait
trials. Then, the prediction of the found clusters of response
employs both qualitative and quantitative predictors to obtain
relevant biomarkers of gait changes.

III. MATERIALS & METHODS

Fig. 1 summarises the complete experiment. The work
articulates in two parts: first, the identification of clusters
of patients sharing similar gait changes after surgery. Then,
the prediction of the identified clusters from preoperative-only
data, to identify early biomarkers of the effects of STN-DBS
on gait.

A. STN-DBS dataset
For this study, the dataset previously collected and presented

by Mei et al. in [39] is employed. The dataset contains a
sample of 50 individuals with PD, who were recruited and
assessed for gait kinematics, under ON medication, before
STN-DBS electrode implantation (PRE), and approximately 6
months after (POST), under ON medication and ON stimula-
tion condition. Inclusion criteria for patients were a diagnosis
of idiopathic PD, an age in the 18-90 years old range, being
designated for STN-DBS implantation at University Hospital
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Zurich (USZ) and the ability of walking independently and
continuously for 10 minutes. Data were collected with the ap-
proval of Kantonale Ethikkommission Zurich, Protocol Num-
ber: 2015-00141, and patients were recruited under informed
consent. As described in previous studies using this dataset
[29], [39], all participants walked barefoot for a continuous
period of 10 minutes at a self-selected speed and without
any assistance. Each participant was instructed to navigate an
“8”-shaped path around two signs positioned 10 meters apart,
to capture consecutive gait cycles during overground walking
in the laboratory setting. The longer duration of the trials,
with respect to similar studies in the literature, was chosen
to obtain a more precise estimation of gait parameters and
their variability, as suggested by previous studies such as [67]–
[71]. While fatigue may occur in this scenario, none of the
recruited subjects reported it at the end of the test, neither
this phenomenon appeared in the collected data. Locomotion
was recorded using a three-dimensional motion capture system
(consisting of 10 cameras; 61 markers; sampling rate of 100
Hz; Vicon Nexus, version 2.3/2.8.2, Oxford Metrics, United
Kingdom). Only straight path segments were recorded since
the original protocol was designed to emulate treadmill evalu-
ation for the assessment of continuous gait cycles. The turning
phases were not recorded because they were outside the scope
of the original study: in fact, given the peculiarity of turning in
PD, this motor task was left for future ad hoc investigations.
Additional clinical and demographics information (reported
in the Supplementary Materials) were available from the
electronic records of the clinical examinations of the patients,
performed with the same timing of the gait trails (i.e., before
and 6 months after surgery).

B. Gait parameters

The gait parameters included in this study were extracted
using custom Matlab scripts (version R2022a, The MathWorks
Inc., Natick). In further detail, mean, variability, and asymme-
try of common spatiotemporal parameters were evaluated, as
well as upper and lower limbs coordination. Spatiotemporal
parameters include step length (StepL), step width (StepW),
step time (StepT), stride length (StrideL), duration of the
swing (SwingT), stance (StanceT) and double limb support
(DLS) phases, cadence (Cad), and walking speed (WalkS).
Asymmetry is evaluated as proposed in [72] for step length
(ASYM SL), step width (ASYM SW), step time (ASYM ST),
swing phase (ASYM SWG) and stance phase (ASYM STC).
Moreover, PCI from [7] and Continuous Relative Phase (CRP)
from [7], [8], [73] measure coordination during walking;
the former compares left and right (PCI LR) and short and
long gait cycles (PCI SL); the latter compares coordination
between upper limbs movements (CRP ARMS), lower limbs
movements (CRP LEGS) and their combination (CRP RA-
LL, CRP LA-RL, CRP LA-LL, CRP RA-RL).

Each parameter, including those for asymmetry and coordi-
nation, was evaluated in terms of mean value and coefficient of
variation (CV), defined as (std/mean)*100. For spatiotemporal
parameters, left and right gait cycles were averaged. Indeed,
laterality is often a feature of PD, but the recognition of the

most affected side may be non-univocal and wrongly bias
the obtained results, especially in a dataset encompassing few
subjects. To account for possible laterality patterns, asymmetry
and coordination parameters were computed for each gait
cycle and then averaged over the whole trial, after removing
outliers, i.e., parameter values exceeding ±4 median absolute
deviation (MAD) from the median.

C. Gait change clustering
Previous studies have applied clustering to gait data, for

instance to identify walking patterns in patients with neurolog-
ical conditions, PD included [74]–[78]. An unsupervised and
data-driven investigation allows to identify information which
may not be conveyed by subjective clinical scoring. Moreover,
qualitative clinical scales such as MDS-UPDRS may not have
sufficient granularity to detect small but relevant changes, as
further discussed in Section IV.

In this work, the hypothesis is that clustering may highlight
groups of subjects who exhibit a similar response to STN-DBS
in terms of changes in their gait parameters. For each param-
eter P , its change ∆P is defined as ∆P = PPOST − PPRE ,
where PRE and POST refer to the values before and 6-
months after the STN-DBS surgery. Such change is evaluated
for mean values of spatiotemporal, asymmetry, and coordi-
nation parameters. Moreover, the change in the CV values
of the spatiotemporal parameters is also included, to account
for differences in the overall gait variability. The obtained
dataset is thus characterised by 31 dimensions (gait parameter
changes) for each patient. Principal component analysis (PCA)
is applied for dimensionality reduction, by projecting this
multidimensional points to the space identified by the main
axis along which subjects are spread, easing the subsequent
clustering. Indeed, clusters are computed considering only the
principal components (PCs) with the highest contribution to
the cumulative explained variance of the data, while discarding
all the components which provide a negligible contribution.
Furthermore, PCs allow to visualise such multidimensional
data in a 2D or 3D representation space.

Four clustering methods are considered, namely
Hierarchical Agglomerative Clustering (HAC), K-Means,
Bisecting K-Means (BiKMeans), and Hierarchical DBSCAN
(HDBSCAN) [79]. The maximisation of the Silhouette score
(1) and of the Dunn index (2) drives the selection of the
optimal clustering method and the optimal number of clusters
K. Silhouette measures the quality of the clustering by
calculating how similar a point is to its own cluster compared
to the others and then averaging this result over the whole
dataset. A score close to -1 stands for a meaningless grouping,
whereas close to +1 means perfectly separated and compact
groups of points.

Silhouette =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}
(1)

where a(i) is the average distance from the ith data point
to other points within the same cluster, b(i) is the smallest
average distance from the ith data point to points in a different
cluster, and N is the total number of points.
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Dunn index D is a clustering validation measure that
evaluates the compactness and separation of clusters. It is
defined as the ratio of the smallest inter-cluster distance to
the largest intra-cluster distance. Bigger the value, better the
clustering.

D =
mini̸=j{d(Ci, Cj)}
max1≤k≤K{d(Ck)}

(2)

where d(Ci, Cj) represents the distance between clusters
Ci and Cj , and d(Ck) represents the diameter of cluster Ck.

The optimal clusters are investigated to highlight common
characteristics in the patients who were grouped together. This
procedure involves an analysis of the statistical distribution of
the gait changes in each cluster and of the available demo-
graphic data and clinical scores. The latter did not contribute
to the definition of PCs, but may highlight peculiarities in
the patients with similar changes in gait (e.g., same gender,
same age range or similar disease duration). Statistical testing,
in the form of independent sample t-test, is employed for
this analysis, using a 95% confidence level. Data normality
is preliminarily assessed from Q-Q plots and by Shapiro-Wilk
test, to employ the most suitable statistical method between
Student’s t test or Mann-Whitney U test for each parameter.
All statistical analysis are conducted using the Jamovi tool
[80] and Python 3.10 (Scipy library).

D. Gait change prediction
The second part of the analysis investigates the predictabil-

ity of the found clusters by exploiting preoperative only data
and supervised ML models. The code for this analysis was
developed in Python 3.10. The hypothesis is that the gait
parameters in the PRE STN-DBS surgery phase as well as
demographic and clinical information, combined with feature
selection and ML methods, may be able to predict how gait
will change for a certain subject in the POST phase. Good
results in terms of predictability could suggest the existence
of movement biomarkers of gait response to STN-DBS, pro-
viding a new tool to support the decision-making process in
STN-DBS candidate selection.

The proposed prediction pipeline consists of two main parts:
first of all, the construction of candidate optimal feature sets
for the prediction, by exploiting feature selection. Then, the
training and validation of the prediction model using the
obtained feature sets. From all the preoperative data available,
three initial features sets are built:

• FeaturesGait contains mean and CV values of all the
parameters described in Subsection III-B from the PRE
gait;

• FeaturesClinic contains clinical data such as age at
surgery, gender, age at disease onset, disease duration,
Levodopa equivalent daily dose (LEDD), height, weight,
PD type (i.e., posture and gait disorder (PIGD) or
tremor dominant (TD)), total scores for Section I, II,
IV of MDS-UPDRS, and total score of Section III of
MDS-UPDRS, evaluated in Levodopa ON, Levodopa
OFF and as variation ON/OFF (i.e., ON-OFF difference);

• FeaturesAll is the union of the two previous sets.
Each feature set undergoes feature selection separately.

Boruta and Maximum Relevance minimum redundancy
(MRmr) algorithms are compared for this task. In particular,
Boruta distinguishes relevant features by comparing their
importance against randomly generated shadow features, fa-
cilitating selection of informative variables [81]. The Python
implementation of Boruta in the shap-hypetune library was
used, using Light Gradient Boosting (LGB) model as the
base estimator and shapley values as the feature importance
metric [82]. Shapley values are then used to rank the selected
features. Conversely, MRmr maximizes relevance to the target
variable while minimizing inter-correlation [83]. Boruta can
automatically identify the optimal number of features, while
MRmr’s optimal feature set size is empirically set to five, to
avoid overfitting since dealing with a small dataset.

After selection, six candidate feature sets are obtained.
Each of them is used to train and validate four shallow
learning classifiers for the prediction: Support Vector Machine
(SVM), and three ensemble boosting models, namely Adaptive
Boosting (AdaBoost), LGB, and eXtreme Gradient Boosting
(XGB). The optimal hyperparameters for each model are found
using Bayesian search [84], considering the search spaces
reported in Supplementary Materials (Table 2). Prediction
performance is obtained through a Leave-One-Subject-Out
(LOSO) validation. In each iteration of this procedure, a
patient is held out as the test set while the model is trained
on the remaining patients. LOSO is particularly beneficial for
small medical datasets as it ensures that the model is evaluated
on entirely unseen patient data, thus providing a more realistic
assessment of its generalization performance. Due to uneven
size of the gait change clusters (further details in Section
IV), balanced accuracy [85] is used to compare models’
performance. For the optimal model, additional metrics such
as precision, specificity, sensitivity, and F-1 score are also
computed separately for each cluster and then averaged by
weighting their contribution according to the size of the cluster
[86]. Moreover, to improve the training phase, Synthetic
Minority Over-sampling Technique (SMOTE) algorithm [87]
is used to augment the minority class by creating synthetic
training data samples.

Finally, in the perspective of identifying relevant biomark-
ers, the importance of each feature in the optimal set (i.e., the
one resulting in the higher prediction accuracy) is investigated,
by looking at the statistical correlation between the feature
and the clustering label, and the relative importance (i.e., the
absolute mean shapley value) assigned to the feature during
the selection stage.

IV. RESULTS AND DISCUSSION

A. Clustering results

PCA on the POST-PRE changes of gait parameters high-
lights two main directions of maximum variation (PC1, PC2)
along which the data are spread, out of the 31 components
obtained by the procedure. These first two PCs cumulatively
explain more than 70% of the total variance, overshadowing
the single contributions of the remaining 29 components,
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Fig. 2. Optimal clustering of patients based on the first two principal components (PC1 and PC2) from PCA, which summarize the variation in gait
parameters following STN-DBS. Dunn index and Silhouette score are maximized for K=2 clusters, namely CL 0 (red) and CL 1 (green), identified
using K-Means algorithm.

which either model noise or axes of minimal variability. There-
fore, only PC1 and PC2 are retained for the clusterization.
In addition, since PCs are linear combinations of the original
gait parameter changes, from the coefficient associated to such
changes their relative importance on the PCs can be found.
This investigation highlights that ∆StepWcv, ∆StepLmean,
∆StrideLmean, ∆WalkSmean, and ∆ASYM SWmean maximally
contribute to the variance in the data. In other words, patients
mostly differentiate one another after STN-DBS in terms of
changes in gait velocity, spatial amplitude of lower limbs
motion (step, stride), and variability and asymmetry in their
step width.

Fig. 2 reports the results obtained by the clustering algo-
rithms. The search for the optimal K was limited between
2 and 6 clusters due to the reduced number of points and
their sparsity. All methods converge on K = 2 as the
number of clusters which maximizes both Silhouette score and
Dunn index. The optimal method results to be K-Means, with
Silhouette score 0.46 and Dunn index 0.18. It is worth noting
that HDBSCAN either identifies two clusters or classifies all
points as noise or as a single cluster, when changing its
hyperparameters. For these two conditions, however, neither
Dunn index nor Silhouette score can be evaluated, thus a single
point is reported in their graphs.

For convenience, the two clusters are named CL 0 and
CL 1. Fig. 3 reports the box plots for changes of gait
parameters which show a significant (p < 0.05) different
statistical distribution between the two clusters. As expected,
all the changes which were found significantly affecting PCs,
namely ∆StepWcv (p < 0.001), ∆StepLmean (p < 0.001),
∆StrideLmean (p < 0.001), ∆WalkSmean(p < 0.001), and
∆ASYM SWmean (p < 0.001) appear having a high sig-
nificantly different distribution between CL 0 and CL 1. In
addition, ∆DLSmean (p = 0.010) also appears as statistically

different. The most evident difference between the groups
is the POST-PRE change of walking speed (∆WalkSmean)
and step/stride length (∆StepLmean, ∆StrideLmean): CL 0 is
characterised by a marked reduction of these gait parameters,
whereas subjects in CL 1 appear to either maintain the same
values or to increase them after STN-DBS, as expected from
the combined use of electrical stimulation and Levodopa in
the POST phase with respect to Levodopa only in the PRE
one [47], [48]. Moreover, on average the double limb support
phase (DLSmean) gets longer for subjects in CL 0, whereas
tends to reduce in CL 1.

Therefore, subjects in CL 1 have changes which are com-
monly associated to a good response to STN-DBS, as de-
scribed by the literature review in Section II [30], [44]–[46].
On the contrary, patients in cluster CL 0 seem to worsen
their gait patterns, therefore may model a bad response to the
treatment. The postoperative reduction in step width variability
(∆StepWcv) and step width asymmetry (∆ASYM SWmean) for
CL 0, however, may appear contradictory with this interpre-
tation of the two clusters. Nevertheless, as remarked in [39],
the maintenance or slight increase in the value for step width
variability (and its asymmetry) in cluster CL 1 may derive
from the enhanced walking speed. Such improvement may
require subjects to adapt more their base of support to preserve
balance in a dynamic scenario, thus increasing step width
variability and asymmetry. The decrease in CL 0, instead, may
be associated to a more careful walking, because of a lack of
perceived stability and fear of falling. This behaviour would
also explain the longer double limb support duration (DLSmean)
for this group. In addition to these observations, the size
unbalance between the two clusters (i.e., bad responders: 24%,
good responders: 76%) appears coherent with the proportion
of subjects who were reported not to experience benefit from
STN-DBS in previous works [29], [59].
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Fig. 3. Statistical characterization of the found clusters according to
gait parameter changes (∆) after STN-DBS surgery. Dotted line marks
zero change between PRE-POST. Parameters were tested using either
Student’s t test or Mann-Whitney U test, according to their normality. *:
p-value< 0.05, **: p-value< 0.01, ***: p-value< 0.001

The inspection of the two clusters in terms of age, age at
disease onset, disease duration, height, weight, gender, LEDD
variation, and MDS-UPDRS scores and their changes does
not highlight any statistically significant difference (p > 0.05)
between the two groups of patients (Supplementary Materials,
Table 1). This result suggests that such factors may not
have an influence on the gait changes discriminating the two
groups. Furthermore, this suggests that this clinical informa-
tion may not be predictive of the gait change cluster during
the presurgery phase. This conclusion is further supported
by the discussion in Subsection IV-B, which examines the
predictability of the identified clusters from presurgery only
data.

Fig. 4. Balanced accuracy achieved in the prediction of gait change
clusters (CL 0, CL 1) from preoperative only data, organised in three
feature sets (FeaturesGait, FeaturesClinic, FeaturesAll). The best score
is obtained by LGB model combined with Boruta as feature selection
method, on FeaturesAll. Bars represent mean values and error bars
STD values computed on 5 Bayesian searches initialised using different
random seeds.

B. Gait change prediction results

All the numerical results of this section are reported as
mean ± std. Such values were obtained by repeating the
Bayesian search for each prediction pipeline (i.e., each com-
bination of model, feature set and feature selection method) 5
times, using different random seeds for initialising the search.
This procedure allows to provide a measure of performance
variability and robustness to randomicity.

Fig. 4 reports the balanced accuracy obtained in LOSO
validation by the investigated ML models and feature selec-
tion methods, for each investigated feature set (FeaturesGait,
FeaturesClinic, FeaturesAll). Regarding the latter, it can be
observed how FeaturesClinic does not provide sufficient infor-
mation to obtain a satisfactory prediction (accuracy between
40%-50%) independently from feature selection method and
ML model. On the contrary, similar results are achieved for
FeaturesGait and FeaturesAll, suggesting that gait parameters
from PRE phase likely provide most of the predicted power
also in FeaturesAll. The optimal estimation pipeline integrates
LGB model and Boruta, on FeaturesAll, with a balanced
accuracy of 80.05 ± 3.52 %. This outcome is reasonable,
considering that Boruta is a wrapper feature selection method
specifically designed to exploit predictions from ensembles of
decision trees.

Table I presents the precision, specificity, sensitivity, and
F-1 score for this combination. As explained in Section IV,
all the metrics are reported both per-class and as a weighted
score (i.e., mean between the two prediction classes, with
weights determined by the class proportion in the dataset).
Examining the values, a gap in the prediction of the clusters
appears. Despite the use of SMOTE and the maximisation
of weighted F1-score in the Bayesian search for the best
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TABLE I
LOSO VALIDATION PERFORMANCE OF THE BEST TRAINED MODEL

(LGB MODEL WITH BORUTA, ON FEATURESALL )

Metric [%] CL 0 CL 1 Weighted

Sensitivity 73.33 ± 3.73 86.84 ± 3.72 83.60 ± 3.58
Precision 64.21 ± 3.72 91.14 ± 1.45 84.67 ± 2.78
F-1 score 68.39 ± 5.60 88.92 ± 2.58 83.99 ± 2.91
Specificity 86.84 ± 3.72 73.33 ± 3.73 76.58 ± 3.58
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Fig. 5. Ranking of features in FeaturesAll during the feature selection
procedure with Boruta algorithm, according to mean Shapley value.
Moreover, PBC with cluster label is also reported, along its p-value, for
each feature.

hyperparameters, the minority cluster results anyway hard
to predict. Nevertheless, a good-to-excellent sensitivity is
achieved for both clusters (CL 0: 73.33 ± 3.73 %, CL 1: 86.84
± 3.72%), supporting that a high proportion of good and bad
responders among the total is recognised (weighted sensitivity:
83.60 ± 3.58 %). Moreover, it must be noted that the high
specificity obtained for CL 0 implies that the model has a low
rate of false positives for this cluster. In the perspective of
using the pipeline as a support system for selecting STN-DBS
candidates, this means that unlikely good gait responders will
be wrongly predicted as bad, lowering their chances of getting
the intervention. The value of the weighted F-1 score (83.99
± 2.91 %) suggests a good balance between sensitivity and
precision. However, the precision for CL 0 (64.21 ± 3.72%)
should be improved to reduce the number of subjects who are
wrongly classified as CL 1. This low value may also depend
on the very limited size of CL 0 (12 subjects).

Finally, while it must be remarked that a one-to-one com-
parison with other studies is not meaningful because of the
different goals of the prediction (i.e., clinical motor scores vs
gait change clusters), different validation methods (i.e., K-fold
vs LOSO validation) and scoring metrics, the results obtained
are in line and even slightly larger than those achieved in
similar works on the prediction of STN-DBS effects, such as
those by Habets et al. [23], [59] and Krause et al. [22].

C. Analysis of relevant predictors

The importance of the features which provided the best pre-
diction results is further investigated. The optimal set results
to be composed from six features picked up by the Boruta

algorithm on FeaturesAll, namely StepWcv, ASYM SLcv,
SwingTcv, MDS-UPDRS IIION/OFF, PCI SLcv and DLScv.

First, it can be noted that almost all features refer to gait
parameters in the PRE surgery phase, whose contribution in
the prediction overshadows that of clinical and demographic
information. Unsurprisingly, the only feature selected from
these domains is MDS-UPDRS IIION/OFF, in other words the
change of motor condition, as evaluated by clinicians, between
Levodopa ON and OFF states. This parameter is already
considered as one of the fundamental selection criteria for
STN-DBS. This result further support the importance of such
criterion and conversely validate the relevance of the other
selected features. Moreover, it must be noted that all the other
features refer to CV values. This outcome seems coherent with
the type of gait test that the subjects performed, which was
specifically designed to address gait variability, due to the
longer walking duration (around ten minutes), compared to
other similar examinations (e.g., the 6-minute walking test).
Furthermore, this result is coherent with previous findings
by Shin et al. [66], who identified high predictability of
postoperative clinical milestones from high preoperative gait
variability in the Levodopa ON state.

Fig. 5 reports the ranking of the features according to Boruta
algorithm, as derived from their mean absolute shapley values
during the selection process. In addition, statistical correlation
between such features and the gait change clusters is reported
aside. Since correlation between continuous predictors and a
binary outcome must be investigated, and all predictors exhibit
a quasi-normal distribution, Point-Biserial Correlation (PBC)
is employed [88], again with a 95% confidence. As shown,
StepWcv and ASYM SLcv appear to be the most relevant
predictors, with also moderate correlation to the gait variation
clusters, respectively −0.45 (p = 0.001), and −0.34 (p =
0.015).

Fig. 6 shows the distribution of the patients for these
two preoperative parameters, coloured according to their gait
change cluster. As it can be observed, on average, subjects
in CL 0 are characterised by higher preoperative variability
in step width and step length asymmetry, with a significant
statistical difference for both features (p < 0.01). While
high StepWcv is known to be a marker of instability espe-
cially in the elderly [89], more complex is the interpretation
of ASYM SLcv, which is usually considered only in terms
of mean value. Considering the protocol employed in data
collection, variations in asymmetry in the straight walking
segments may have been influenced by the turning events
at the start and the end of the 8-shaped path. Therefore,
ASYM SLcv may be influenced by residual effects of such
turning events, suggesting that subjects who struggle to recover
their normal walking pattern after turning may have higher
values of ASYM SLcv, thus higher probability to be bad
responders for gait after STN-DBS.

D. Comparison with MDS-UPDRS changes

The exploration concludes with a comparison of the gait
change clusters identified by the unsupervised learning ap-
proach, with the variations of MDS-UPDRS clinical scores.
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Fig. 6. Distribution of relevant predictive features (StepWcv,
ASYM SLcv) in the PRE surgery phase, colored according to POST
surgery gait change clusters (CL 0 in red, CL 1 in green).*: p-value<
0.05, **: p-value< 0.01, ***: p-value< 0.001

Data were retrieved from electronic records of clinical exami-
nations of each patient by a single neurologist. The comparison
consider the preoperative scores in Levodopa ON state and
those in STN-DBS ON and Levodopa ON, after surgery, thus
the two conditions which were also considered in the gait
trials. In particular, the analysis involves the changes, in the
two conditions, of the MDS-UPDRS III score (i.e., the total
motor score) and the MDS-UPDRS gait subscore. For the
former, three groups of response are identified considering the
definition from Horvath et al. [90]: good responders decreased
their total score by at least 3.25 points; bad responders
increased it by at least 4.6 points, and non responders fall in
the range between these two values. For the gait subscore,
a decrease by 1 point or more models a good response,
conversely an increase by the same quantities a bad response
and no change a non response. The gait subscore ranges
between 0 (normal) and 4 (total impairment), and it must
be pointed out that none of the patients in the cohort had
gait score more than 2. This observation suggests that, on
average, all subjects showed limited gait impairment when
on pharmacological treatment only (PRE) or on electrical
stimulation and reduced pharmacological therapy (POST),
according to the clinical evaluator.

Fig. 7 provides a visualisation of the comparison of such
groups with the identified clusters of gait change. The first evi-
dent result from the comparative analysis of the bars in the two
plots is that an improvement in the total motor score (n = 23
patients) does not imply necessarily an improvement in the gait
subscore, and viceversa. Most patients (n = 30) actually did
not change their gait subscore in the two conditions. Only 11
patients had a worsening by exactly 1 point (i.e., either passing
from score 0 to 1 or from 1 to 2), and only 9 an improvement
by 1 point (i.e, from score 1 to 0), but these variations are

not reflected by the total MDS-UPDRS III score. The total
score involves the assessment of symptoms such as upper
limb tremor, speech impairment, and facial expression whose
improvement or worsening may not have any contribution
at all on gait changes. Indeed, also the CL 0 and CL 1 are
not reflected by response groups on MDS-UPDRS III, which
supports the idea that, for an evaluation of the specific effects
of STN-DBS on gait, just relying on predicting the variation of
such score [22], [23] may not be relevant. A lack of coherence
can be observed also between the response groups for the gait
subscore and the gait change clusters. Several considerations
should be taken into account. While the characterisation of the
clusters appears coherent with previous description of positive
and negative outcomes of STN-DBS on gait, such changes
may not be clinically relevant. However, as discussed in the
Background section, the definition of clinical relevance is often
arbitrary and variable among different studies. This is also one
of the reasons for selecting an initial unsupervised exploration
to identify cluster of changes. More robust and long-term
outcome measures such as quality of life questionnaires and
scales specifically addressing gait, FOG and balance might
have provided further insights into this discussion, but they
were not part of the dataset employed in this retrospective
investigation. Thus, proving evidence of clinical relevance
should be addressed in future works. On the other hand, the
well-know, limited granularity of the MDS-UPDRS subscores,
with only five possible severity levels, may be the reason for
this incoherence. This coarse staging can hardly reflect subtle
improvements which may only be quantitatively measured
by motion capture. Moreover, the longer test duration (10
minutes) of the gait trial in this study provides a more
comprehensive insight into the walking impairment of the
subject, which may not be observed by the clinician in the
short duration of the standard neurological examination. Such
longer duration could partially smooth out effects such as
improved gait performance due to testing effect [91] and
allow to better observe variability in gait parameters [67].
This overall outcome supports the importance of conducting
an unsupervised exploration on quantitative parameters rather
than relying only on variations of clinical scores, to really
delve into the effects of STN-DBS on gait.

E. Limitations
Despite the promising results achieved, this work is not

without limitations. As all the data-driven investigations, the
statistical validity of the obtained results is limited by the
observed sample size (50 patients), which however is much
larger than those reported in previous equivalent studies (see
Section II). This limited sample size may also explain why
absolute changes were found to be more relevant for clus-
terization than percentage changes (with respect to PRE con-
dition). While percentage changes may allow to individually
evaluate improvement, they tended to make the data sparse
for clustering, therefore were not considered. However, with
larger samples available, they may provide further insights and
allow to identify additional, finer-grained clusters.

Being a retrospective study, several limitations arise from
the dataset itself. First of all, a convenience sample was
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Fig. 7. Comparison of CL 0 and CL 1 with variations in Total
MDS-UPDRS III score (top) and the gait subscore only (bottom). Clinical
score variations are organised in responder groups, as defined in the
literature [90].

selected for the original study, which may bias the results
achieved in this work. In particular, since the capability
of walking unassisted for 10 minutes was among inclusion
criteria, this may have filtered out more severe subjects listed
for STN-DBS as a late stage treatment. For severely impaired
subjects, fatigue may be a relevant factor which could alter
the observed gait parameters. Therefore, the obtained results
may hardly generalize to this subgroup of patients. In addition,
further information such as fall history and self-reported
measures of gait quality, as well as cognitive data and scales
measuring patient’s independence in daily living could have
provided a useful complement to the characterisation of the
two found clusters. Indeed, lacking more robust and long-
term scales, as mentioned in Section IV-D, does not allow
to further investigate the clinical relevance of the observed
gait changes. Moreover, patients included in the original study
were not specifically recruited for treating gait impairment,
which was only retrospectively considered. This also explains
while on average most of the subjects were good walkers
according to clinicians. Regarding this aspect, it must be noted
that while many subjects with PD experience freezing of gait,
the dataset of this study did not contain any subject with a
clinical diagnosis of freezing neither freezing verified during
the gait trails. Therefore, this lack may represent a further
limitation to the generalizability of the results to a broader

spectrum of patients.
Since Levodopa response is considered a main predictor of

STN-DBS efficacy, motion capture data of gait trials in Lev-
odopa OFF condition may have provided relevant biomarkers
for the prediction of the two found clusters. Also, the small
number of female patients (8/50) did not allow to completely
rule out the existence of gender-related effects on the found
gait changes after STN-DBS. Finally, the natural progression
of the disease after the surgery was not considered as an
influencing factor due to the complexity of modelling such
a subjective aspect of PD, but for some patients may have
represented a co-factor in the worsened gait patterns after
STN-DBS.

F. Future developments

The current study is a first step towards the development of
a tool that could support neurologists in selecting STN-DBS
candidates. The ML model and the two found biomarkers (i.e.,
step width and step length asymmetry variability) may be used
to leverage benefits and drawbacks of the treatment for the
specific subject, prior to surgery. Indeed, the prediction of
the gait change clusters could inform the clinicians about the
likelihood of a worsening in walking characteristics, which
may result in an increased risk of falls after surgery. On the
contrary, the prediction of a maintenance or an improvement
in walking capabilities could support the eligibility of the
candidate.

Future studies should focus on enlarging the current ob-
served sample size, which still represent a significant limita-
tion. This would allow also to investigate the relevance of gait
changes expressed as percentage change with respect to the
PRE condition, in contrast to the absolute changes, chosen for
this work due to the reduced sample size. Moreover, future
studies should aim at generalising the obtained results to a
more heterogeneous group of patients, including more severely
impaired subjects. This would require to systematically model
the effect of fatigue during the 10 minutes test, which would
likely arise for this subgroup of patients. While collecting
motion capture data may be a slow and expensive procedure,
the use of wearable sensors (e.g., inertial measurement units)
could be a compromise in accuracy to collect large amount
of quantitative gait data. Moreover, wearable sensors could be
used to perform assessment in real life conditions, for much
longer periods than 10 minutes. Since variability appeared
relevant in this investigation, a more continuous and pervasive
monitoring could allow to obtain further insights into this
domain. Especially the variability in the step length asymmetry
should be further investigated in relation to walking patterns,
to prove the hypothesis that this parameter may be associated
to different immediate response to actions such as turning and
its role in predicting effects of STN-DBS on gait.

Finally, in future studies, quantitative motion data should be
better complemented by more robust and long-term clinical
scales, which were missing in this dataset. Among clinical
information, in-depth knowledge about dyskinesias events and
time spent in OFF by the patients may provide enhanced
characterization of clusters. Furthermore, it would be possible

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3446548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AMPRIMO et al.: A DATA-DRIVEN EXPLORATION AND PREDICTION OF DEEP BRAIN STIMULATION EFFECTS ON GAIT IN PARKINSON’S DISEASE 11

to investigate whether reduced time in OFF due to STN-DBS
continuous stimulation may influence gait performances and
whether these two factors may be connected to post-surgery
improvement.

V. CONCLUSIONS

This retrospective study investigated the effects of
STN-DBS on gait in Parkinson’s disease and their predictabil-
ity, using machine learning methods. The core idea was to
identify groups of patients who showed similar response in
terms of changes in their gait parameters after surgery. For this
exploration, motion capture data collected from 50 patients
were employed, considering gait trials before and 6-months
after surgery. The clustering of changes in gait parameters
revealed two relevant groups. The statistical characterisation
of the differences between the two clusters highlighted that
the smaller cluster may represent a group of patients with a
bad response on gait to STN-DBS, in contrast to the larger
cluster which showed maintained or improved performance
(i.e., a good response). The peculiarities of two clusters were
coherent with findings from previous studies, and both clusters
were predictable from preoperative only data, with a good level
of accuracy (80.05 ± 3.52%). A final investigation of the most
predictive preoperative features showed a connection between
variability in step width and step length asymmetry and the
gait change clusters.

Future works will focus on the consolidation of the obtained
results (i.e., the found gait response groups and possible
biomarkers), for the creation of a decision support system
which could help clinicians in selecting optimal candidates
for STN-DBS using quantitative gait parameters.

ACKNOWLEDGMENT

The authors extend their gratitude to all project members
involved in the original data collection, including Dr. Navrag
Singh, Prof. Dr. William Taylor, Dr. Christian Baumann, and
their respective team members.

REFERENCES

[1] A. A. Moustafa, S. Chakravarthy et al., “Motor symptoms in parkinson’s
disease: A unified framework,” Neuroscience & Biobehavioral Reviews,
vol. 68, pp. 727–740, 2016.

[2] S. Rahman, H. J. Griffin et al., “Quality of life in parkinson’s disease:
the relative importance of the symptoms,” Movement disorders: official
journal of the Movement Disorder Society, vol. 23, no. 10, pp. 1428–
1434, 2008.

[3] G. Ebersbach, C. Moreau et al., “Clinical syndromes: Parkinsonian gait,”
Movement Disorders, vol. 28, no. 11, pp. 1552–1559, 2013.

[4] M. E. Morris, F. Huxham et al., “The biomechanics and motor control
of gait in parkinson disease,” Clinical biomechanics, vol. 16, no. 6, pp.
459–470, 2001.

[5] F. Arippa, B. Leban et al., “A study on lower limb asymmetries
in parkinson’s disease during gait assessed through kinematic-derived
parameters,” Bioengineering, vol. 9, no. 3, p. 120, 2022.

[6] B. W. Fling, C. Curtze, and F. B. Horak, “Gait asymmetry in people with
parkinson’s disease is linked to reduced integrity of callosal sensorimotor
regions,” Frontiers in neurology, vol. 9, p. 215, 2018.

[7] M. Plotnik, N. Giladi, and J. M. Hausdorff, “A new measure for
quantifying the bilateral coordination of human gait: effects of aging
and parkinson’s disease,” Experimental brain research, vol. 181, pp.
561–570, 2007.

[8] R. T. Roemmich, A. M. Field et al., “Interlimb coordination is impaired
during walking in persons with parkinson’s disease,” Clinical Biome-
chanics, vol. 28, no. 1, pp. 93–97, 2013.

[9] N. Tambasco, M. Romoli, and P. Calabresi, “Levodopa in parkinson’s
disease: current status and future developments,” Current neuropharma-
cology, vol. 16, no. 8, pp. 1239–1252, 2018.

[10] T. Mueller and H. Russ, “Levodopa, motor fluctuations and dyskinesia
in parkinson’s disease,” Expert Opinion on Pharmacotherapy, vol. 7,
no. 13, pp. 1715–1730, 2006.

[11] B. Thanvi, N. Lo, and T. Robinson, “Levodopa-induced dyskinesia
in parkinson’s disease: clinical features, pathogenesis, prevention and
treatment,” Postgraduate medical journal, vol. 83, no. 980, pp. 384–
388, 2007.

[12] M. Hariz and P. Blomstedt, “Deep brain stimulation for parkinson’s
disease,” Journal of internal medicine, vol. 292, no. 5, pp. 764–778,
2022.

[13] J. K. Wong, J. H. Cauraugh et al., “Stn vs. gpi deep brain stimulation
for tremor suppression in parkinson disease: a systematic review and
meta-analysis,” Parkinsonism & related disorders, vol. 58, pp. 56–62,
2019.

[14] Y. Temel, A. Blokland et al., “The functional role of the subthalamic
nucleus in cognitive and limbic circuits,” Progress in neurobiology,
vol. 76, no. 6, pp. 393–413, 2005.

[15] W.-J. Neumann, L. A. Steiner, and L. Milosevic, “Neurophysiological
mechanisms of deep brain stimulation across spatiotemporal
resolutions,” Brain, vol. 146, no. 11, pp. 4456–4468, 07 2023.
[Online]. Available: https://doi.org/10.1093/brain/awad239

[16] W. M. Schuepbach, L. Tonder et al., “Quality of life predicts outcome of
deep brain stimulation in early parkinson disease,” Neurology, vol. 92,
no. 10, pp. e1109–e1120, 2019.

[17] C. Schlenstedt, A. Shalash et al., “Effect of high-frequency subthalamic
neurostimulation on gait and freezing of gait in parkinson’s disease: a
systematic review and meta-analysis,” European journal of neurology,
vol. 24, no. 1, pp. 18–26, 2017.

[18] H. Brozova, I. Barnaure et al., “Short- and long-term effects
of dbs on gait in parkinson’s disease,” Frontiers in Neurology,
vol. 12, 2021. [Online]. Available: https://www.frontiersin.org/journals/
neurology/articles/10.3389/fneur.2021.688760

[19] S. Groiss, L. Wojtecki et al., “Review: Deep brain stimulation
in parkinson’s disease,” Therapeutic Advances in Neurological
Disorders, vol. 2, no. 6, pp. 379–391, 2009. [Online]. Available:
https://doi.org/10.1177/1756285609339382

[20] A. Williams, S. Gill et al., “Deep brain stimulation plus best medical
therapy versus best medical therapy alone for advanced parkinson’s
disease (pd surg trial): a randomised, open-label trial,” The Lancet
Neurology, vol. 9, no. 6, pp. 581–591, 2010.

[21] V. Geraedts, M. Kuijf et al., “Selecting candidates for deep brain
stimulation in parkinson’s disease: the role of patients’ expectations,”
Parkinsonism & Related Disorders, vol. 66, pp. 207–211, 2019.

[22] K. J. Krause, F. Phibbs et al., “Predicting motor responsiveness to deep
brain stimulation with machine learning,” in AMIA Annual Symposium
Proceedings, vol. 2021. American Medical Informatics Association,
2021, p. 651.

[23] J. G. Habets, M. L. Janssen et al., “Machine learning prediction of motor
response after deep brain stimulation in parkinson’s disease—proof of
principle in a retrospective cohort,” PeerJ, vol. 8, p. e10317, 2020.

[24] G.-L. Defer, H. Widner et al., “Core assessment program for surgical
interventional therapies in parkinson’s disease (capsit-pd),” Movement
disorders: official journal of the Movement Disorder Society, vol. 14,
no. 4, pp. 572–584, 1999.

[25] P. Limousin and T. Foltynie, “Long-term outcomes of deep brain
stimulation in parkinson disease,” Nature Reviews Neurology, vol. 15,
no. 4, pp. 234–242, 2019.

[26] L. Morgante, F. Morgante et al., “How many parkinsonian patients are
suitable candidates for deep brain stimulation of subthalamic nucleus?
results of a questionnaire,” Parkinsonism & related disorders, vol. 13,
no. 8, pp. 528–531, 2007.

[27] C. A. Artusi, L. Lopiano, and F. Morgante, “Deep brain stimulation
selection criteria for parkinson’s disease: time to go beyond capsit-pd,”
Journal of clinical medicine, vol. 9, no. 12, p. 3931, 2020.

[28] M. G. Rizzone, T. Martone et al., “Genetic background and outcome of
deep brain stimulation in parkinson’s disease,” Parkinsonism & related
disorders, vol. 64, pp. 8–19, 2019.

[29] D. K. Ravi, C. R. Baumann et al., “Does subthalamic deep brain
stimulation impact asymmetry and dyscoordination of gait in parkinson’s
disease?” Neurorehabilitation and Neural Repair, vol. 35, no. 11, pp.
1020–1029, 2021.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3446548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1093/brain/awad239
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.688760
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.688760
https://doi.org/10.1177/1756285609339382


12 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

[30] M. Pötter-Nerger and J. Volkmann, “Deep brain stimulation for gait
and postural symptoms in parkinson’s disease,” Movement Disorders,
vol. 28, no. 11, pp. 1609–1615, 2013.

[31] A. Fasano, C. G. Canning et al., “Falls in parkinson’s disease: a complex
and evolving picture,” Movement disorders, vol. 32, no. 11, pp. 1524–
1536, 2017.

[32] J. Pressley, E. Louis et al., “The impact of comorbid disease and injuries
on resource use and expenditures in parkinsonism,” Neurology, vol. 60,
no. 1, pp. 87–93, 2003.

[33] R. Tripathi, J. L. McKay et al., “Impact of deep brain stimulation on
gait in parkinson disease: A kinematic study,” Gait Posture, vol. 108,
pp. 151–156, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0966636223015060

[34] M. Ghislieri, M. Lanotte et al., “Muscle synergies in parkinson’s disease
before and after the deep brain stimulation of the bilateral subthalamic
nucleus,” Scientific Reports, vol. 13, no. 1, p. 6997, 2023.

[35] I. Cebi, M. Scholten et al., “Clinical and kinematic correlates of
favorable gait outcomes from subthalamic stimulation,” Frontiers in
Neurology, vol. 11, p. 212, 2020.

[36] D. W. Powell, S. E. Blackmore et al., “Deep brain stimulation enhances
movement complexity during gait in individuals with parkinson’s dis-
ease,” Neuroscience letters, vol. 728, p. 133588, 2020.

[37] N. Allert, J. Volkmann et al., “Effects of bilateral pallidal or subtha-
lamic stimulation on gait in advanced parkinson’s disease,” Movement
disorders: official journal of the Movement Disorder Society, vol. 16,
no. 6, pp. 1076–1085, 2001.

[38] P. Krystkowiak, J.-L. Blatt et al., “Effects of Subthalamic Nucleus
Stimulation and Levodopa Treatment on Gait Abnormalities in
Parkinson Disease,” Archives of Neurology, vol. 60, no. 1, pp. 80–84,
01 2003. [Online]. Available: https://doi.org/10.1001/archneur.60.1.80

[39] Z. Mei, A.-S. Hofer et al., “Optimal stimulation sites of the subthalamic
nucleus for the treatment of gait symptoms of parkinson’s disease,”
medRxiv, 2023. [Online]. Available: https://www.medrxiv.org/content/
early/2023/12/18/2023.12.15.23299998

[40] R. Roemmich, J. A. Roper et al., “Gait worsening and the microlesion
effect following deep brain stimulation for essential tremor,” Journal
of Neurology, Neurosurgery & Psychiatry, vol. 90, no. 8, pp. 913–919,
2019.

[41] P. Krack, A. Batir et al., “Five-year follow-up of bilateral stimulation of
the subthalamic nucleus in advanced parkinson’s disease,” New England
Journal of Medicine, vol. 349, no. 20, pp. 1925–1934, 2003.

[42] G. Deuschl, C. Schade-Brittinger et al., “A randomized trial of deep-
brain stimulation for parkinson’s disease,” New England Journal of
Medicine, vol. 355, no. 9, pp. 896–908, 2006.

[43] C. G. Goetz, B. C. Tilley et al., “Movement disorder society-sponsored
revision of the unified parkinson’s disease rating scale (mds-updrs): scale
presentation and clinimetric testing results,” Movement disorders: official
journal of the Movement Disorder Society, vol. 23, no. 15, pp. 2129–
2170, 2008.

[44] J. A. Roper, N. Kang et al., “Deep brain stimulation improves gait
velocity in parkinson’s disease: a systematic review and meta-analysis,”
Journal of neurology, vol. 263, pp. 1195–1203, 2016.

[45] A. Collomb-Clerc and M.-L. Welter, “Effects of deep brain
stimulation on balance and gait in patients with parkinson’s
disease: A systematic neurophysiological review,” Neurophysiologie
Clinique/Clinical Neurophysiology, vol. 45, no. 4, pp. 371–388,
2015, special issue : Balance and Gait. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0987705315000404

[46] R. Pourahmad, K. Saleki et al., “Deep brain stimulation (dbs) as
a therapeutic approach in gait disorders: What does it bring to the
table?” IBRO Neuroscience Reports, vol. 14, pp. 507–513, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2667242123000465

[47] S. Lubik, W. Fogel et al., “Gait analysis in patients with advanced
parkinson disease: different or additive effects on gait induced by
levodopa and chronic stn stimulation,” Journal of neural transmission,
vol. 113, pp. 163–173, 2006.

[48] J. M. Hausdorff, L. Gruendlinger et al., “Deep brain stimulation effects
on gait variability in parkinson’s disease,” Movement disorders: official
journal of the Movement Disorder Society, vol. 24, no. 11, pp. 1688–
1692, 2009.

[49] L. Rocchi, P. Carlson-Kuhta et al., “Effects of deep brain stimulation in
the subthalamic nucleus or globus pallidus internus on step initiation in
parkinson disease,” Journal of neurosurgery, vol. 117, no. 6, pp. 1141–
1149, 2012.

[50] E. L. Johnsen, P. H. Mogensen et al., “Improved asymmetry of gait in
parkinson’s disease with dbs: gait and postural instability in parkinson’s

disease treated with bilateral deep brain stimulation in the subthalamic
nucleus,” Movement Disorders, vol. 24, no. 4, pp. 588–595, 2009.

[51] A. Fasano, J. Herzog et al., “Modulation of gait coordination by sub-
thalamic stimulation improves freezing of gait,” Movement Disorders,
vol. 26, no. 5, pp. 844–851, 2011.

[52] M. Ferrarin, I. Carpinella et al., “Unilateral and bilateral subthalamic
nucleus stimulation in parkinson’s disease: Effects on emg signals of
lower limb muscles during walking,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 15, no. 2, pp. 182–189,
2007.

[53] F. Pieruccini-Faria, M. Montero-Odasso, and J. M. Hausdorff, Gait
Variability and Fall Risk in Older Adults: The Role of Cognitive
Function. Cham: Springer International Publishing, 2020, pp. 107–138.
[Online]. Available: https://doi.org/10.1007/978-3-030-24233-6 7

[54] F. Pieruccini-Faria, S. E. Black et al., “Gait variability across neurode-
generative and cognitive disorders: Results from the canadian consortium
of neurodegeneration in aging (ccna) and the gait and brain study,”
Alzheimer’s & Dementia, vol. 17, no. 8, pp. 1317–1328, 2021.

[55] J. H. Richard E.A. Van Emmerik and W. J. McDermott, “Variability and
coordinative function in human gait,” Quest, vol. 57, no. 1, pp. 102–123,
2005.

[56] G. Y. Park, S. S. Yeo et al., “Changes in gait parameters and gait
variability in young adults during a cognitive task while slope and
flat walking,” Healthcare, vol. 8, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/2227-9032/8/1/30

[57] J. S. Brach, J. E. Berlin et al., “Too much or too little step width vari-
ability is associated with a fall history in older persons who walk at or
near normal gait speed,” Journal of neuroengineering and rehabilitation,
vol. 2, pp. 1–8, 2005.

[58] E. Lai, M. Bryant et al., “Risk of falls in parkinson’s disease
after deep brain stimulation (p04.184),” Neurology, vol. 80, no.
7 supplement, pp. P04.184–P04.184, 2013. [Online]. Available: https:
//www.neurology.org/doi/abs/10.1212/WNL.80.7 supplement.P04.184

[59] J. G. Habets, C. Herff et al., “Multicenter Validation of Individual
Preoperative Motor Outcome Prediction for Deep Brain Stimulation
in Parkinson’s Disease,” Stereotactic and Functional Neurosurgery,
vol. 100, no. 2, pp. 121–129, 11 2021. [Online]. Available:
https://doi.org/10.1159/000519960

[60] L. A. Frizon, O. Hogue et al., “Quality of life improvement following
deep brain stimulation for parkinson disease: development of a prog-
nostic model,” Neurosurgery, vol. 85, no. 3, pp. 343–349, 2019.

[61] H. S. Dafsari, L. Weiß et al., “Short-term quality of life after subthalamic
stimulation depends on non-motor symptoms in parkinson’s disease,”
Brain stimulation, vol. 11, no. 4, pp. 867–874, 2018.

[62] C. Daniels, P. Krack et al., “Is improvement in the quality of life after
subthalamic nucleus stimulation in parkinson’s disease predictable?”
Movement disorders, vol. 26, no. 14, pp. 2516–2521, 2011.

[63] P. Voruz, J. Pierce et al., “Motor symptom asymmetry predicts non-
motor outcome and quality of life following stn dbs in parkinson’s
disease,” Scientific reports, vol. 12, no. 1, p. 3007, 2022.

[64] O. Gavriliuc, S. Paschen et al., “Prediction of the effect of deep
brain stimulation on gait freezing of parkinson’s disease,” Parkinsonism
Related Disorders, vol. 87, pp. 82–86, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1353802021001395

[65] C. Jenkinson, R. Fitzpatrick et al., “The Parkinson’s Disease
Questionnaire (PDQ-39): development and validation of a Parkinson’s
disease summary index score,” Age and Ageing, vol. 26, no. 5, pp.
353–357, 09 1997. [Online]. Available: https://doi.org/10.1093/ageing/
26.5.353

[66] J. H. Shin, R. Yu et al., “High preoperative gait variability is a
prognostic predictor of gait and balance in parkinson disease patients
with deep brain stimulation,” Parkinsonism Related Disorders, vol.
100, pp. 1–5, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1353802022001444

[67] N. König, N. B. Singh et al., “Is gait variability reliable? an assessment
of spatio-temporal parameters of gait variability during continuous
overground walking,” Gait & posture, vol. 39, no. 1, pp. 615–617, 2014.

[68] J. M. Hausdorff, M. E. Cudkowicz et al., “Gait variability
and basal ganglia disorders: Stride-to-stride variations of gait
cycle timing in parkinson’s disease and huntington’s disease,”
Movement Disorders, vol. 13, no. 3, pp. 428–437, 1998.
[Online]. Available: https://movementdisorders.onlinelibrary.wiley.com/
doi/abs/10.1002/mds.870130310
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