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ABSTRACT This paper presents a novel deep learning-based model for forecasting water demand
Specifically, a transformer network architecture-based iTransformer model is introduced to forecast total
water demand at both country and province levels over the medium term. Comparative evaluations
with Transformer, PatchTST, and LSTM models are conducted across various forecasting lengths, with
hyperparameter optimization performed through grid search. The optimal model and parameters are then
applied to historical water demand data from 2000 to 2023, yielding forecasts for subsequent years.
Results demonstrate that the iTransformer model achieves the lowest RMSE (92.72/1.39/22.71/21.69/9.16),
MAE (68.65/1.11/17.42/13.38/5.85), and MAPE (0.01/0.28/0.03/0.08/0.01) in forecasting water demand
for China, Beijing, Jiangsu, Zhejiang, and Guangdong respectively. The study emphasizes the importance
of considering population size and economic activity in managing socio-economic water demand in China,
advocating for a balanced approach to water resource utilization. While the research offers valuable insights
for water management authorities, challenges remain in quantifying future water allocations and refining
prediction methodologies for enhanced accuracy. Nonetheless, the study paves the way for future research
in advancing water demand forecasting methodologies.

INDEX TERMS Deep learning, water demand forecasting, iTransformer.

I. INTRODUCTION
China is notably grappling with severe water scarcity issues
on a global scale [1], [2], [3], [4], [5]. Concurrently, the
mismanagement of water resources persists as a pressing
concern. Essentially, a lack of public awareness regarding
water conservation, substantial wastage, inefficient agricul-
tural and industrial water practices, environmental pollution,
and excessive groundwater extraction have compounded
China’s water scarcity crisis, posing a significant impedi-
ment to the country’s economic development [1], [2], [3],
[4], [6]. Consequently, effective water resource management
holds paramount importance for China. Acknowledged as
a pivotal cornerstone for both water resource governance
and economic progress, accurate water demand forecasting
is imperative [7], [8], [9]. Therefore, precise prediction of
water demand and the provision of recommendations based
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on forecasted outcomes are crucial steps toward improving
the water resource landscape.

Amidst the backdrop of water scarcity, an increasing array
of studies has pivoted their attention in water resources
management from supply to demand. Rezaee et al. [10]
underscored the importance of judiciously allocating water
resources among diverse water use sectors. He et al. [11]
found that a majority of cities facing water scarcity can
alleviate their water shortage by investing in infrastructure.
However, it is crucial to be cautious about the potential
environmental consequences that may arise from imple-
menting large-scale solutions to address water scarcity. For
instance, Holland et al. [3] revealed that while the elec-
tric and gas sectors primarily affect freshwater consumption
domestically, the petroleum sector has a significant inter-
national footprint, underscoring the need for comprehensive
resource-management strategies to ensure energy and fresh-
water security amidst broader environmental and societal
concerns. Scanlon et al. [12] evaluates the current and histor-
ical evolution of water resources, highlighting the challenges
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faced in ensuring its availability due to climate extremes and
human intervention, and proposes diversifying management
strategies as a solution to increase water-resource resilience.
Assessing water resource sustainability depends on various
factors including social and economic elements.

Population size and economic status play a critical role in
shaping socio-economic scenarios and significantly impact
socio-economic water demand, as demonstrated by extant
research. For example, Huggins et al. [13] examined the
interconnectedness of humans and ecosystems through the
hydrological cycle, evaluates the combined impacts of hydro-
logical changes on social and ecological systems globally,
and proposes strategies to reduce vulnerability, such as
hydro-diplomacy and integrated water resources manage-
ment practices. Rezaee et al. [10] focused on addressing
concerns about water resource sustainability amidst pop-
ulation growth, urbanization, and industrial development,
proposing a system dynamics modeling framework inte-
grating economic, social, and environmental dimensions
for water resources allocation decisions, with the TOPSIS
method utilized to identify optimal allocation strategies,
exemplified through a case study in East Azerbaijan province,
Iran, emphasizing the need for improved consideration
of social, economic, and environmental factors in water
allocation.

Currently, water demand forecasting methods primarily
fall into three categories: statistical models, fuzzy logic mod-
els and machine learning models.

A. STATISTICAL MODELS
In a study conducted in Fortaleza, Brazil, researchers exam-
ined the residential water demand forecasting and investi-
gated the potential impact of integrating spatial effects into
the modeling process [14]. Their findings indicated that
neglecting spatial effects led to an underestimation of the
influence of income and toilet numbers on residential water
demand marginal prices. Initially, they employed an econo-
metric water demand method without spatial effects, using
average price (AP), marginal price with difference (MP), and
marginal price with difference using the McFadden method
(McFadden model). Subsequently, they explored three mod-
els to incorporate spatial effects: Spatial Error Model (SEM),
Spatial Autoregressive Model (SAR), and Spatial Autore-
gressive Moving Average Model (SARMA), considering
various explanatory variables. The results favored SARMA,
which contradicted the findings of [15], [16] who advocated
for spatial approaches. By incorporating spatial effects, the
accuracy of demand forecasts improved, increasing price
elasticity by 24.66% in the AP model and 13.32% in the
McFadden model. Additionally, the seasonal ARIMA model
was found to be more effective in forecasting water con-
sumption compared to other methods, yieldingmean absolute
percentage errors ranging from 1.19% to 15.74% [17].
A short-termwater demand forecasting approach grounded

in Markov Chain (MC) statistical principles has been

proposed [18]. This method estimates future demands and the
associated probabilities of demand falling within expected
variability. They presented two techniques, Homogeneous
Markov Chains (HMC) and Non-Homogeneous Markov
Chains (NHMC), which were applied to forecast water
demands in three District Metered Areas (DMA) in York-
shire, UK, spanning from 1 to 24 hours ahead. Comparative
analysis with benchmark methods (such as ANN and Naive
Bayes) revealed that HMCoutperformedNHMC in providing
more accurate short-term predictions. Both HMC andNHMC
methodologies offered probabilistic insights into stochastic
demand forecasting while exhibiting reduced computational
complexity compared to existing techniques. However, they
did not match the computational intensity of benchmarks
like ANN or Naive Bayes, which could be achieved through
Monte Carlo simulations.

B. MACHINE LEARNING MODELS
In recent decades, there has been significant research into
the utilization of machine learning or deep learning models
as substitutes for statistical models in the estimation and
prediction of water demand [7], [19], [20], [21], [22], [23],
[24], [25], [26]. Numerous studies have evaluated and com-
pared various machine learning forecasting models based on
their accuracy, performance, and practical usability [26], [27],
[28], [29].

Long Short-TermMemory (LSTM) [30] tackles the dimin-
ishing gradient predicament encountered in conventional
Recursive Neural Networks (RNNs). The diminishing gra-
dient issue emerges when the slopes utilized to adjust the
weights during instruction decrease exponentially over time,
resulting in the inept capture of long-range dependencies.
LSTM overcomes this hurdle by introducing a more intri-
cate memory cell framework that permits the retention of
information over prolonged time intervals. By managing the
information flow through these gateways, LSTM can sustain
long-term dependencies more efficiently compared to typical
RNNs. Furthermore, the introduction of a cell condition that
spans the entire sequence aids in upholding and transmitting
information across diverse time intervals without substan-
tial degradation. Fundamentally, LSTM’s framework, with
its capability to comprehend long-term dependencies and
avert the diminishing gradient complication, has markedly
enhanced the effectiveness of recursive neural networks, ren-
dering themmore appropriate for tasks concerning sequential
data and time series forecasting [30]. Wang et al. [31] pro-
posed a novel framework of short-termwater demand forecast
using the clouded leopard algorithm-based multiple adaptive
mechanisms-long short-term memory networks to improve
the accuracy of water demand predictions in urban water
supply systems.

Transformer [32] embodies a notable progression beyond
LSTM networks by surmounting difficulties associated with
capturing extensive dependencies in sequences. Via the appli-
cation of self-attention mechanisms, Substitutes excel in
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grasping contextual associations among remote elements
within the input sequence, a undertaking that LSTMnetworks
encounter challenges with due to the vanishing gradient
dilemma. This capacity enables Substitutes to proficiently
represent intricate dependencies and interactions within the
information, resulting in enhanced effectiveness for tasks
involving sequential data processing. Moreover, Substitutes
provide upgraded parallelization during instruction in con-
trast to LSTM networks. By handling the complete sequence
concurrently, Substitutes demonstrate swifter convergence
rates and diminished training durations, augmenting their
efficiency in managing copious sequential data. This con-
current processing proficiency not only expedites training
but also guarantees adaptability with elongated sequences,
empowering Substitutes to preserve functionality and effi-
cacy even with extended input sequences, an accomplishment
that LSTM networks could struggle to attain. Transformer
based water demand forecasting methods have been proved
to be more and more popular with high accuracy and effi-
ciency [33], [34], [35].

The Transformer architecture, celebrated for its achieve-
ments in natural language processing and computer
vision [36], [37], [38], [39], [40], has emerged as a fundamen-
tal model in accordance with the scaling principle [37], [38],
[39], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53]. With its capacity to capture pairwise connec-
tions and derive multi-level representations within sequences,
Transformers are currently leaving their imprint on time
series prediction. Nonetheless, uncertainties have surfaced
among scholars regarding the efficacy of Transformer-driven
prediction models. These models typically combine various
variables from the same time step into indistinguishable
channels and employ attention mechanisms to seize temporal
correlations. Recent research indicates that straightforward
linear layers, reminiscent of conventional statistical pre-
dictors, outperform intricate Transformers concerning both
effectiveness and efficiency due to the numerical rather than
semantic links among time points [41], [54].
Additionally, current studies highlight the significance of

guaranteeing variable autonomy and utilizing shared knowl-
edge. Clearly representing multivariate connections has been
recognized as essential for attaining precise prediction.
Nonetheless, this goal is difficult to achieve without straying
from the traditional Transformer method [55].

Concerning the dangers related to integrating multiple
variables of a timestamp as a single temporal token, we sug-
gest an alternate method by treating each variable’s entire
time series independently and embedding them into dis-
tinct variable tokens. This technique, similar to Patching
as delineated by [54], showcases an extreme scenario that
boosts the local receptive field. By embracing this inverted
viewpoint, the embedded token consolidates global repre-
sentations of the series, enabling a more variable-focused
approach that can be efficiently harnessed by advanced atten-
tion mechanisms for correlating multiple variables. Simulta-
neously, the feed-forward network can acquire generalized

representations for various variables derived from arbitrary
historical series, aiding in forecasting future series.

This investigation concentrates on constructing a Chinese
water demand prediction model based on the deep learning
framework. By incorporating temporal information effec-
tively, the model strives to improve the precision of water
demand predictions in China. The distinctive attributes of the
Chinese water demand sector, characterized by agriculture,
industry, household and environment, and evolving water
regulations, pose challenges necessitating sophisticated fore-
casting techniques capable of capturing subtle consumption
behavior patterns.

The inspiration behind this inquiry arises from the growing
significance of dependable water demand predictions for sus-
tainable water planning and resource distribution in China.
Through harnessing the iTransformer deep learning model,
this study aims to enrich water demand forecasting methods
tailored to the unique characteristics of the Chinese water
resources. The integration of spatial features permits a more
thorough examination of consumption trends across diverse
regions, empowering policymakers and water stakeholders to
make informed choices concerning water resource conser-
vations and reallocations. The objective is to introduce and
validate a novel deep learning-basedmodel, the iTransformer,
which addresses these gaps by outperforming existingmodels
(Transformer, PatchTST, and LSTM) in forecasting accuracy
and incorporating key socio-economic variables.

In the subsequent segments, we will explore the method-
ology employed in constructing the Chinese water demand
predictionmodel grounded on the iTransformer deep learning
structure. We will delve into the data sources, model design,
training procedures, and evaluation metrics utilized to gauge
the model’s performance. Moreover, we will present our
experiment outcomes and offer insights into the ramifications
of precise water.

II. MATERIALS AND METHODS
A. LONG SHORT TERM MEMORY NETWORK(LSTM)
The Long Short-Term Memory (LSTM) model is a form of
recurrent neural network (RNN) structure crafted to tackle the
fading gradient dilemma in conventional RNNs. Introduced
by Hochreiter and Schmidhuber [30], LSTMs are proficient
in grasping prolonged dependencies in sequential data by pre-
serving and updating information across lengthy time steps.

Critical elements of an LSTM unit encompass the cell
state, input gate, neglect gate, and production gate. These
components collaborate to control the transfer of information
within the network, enabling LSTMs to retain pertinent data
for an extensive duration and selectively discard superfluous
specifics. This process empowers LSTMs to capture sequen-
tial patterns effectively, rendering them suitable for duties
such as voice recognition, linguistic modeling, and temporal
series prediction. The depiction of the extensive design of
LSTM is exhibited in Figure 1. Its core equations include the
following components:
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1. Forget Gate:

ft = σ (Wf · [ht − 1, xt] + bf )

This gate decides what information to forget from the
previous cell state.

2. Input Gate:

it = σ (Wi · [ht − 1, xt] + bi)

C̃t = tanh(WC · [ht − 1, xt] + bC)

The input gate determines what new information to store
in the cell, while C̃t represents the candidate values for the
cell state.

3. Cell State Update:

Ct = ft ⊙ Ct − 1 + it ⊙ C̃t

This equation updates the cell state by combining the old cell
state and the new candidate values.

4. Output Gate:

ot = σ (Wo · [ht − 1, xt] + bo)

ht = ot ⊙ tanh(Ct)ht = ot ⊙ tanh(Ct)

The output gate determines what the next hidden state
(output) should be based on the current cell state.

LSTMs have garnered broad acceptance in diverse
domains due to their effectiveness in modeling sequential
data and managing far-reaching dependencies. Their durable
framework and capability to recollect information over pro-
longed sequences have established LSTMs as a pivotal
instrument in the domain of profound learning, particularly
for assignments necessitating the manipulation of sequential
data.

FIGURE 1. Illustration of the comprehensive design of LSTM.

B. TRANSFORMER
The Transformer model, a popular deep learning architecture,
was first introduced in the groundbreaking paper ‘‘Attention
is All YouNeed’’ by [32]. Unlike traditional sequencemodels
like LSTMs, Transformers rely on self-attention mechanisms
to seize dependencies between input and output elements
simultaneously. This framework empowers Transformers to

shine in various natural language processing tasks such as
machine translation, text generation, and sentiment analysis.

The fundamental constituents of a Transformer model
encompass self-attention coatings and feed-forward neural
networks (FFN). Self-attention permits the model to evaluate
the significance of different input elements when forecast-
ing, whereas the feedforward networks analyze this data to
produce the ultimate outcome. Transformers have soared in
popularity owing to their ability to model extensive depen-
dencies proficiently, manage sequential data effectively, and
adapt to massive datasets.

The Transformer framework has been broadly embraced
and acts as a foundation for numerous state-of-the-art
models in natural language processing and other sectors.
Its adaptability, parallelization capacities, and exceptional
performance have positioned it as a pivotal innovation
in deep learning exploration and applications. The depic-
tion of the comprehensive design of Transformer was
revealed in Figure 2. Here are the key components and
formulas:

1. Input Embeddings
The input tokens are first embedded into continuous

vectors:

E = Embedding(X )

where XX is the input sequence of token indices.
2. Positional Encoding
Since Transformers do not have a built-in notion of order,

positional encodings are added to the embeddings:

PE(pos, 2i) = sin(pos100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos100002i/dmodel)

where pospos is the position, ii is the dimension index, and
dmodel is the model dimension.

3. Self-Attention Mechanism
For an input sequence of length nn, the self-attentionmech-

anism computes the attention scores as follows:
4. Query, Key, and Value Matrices:

Q = EWQ,K = EWK ,V = EWV

whereWQ,WK ,WV are learned weight matrices.
5. Scaled Dot-Product Attention:
The attention scores are computed, scaled, and passed

through a softmax function:

Attention(Q,K ,V ) = softmax(QKTdk)V

where dk is the dimension of the keys.
6. Multi-Head Attention
To allow the model to focus on different parts of the input,

multiple attention heads are used:

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO

where each head is defined as:

headi = Attention(QWiQ,KWiK ,VWiV )
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7. Feed-Forward Neural Network
Each position’s output from the attention layer is passed

through a feed-forward network:

FFN(x) = ReLU(xW1 + b1)W2 + b2

8. Layer Normalization and Residual Connections
To stabilize training, layer normalization and residual con-

nections are applied:

LayerNorm(x + Sublayer(x))

9. Final Output
The output of the final decoder is passed through a linear

layer followed by softmax to produce probabilities for each
token in the vocabulary:

P(y|x) = softmax(HW + b)

FIGURE 2. Illustration of the comprehensive design of transformer.

C. PatchTST
The PatchTST model embodies the Transformer architec-
ture, tailored for time series forecasting tasks [54]. This
model merges the potent sequential modeling prowess of
Transformer networks with the demands of time series fore-
casting, adeptly managing intricate patterns and prolonged
relationships within temporal data. Here are key traits and
functionalities of the PatchTST model: PatchTST roots itself
in the Transformer architecture, renowned for its triumphs
in domains like natural language processing. Leveraging

self-attention mechanisms, the Transformer model adeptly
captures global dependencies in sequential data, encom-
passing distant correlations. Time Series Prediction: The
PatchTST model is purpose-built for forecasting temporal
sequences, proficient in handling continuous data streams
and predicting forthcoming intervals. Capitalizing on the
Transformer architecture, the model proficiently discerns
intricate trends and patterns within temporal data. The Trans-
former model ingests sequences, processing them through
multi-head self-attention mechanisms and feed-forward neu-
ral network layers. This enables the PatchTST model to
unveil crucial temporal dependencies and patterns in time
series data. Chunk Processing: The PatchTST model parti-
tions time series data into multiple segments (patches), each
processed autonomously. This chunk-based approach aids in
managing lengthy time series data, elevating both the effi-
ciency and accuracy of the model. Data Synchronization:
Aligned with other models in the Darts library, the PatchTST
model underscores the significance of data synchronization,
ensuring accurate data usage during prediction. This bolsters
the stability and precision of the model. By harnessing the
PatchTST model grounded in the Transformer architecture,
one can exploit sophisticated sequence modeling techniques
to navigate time series data and attain more precise pre-
dictions. This model amalgamates Transformer’s strengths
with the requisites of time series forecasting, furnishing a
robust instrument for addressing intricate temporal data. The
comprehensive design of PatchTST is delineated in Figure 3.

D. iTransformer
The inverted Transformer, commonly known as iTransformer,
presents a variation of the Transformer framework tailored
to counter the challenge of autoregressive models generating
sequences in reverse order [56]. This model is specifically
crafted to manage tasks necessitating the generation of out-
put sequences in the opposite order of the input sequence.
Salient features and functionalities of the inverted Trans-
former (iTransformer) encompass:

(1) Reverse Sequence Generation: iTransformer is opti-
mized for producing output sequences in reverse sequence
compared to the input. This capability proves particularly
valuable for tasks demanding output in a reversed sequence
pattern.

(2) Modified Attention Mechanism: iTransformer inte-
grates adjustments into the standard attention mechanism,
ensuring the model adeptly captures dependencies and pat-
terns during the reverse sequence generation process.

(3) Contextual Encoding: Employing contextual encoding
techniques, the model encodes input sequences to facilitate
generating output sequences in reverse order while preserving
coherence and accuracy.

(4) Bidirectional Processing: The iTransformer architec-
ture facilitates bidirectional processing, enabling efficient
utilization of information from both past and future contexts
to generate the desired output sequence.
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FIGURE 3. Visual depiction of PatchTST’s holistic design. (a) Multivariate time series data is segregated into separate channels, all employing a
shared Transformer framework, while functioning autonomously during processing. (b) Within each channel, individual univariate series
undergo instance normalization and are divided into patches, which subsequently act as input tokens for the transformer.

By harnessing the inverted Transformer (iTransformer)
architecture, researchers and practitioners can effectively
tackle tasks requiring the generation of output sequences
in reverse order, offering a specialized solution for specific
sequence generation needs. The architecture of iTransformer,
depicted in Figure 4, adopts the encoder-only structure
of Transformer, encompassing embedding, projection, and
Transformer blocks.

Many forecasting models built on Transformer architec-
tures typically integrate multiple variables as temporal tokens
and employ a generative approach for forecasting tasks.
However, we’ve observed that focusing solely on numerical
aspects may not optimize learning attention maps effec-
tively. This is evident in the growing adoption of Patching
techniques, which have expanded the scope of this domain.
Furthermore, the success of linear forecasting models raises
questions about the necessity of employing a complex
encoder-decoder Transformer for token generation.

In contrast, our proposed encoder-only iTransformer
emphasizes representation learning and adaptive correla-
tion within multivariate time series data. Each time series,
influenced by intricate underlying processes, undergoes
initial tokenization to capture its unique characteristics.
It then proceeds through self-attention mechanisms to facili-
tate inter-variable interactions and individual processing via
feed-forward networks to establish series representations.
Notably, the task of generating predicted series primarily
relies on linear layers, a strategy supported by previous
research, with a comprehensive analysis provided in the sub-
sequent section.

E. FORECASTING WATER DEMANDS USING DEEP
LEARNING MODELS
Analyzing consumption trends serves the primary goal of
forecasting future electricity demand based on timestamps.
This process involves determining various parameters, such
as input and output sequence lengths, followed by construct-
ing deep learning models to predict water demand using
socio-economic data. Commonly employed machine models
like LSTM excel in predicting time series due to their ability
to capture intricate relationships. In this study, four deep
learning models—iTransformer, Transformer, PatchTST, and
LSTM—are established to forecast future electricity con-
sumption.

To construct these models, the water demand dataset is
divided into training, validation, and testing sets. During the
training phase, all training patterns are fed into the regression
models to establish an effectivemapping from input to output.
Validation data is then utilized to impartially evaluate model
fit on the training data while fine-tuning hyperparameters.
Subsequently, the performance of the trained models is eval-
uated on the testing set.

Several considerations are crucial when constructing pre-
diction models:

Hyperparameters Selection: Parameters like the number of
input neurons, output neurons, batch size, etc., must be accu-
rately determined for effective prediction models. Sequence
length parameters are determined based on input and out-
put data, while other parameters like number of epochs and
batch size are chosen through iterative training and validation
runs.
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FIGURE 4. Visual representation of the comprehensive design of iTransformer, exhibiting a modular structure akin to the Transformer encoder.
(a) Different raw data series are encoded independently into tokens. (b) Self-attention mechanisms amplify interpretability, revealing complex
multivariate correlations within the embedded tokens. (c) A common feed-forward network extracts series representations for each token. (d) Layer
normalization is applied to mitigate discrepancies among the variates.

Optimization Technique and Loss Function: In this study,
the Root Mean Squared Error (RMSE) loss function is
utilized to assess network performance on training and val-
idation datasets.

Threemodel performancemetrics are employed to evaluate
the accuracy of the machine learning models:

RMSE: It quantifies the standard deviation of differences
between predicted and actual values.

RMSE =

√
1
n

∑n

j=1
(yj − oj)2 (1)

Mean Absolute Error (MAE): It calculates the average
absolute difference between the observed and forecasted val-
ues in a dataset.

MAE =
1
n

∑n

j=1
| oj − yj | (2)

Mean Absolute Percentage Error (MAPE): It calculates
the average absolute difference between the observed and
forecasted values in a dataset.

MAPE =
1
n

∑n

j=1
|
oj − yj
oj

| (3)

where o is observed value and y is forecasted value, j indicates
time step and n indicates the total time steps, σy and σo are
the variance of y and o.

III. RESULTS
In this segment, deep learning models are utilized to pre-
dict the annual water demand in China and four key
regions: Beijing, Jiangsu, Zhejiang, and Guangdong. Ini-
tially, the annual water demand data for both China and the
aforementioned regions is gathered from the China Statisti-
cal Yearbook, accessible at http://www.stats.gov.cn/english/,
as detailed in Table 1 and Table 2. This data is divided into

two sets, with information spanning from 1951 to 2021 uti-
lized for constructing prediction models, while the remaining
samples are reserved for evaluating the prediction accuracies
of these models. Drawing inspiration from existing literature,
a structural diagram depicting the forecast of annual water
demand in China is presented in Figure 5.

FIGURE 5. Illustration of the forecast of water demand structure.

A. WATER DEMAND OF CHINA
In this section, China’s water demand is analyzed using four
machine learning models. Table 3 presents the performance
of these models in forecasting China’s water demand, while
Figure 6 visually illustrates the trajectory of estimated and
observed water demand in China. Initially, the four deep
learning models (iTransformer, PatchTST, Transformer, and
LSTM) were trained and tested using China’s water demand
data from 2000 to 2023, considering various forecast lengths.
Subsequently, the best-performing model was selected based
on the minimum Mean Absolute Percentage Error (MAPE).
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TABLE 1. Population, GDP (ten thousand Yuan), cropland area (ha) and
water demand (100 million tons) of China during 2000-2023.

From Table 3, it is evident that iTransformer outperformed
PatchTST, Transformer, and LSTM, exhibiting the lowest
RMSE (92.72), MAE (68.65), and MAPE (0.01) in water
demand forecasting with 1 year forecast length. Moreover,
iTransformer also demonstrated superior performance in
long-term forecasting with forecast lengths ranging from 2 to
7 years compared to PatchTST, Transformer, and LSTM.
Finally, the best model (iTransformer) was employed to fore-
cast China’s water demand for the period 2022-2030 (Table 4
and Figure 6). The water demand in China is projected to
experience a slight increase and then stabilize at a steady
level.

B. WATER DEMAND OF BEIJING CITY
In this section, the pre-trained models are utilized to forecast
Beijing’s water demand. The performance of these models
in predicting Beijing’s water demand is outlined in Table 5,
while the trajectory of estimated and observed water demand
for Beijing is visually represented in Table 6 and Figure 7.

TABLE 2. Water demand of Beijing, Jiangsu, Zhejiang and Guangdong
(100 million tons) during 2000-2023.

The water demand in Beijing is expected to increase over the
years.

C. WATER DEMAND OF JIANGSU
In this section, the pre-trained models are utilized to fore-
cast the water demand in Jiangsu. The performance of these
models in predicting Jiangsu’s water demand is outlined
in Table 7, while the trajectory of estimated and observed
water demand for Jiangsu is visually depicted in Table 8
and Figure 8. The water demand in Jiangsu is anticipated
to fluctuate over the years without experiencing significant
increases or decreases.

D. WATER DEMAND OF ZHEJIANG
In this section, Zhejiang’s water demand is forecasted using
pre-trained models. The performance of these models in pre-
dicting Zhejiang’s water demand is outlined in Table 9, while
the trajectory of estimated and observed water demand for
Zhejiang is visually depicted in Table 10 and Figure 9. The
water demand in Zhejiang is projected to experience a slight
increase over the years and then stabilize at a steady level.

E. WATER DEMAND OF GUANGDONG
In this section, the pre-trained models are employed to
forecast Guangdong’s water demand. The performance of
these models in predicting Guangdong’s water demand is
detailed in Table 11, while the trajectory of estimated and
observed water demand for Guangdong is visually illustrated
in Table 12 and Figure 10. The water demand in Guangdong
is expected to decrease over the years.

The proposed approach operates in the following
environment:
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TABLE 3. The metrics of models in estimating water demand of China.

Hardware Configuration: 64 GB RAM, Xeon Processor
with 20 cores, 1 TB Hard Disk.

Software Configuration: Operating System –Windows 10.

F. ABLATION EXPERIMENT
To assess the effectiveness of iTransformer compo-
nents, we present detailed ablation studies involving both
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FIGURE 6. Historical and forecasted water demand (100 million tons) of
China during 2000-2023 and 2023-2030 with iTransformer.

TABLE 4. The forecasted water demand (100 million tons) of China
during 2024-2030.

TABLE 5. The metrics of models in forecasting water demand of Beijing.

TABLE 6. The forecasted water demand (100 million tons) of Beijing
during 2024-2030.

component replacement (Replace) and component removal
(w/o) experiments. The findings are summarized in Table 13.
The iTransformer, which employs attention mechanisms on
the variate dimension and feed-forward networks on the
temporal dimension, consistently delivers the best perfor-
mance. In contrast, the vanilla Transformer (shown in the

FIGURE 7. Historical and forecasted water demand (100 million tons) of
Beijing during 2000-2023 and 2024-2030 with iTransformer.

TABLE 7. The metrics of models in estimating water demand of Jiangsu.

TABLE 8. The forecasted water demand (100 million tons) of Jiangsu
during 2024-2030.

third row) demonstrates the poorest performance among the
designs, highlighting potential drawbacks of the traditional
architecture.

G. EFFICIENCY ANALYSIS
In this section, we evaluate the efficiency of iTransformer
in comparison to other models (PatchTST, Transformer,
LSTM) using the China dataset. To ensure a fair comparison,
we examine the average training time per epoch for each
model with a batch size of 32. As illustrated in Table 14,
iTransformer exhibits a relatively least training time. Unlike
othermodels, iTransformer can enjoy a comparable speed and
memory footprint with linear models.
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FIGURE 8. Historical and forecasted water demand (100 million tons) of
Jiangsu during 2000-2023 and 2024-2030 with iTransformer.

TABLE 9. The metrics of models in forecasting water demand of Zhejiang.

TABLE 10. The forecasted water demand (100 million tons) of Zhejiang
during 2022-2030.

IV. DISCUSSION
A. WATER DEMAND OF CHINA
It is forecasted that the water demand in China will exhibit
a slight rise but eventually stabilize at a consistent level.
Over an extended period, extensive irrigation projects and
the expansion of water-intensive industries have led to a
significant imbalance between water demand and available
surface water resources in the China. This has resulted in
prolonged overexploitation of groundwater for agricultural,
industrial and household water demand.

B. WATER DEMAND OF BEIJING
The water demand in Beijing is expected to increase over the
years. As the capital of China, Beijing assumes increasingly

FIGURE 9. Historical and forecasted water demand (100 million tons) of
Zhejiang during 2000-2023 and 2024-2030 with iTransformer.

TABLE 11. The metrics of models in estimating water demand of
Guangdong.

TABLE 12. The forecasted water demand (100 million tons) of
Guangdong during 2024-2030.

significant roles and attracts a growing influx of people and
investment. Consequently, this trend is expected to lead to a
rise in water demand for the city.

C. WATER DEMAND OF JIANGSU
The water demand in Jiangsu is anticipated to fluctuate
over the years without experiencing significant increases or
decreases. The anticipated fluctuations in water demand in
Jiangsu without significant increases or decreases can be
attributed to various factors. These may include stable pop-
ulation growth, consistent economic activity, and efficient
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FIGURE 10. Historical and forecasted water demand (100 million tons) of
Guangdong during 2000-2023 and 2022-2030 with iTransformer.

TABLE 13. Ablations on iTransformer. We replace different components
on the respective dimension to learn multivariate correlations (Variate)
and series representations (Temporal), in addition to component removal.
The average results of all predicted lengths are listed here.

TABLE 14. Training time for each epoch of different models.

water management practices that help optimize water usage
within the region.

D. WATER DEMAND OF ZHEJIANG
The water demand in Zhejiang is projected to experience a
slight increase over the years and then stabilize at a steady
level. In the case of Zhejiang, the projection of a slight
increase inwater demand over the years followed by stabiliza-
tion can be influenced by factors such as population growth,
economic development, and infrastructure expansion. As the
population and economy grow, there is likely to be a corre-
sponding increase in water demand. However, with effective
water management strategies and resource allocation, the
water demand can eventually stabilize at a steady level.

E. WATER DEMAND OF GUANGDONG
The water demand in Guangdong is expected to decrease
over the years. The expected decrease in water demand in
Guangdong over the years might be attributed to several

factors. These could include advancements in water-saving
technologies, implementation of conservation measures, and
improvements in water management practices. Additionally,
shifts in industrial activities, changes in economic structure,
and potential population trends can also contribute to the
decrease in water demand in the region.

Some of our results are consistent with previous studies.
Xiangmei et al. [57] proposed a grey multivariate convolution
model with adjacent accumulation (AGMC(1,N)) to forecast
the annual water consumption across 31 regions (includ-
ing provinces, municipalities, and autonomous regions) in
China, considering varying growth rates of regional GDP and
population. Their findings demonstrate that the AGMC(1,N)
model achieves superior prediction accuracy. Moreover, over
50% of the regions exhibit a decline in water consump-
tion attributed to the growth of regional GDP. Similarly, the
influence of population leads to a decrease in water con-
sumption in over 50% of the areas. The trend in Guangdong
are both decreasing in our results and their results. However,
the trend in Beijing is increase first and decrease [57], the
trend in Jiangsu is increasing and the trend in Zhejiang is
decreasing are different from ours. Their results are based on
data from 2012 to 2018, which is a little shorter than ours
(2000-2023) and their method is statistics model, which may
not fully capture the non-linear relationships among water
demand and social-economic data.

The importance of accurately predicting water demand
has been somewhat overlooked compared to other areas,
despite its crucial significance. Recent advancements have
shown notable progress in developing precise models for
forecasting water demand. Machine Learning (ML) methods
have emerged as effective tools for addressing non-linear
challenges, gaining prominence in this domain.

In this study, we employed a deep learning model called
iTransformer for forecasting water demand. This methodol-
ogy builds upon the Transformer network technique, allowing
for the estimation of water demand across multiple time
series. Through comparative performance analysis against
established models like PatchTST, Transformer, and LSTM,
our results indicate that the iTransformer framework sur-
passes traditional methods like LSTM, demonstrating its
efficacy in accurately predicting electricity consumption.

Our proposed approach offers several advantages over
existing methods in demand forecasting. The framework
adeptly handles non-linear complexities and captures both
short-term and long-term dependencies within water demand
time series data. Simulation results showcaseminimal predic-
tion errors with the iTransformer framework, ensuring precise
consumption estimates for various forecasting lengths. More-
over, the developed framework can be readily applied to
estimate demand in different geographic locations, relying
solely on historical data.

Future research directions could explore incorporating
nonlinear exogenous features such as climate conditions and
economic variables to analyze trends in water demand pat-
terns. Additionally, optimization techniques could be devised
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to further enhance the prediction accuracy of learningmodels,
thereby advancing the field of water demand forecasting.

Our results help in determining future water needs, allow-
ing for better planning in the allocation of water resources
among various sectors (e.g., agriculture, industry, domestic
use). Insights from forecasts guide decisions on investing
in infrastructure, such as reservoirs, pipelines, and treatment
plants, to ensure they meet future demands. Accurate fore-
casts inform policy-makers about future water scarcity or
surpluses, influencing regulations on water usage, conser-
vation practices, and sustainable development. Forecasting
assists in estimating future water costs and planning bud-
get allocations, which is vital for maintaining economic
stability. By predicting future demand, businesses and gov-
ernments can make informed decisions about investing in
water-efficient technologies and practices. Water demand
forecast results can also be used to raise awareness about
water scarcity issues and encourage community involvement
in water conservation efforts.

V. CONCLUSION
This paper introduces a deep learning-based model for
forecasting water consumption, representing a significant
contribution to the application of deep learning in water
demand forecasting. The primary innovation lies in devel-
oping a medium-term forecasting model trained on historic
social-economic data, enabling accurate predictions for water
demand. A transformer network architecture based iTrans-
former model is proposed to forecast total water demand at
country and province level over the medium term. Further-
more, iTransformer model was compared with Transformer,
PatchTST and LSTM models at different forecasting length.
Furthermore, a grid search is conducted to optimize hyper-
parameters such as the number of layers, neurons per layer,
and learning rate. Once optimal model and parameters are
identified, the best-performing model is applied to historical
water demand data from 2000 to 2023 at a yearly frequency
to generate forecasts for the subsequent years. Results, based
on historical water demand data and social-economic data,
demonstrate a lowest RMSE (92.72/ 1.39/ 22.71/ 21.69/
9.16), MAE (68.65/ 1.11/ 17.42/ 13.38/ 5.85), and MAPE
(0.01/0.28/0.03/0.08/0.01). Comparisons with Transformer,
PatchTST and LSTMmodels reveal that the proposed iTrans-
former network achieves the lowest errors in forecasting
water demand of China, Beijing, Jiangsu, Zhejiang and
Guangdong. The paper recommends applying this forecasting
model when historical water demand and social-economic
data (population and GDP) are available.

Essentially, the demand for water resources arises from
human livelihood necessities and economic progress, making
the total socio-economic water demand of China intricately
linked to population size and economic activity. Hence, it is
vital to strike a balance between socio-economic advance-
ment and water resource utilization, avoiding both stifling
population and economic growth solely for water conserva-
tion purposes and recklessly pursuing economic expansion

at the expense of water resource limitations. Rational water
conservation involves enhancing water resource efficiency,
optimizing resource allocation, and fostering sustainable
social and economic growth.

This research represents an innovative approach to water
demand forecasting through the integration of deep learning
method, offering significant value for water management
authorities in crafting long-term water demand manage-
ment strategies and mitigating water conflicts. However,
a limitation persists. The challenge lies in quantifying
future water allocations across various trajectories, leading
to the utilization of anticipated water allocations based on
current trends for water demand projections. Nonetheless,
a detailed analysis is conducted for each trajectory to bol-
ster accuracy. Alternative methodologies can be explored
to acquire more precise parameters, and further investiga-
tion can be conducted to enhance water demand prediction
methodologies.

In the future, advanced machine learning techniques like
deep learning and ensemble methods are needed to improve
the accuracy of demand forecasting. Adaptive algorithms that
can also adjust to changes in water consumption patterns
and other dynamic factors. Real-time data from smart meters
and IoT devices can be used to enhance forecasting models.
Diverse data sources such as weather forecasts, land use
changes, and socio-economic factors can be used to create
more robust models.

Our models can be used to balance water supply and
demand, optimizing reservoir management and distribution
systems. Infrastructure investments and upgrades can be
based on predicted water demand trends. Early warning sys-
tems for droughts and water shortages can also be based on
demand forecasts.
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