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ABSTRACT The bilateral filter exhibits remarkable efficacy in noise suppression and edge preservation.
This article proposes a hardware architecture based on field-programmable gate array (FPGA) for a modified
bilateral filter. To enhance the efficacy of the bilateral filter, the Gaussian-adaptive Bilateral Filter (GABF)
is employed as a modified filtering method. Approximating the filter weights using look-up tables (LUTSs)
results in reduced storage requirements and eliminates the need for complex exponential weight calculations.
Moreover, the GABF is markedly accelerated by the highly parallel functional modules and LUTS. In addition
to the aforementioned features, the GABF is implemented as a parallel architecture, which results in a
reduction in hardware resource utilization compared to previous works. The results of the image quality
analysis demonstrate that this article can achieve superior image quality compared with state-of-the-art
works. The implementation results indicate that the proposed architecture is capable of performing real-time
denoising at a frame rate of 95.65 fps for a 640 x 480 video with a power dissipation of 93.22 mW.

INDEX TERMS Bilateral filter, edge-preserving, field-programmable gate array (FPGA), image denoising.

I. INTRODUCTION

Digital images can be corrupted during the process of acqui-
sition, transmission and reception by various noises [1], [2].
Irrespective of the complexity of the realistic noise, the noise
corruption process can be defined as the sum of a noise-free
image I and the additive white Gaussian noise (AWGN) N:
Lise = I +N, N € Q(0,02). Consequently, image
denoising represents an essential constituent of the image
processing system, given that image noise has the potential
to impair the efficacy of other algorithms employed within
the system. Among the previous references, it was demon-
strated that the main challenges for image denoising were
edge preservation, image restoration, computaional intensity
and the blurring effect problem [3]. Compared with other
denoising algorithms, the bilateral filter has a great advan-
tage in image denoising owing to its ability to remove noise
without causing structural information loss [4]. The bilateral
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filter comprises two parts. The nonlinear part, also known as
the photometric filter or the range filter, mainly contributes
to the edge-preserving property. The linear part, also called
the spatial filter or the geometric filter, aims at averaging
the pixels which are selected by the range filter. By virtue
of the aforementioned properties, the bilateral filter has been
applied in various areas, such as medical imagery [5], detail
enhancement [6], depth reconstruction [7], tone mapping [8],
image fusion [9], etc. Nonetheless, due to the nonlinear nature
of the bilateral filter, the filter weights cannot be readily
pre-calculated or stored in look-up tables (LUTSs) in the
manner of linear filters. This also leads to an increase in
computational complexity and latency.

In order to enhance the performance and efficacy of
the bilateral filter, a number of researchers have proposed
modifications to the existing bilateral filtering algorithms.
In [10], Gavaskar and Chaudhury proposed a fast adaptive
bilateral filter where the size of the range kernel varied at
different pixels, while the algorithm complexity didn’t scale
with the kernel size. To enhance the performance of color
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images, Mozerov et al. put forth a rapid bilateral filtering
algorithm founded upon color sparseness and local statis-
tics. This approach offers a swift and precise bilateral filter
approximation with promising applications in real-time video
denoising [11]. In [12], Caraffa et al. developed a guided
bilateral filter based on graduated nonconvexity, which can
reduce the non-Gaussian noise in the image.

Recently, in order to enhance the filtering performance,
Chen et al. proposed a Gaussian-adaptive bilateral filter
(GABF) where a low-pass guidance was added as the
input of the range kernel [13]. Building upon the origi-
nal bilateral filter, Nogami et al. proposed the decomposed
multilateral filtering (DMF) algorithm, which decomposes
the filter into a set of constant-time filters. This approach
markedly reduces computational time and enhances per-
formance efficiency [14]. In [15], Yang et al. put forth
a bilateral-regularized optimization model that exhibits an
enhanced capacity for edge preservation. The experimental
results demonstrate the versatility of the proposed filter in
a range of image processing applications. In light of the
algorithmic complexity and filtering performance, the GABF
proposed in [13] is selected for implementation on the FPGA
platform with the objective of enhancing the performance of
noise suppression and edge-preserving.

Conventionally, bilateral filters were implemented on cen-
tral processing units (CPUs) or graphics processing units
(GPUs). However, their low throughput or energy efficiency
has resulted in a bottleneck for their applications [16].
Recently, bilateral filters have been implemented on hardware
platforms such as ASIC and FPGA to improve speed and
efficiency. In comparison to alternative platforms, FPGA can
provide higher energy efficiency, higher performance and
better reconfigurability, which makes it more suitable for the
implementation of bilateral filters [17].

Prior to the implementation of an image denoising
algorithm on a hardware platform, modifications must be
made to the existing software-based algorithm. Similarly, the
computational complexity of these algorithms is consider-
able, resulting in high-level power dissipation and substantial
hardware resource consumption. As the software-based algo-
rithms presented in [10], [11], [12], [13], [14], and [15] are
not suitable for real-time applications on hardware systems
such as FPGAs, the necessity arises for the implementation
of dedicated hardware algorithms, as exemplified by [18]
and [19].

Given the prevalence of the bilateral filter, a great deal
of effort has been made into the hardware acceleration for
practical use. Generally speaking, the hardware acceleration
methods of the bilateral filter can be summarized into two
categories. One category is aimed at simplifying the calcu-
lating process, such as modifying the weights calculation or
the parallelization of the algorithm. The other one focuses
on the pre-calculation of the weights and replacing the tra-
ditional computing process with the utilization of look-up
tables (LUTs).
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In terms of the first method, the approximation and par-
allelization of the filter kernels can significantly reduce the
calculation complexity. Chaudhury and Dabhade [18] pro-
posed a fast constant-time bilateral filter algorithm using
the Gaussian-polynomial to approximate the range kernel
and implemented the hardware design of this algorithm on
FPGA [20], the experimental results showed that larger ker-
nels can be realized without increasing resource utilization.
Gabiger-Rose et al. [19] implemented separate pipelines on
FPGA by sorting the pixels into equal groups and increasing
the internal clock frequency according to the pixel groups.
The hardware architecture demonstrated a constant delay
regardless of the filter kernel size, eliminating the necessity
for an additional data buffer. In [21], Wen et al. proposed a
high-throughput hardware architecture for the bilateral filter,
which reduces computational complexity by approximation
calculations and enhances throughput for high-resolution
image processing through a data prefetch strategy. In [22],
Fanny Spagnolo et al. put forth a novel approximation strat-
egy with the objective of enhancing energy efficiency while
preserving real-time filtering performance and elaboration
accuracy. The experimental results demonstrate that the 5 x
5 filter based on this method consumes 0.92 nJ per pixel,
representing a 2.8-fold improvement in energy efficiency
compared to other similar works.

As for the second method, storing the filter weights in
LUTs can realize the pre-calculation process on hardware and
greatly reduce calculation complexity. Nevertheless, storage
and accuracy can not be optimized at the same time because
less storage using means low accuracy. Spagnolo et al. [23]
used piecewise functions to approximate the coefficients of
both kernels to 7-bit unsigned integers and stored them into
size-reduced LUTs, which achieved 926.8 fps for the 5 x
5 kernel size with the maximum frequency of 244 MHz.
In [24], Yao et al. designed a low-cost hardware architecture
of the bilateral filter with the LUT-based divider and paral-
lelized architecture, which achieved 30fps processing speed
for eight-million-pixel video.

The GABF algorithm, as presented in reference [13], was
originally developed on the MATLAB platform. However,
due to the high computational complexity of this algorithm,
it is not suitable for real-time image denoising. This article
presents the implementation of the GABF algorithm on the
FPGA platform, with the objective of accelerating the filter-
ing process. The main contribution of this article is listed as
follows.

(1) A novel kernel approximation method is proposed,
which can significantly reduce the number of the range filter
weights and the spatial filter weights of the bilateral filter by
the piecewise approximation method.

(2) In order to improve the real-time processing speed and
reduce the hardware resource consumption, a novel FPGA
design architecture is proposed. In this architecture, separate
pipelines are designed by sorting the pixels into equal groups.
Besides, the internal clock frequency is quadrupled according
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to the pixel groups. Furthermore, the architecture doesn’t
need any external data buffer.

(3) The pixels and weights sum calculation process is
greatly accelerated by replacing the traditional calcula-
tion process with the LUTs which store the pre-calculated
weights.

Due to the aforementioned contribution, the computa-
tional complexity and the hardware resources consumption
of the entire bilateral filter are significantly reduced by
the LUT-based parallelized weight calculation and separated
pipeline architecture. The hardware implementation result
shows that the proposed architecture can reach real-time
95.65 fps processing speed for 640 x 480 video on a low-
cost FPGA. Furthermore, the results of the performance
analysis demonstrate that the FPGA-based GABF exhibits
a near-identical level of image quality in comparison to the
MATLAB-based GABF. Additionally, it has been observed
that the FPGA-based GABF even outperforms several state-
of-the-art methods described in [19], [23], and [25].

Il. GABF WITH PIECEWISE APPROXIMATION METHOD
FOR FILTER WEIGHTS

A. BILATERAL FILTER

Bilateral filter is a highly efficient method for denoising
digital images while preserving the edges and detail informa-
tion based on geometric distances and intensity differences
between adjacent pixels. Bilateral filter consists of two com-
ponents: the geometric kernel and the photometric kernel.
The geometric kernel, which denoises images by averaging
the adjacent pixels in the spatial domain, is on the basis of the
traditional Gaussian function:

SD(m, n, i, j)?
202

Gs(m, n, i, j) = exp(— ) ey

where (m, n) is the coordinate of the original pixel within
the image to be processed, (i,j) is the coordinate of the
pixels adjacent to the original pixel, SD (m,n,i,j) =

\/ (m—1i%+@n— j)2 represents the spatial distance between
the pixel (i.j) and the pixel (m, n), oy stands for the standard
deviation of the Gaussian function.

The photometric kernel represents the nonlinear compo-
nent of the bilateral filter and plays an essential part in
preserving the edges in the image. The photometric weights
are calculated on the basis of the intensity difference between
the original pixel and its adjacent pixel in the filter window,
which indicates the extent of similarity between the two
pixels:

Al(m, n, i, j)?

G,(m,n,i,j) = exp(— 792
E

) @

where I (m, n, i,j) = |f (m, n) — f(i, j)| represents the abso-
lute intensity difference between the original pixel (m, n) and
its adjacent pixel (i, j), o, stands for the standard deviation of
the Gaussian function.
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FIGURE 1. The entire architecture of the gaussian-adaptive bilateral filter.
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The weights of the entire bilateral filter are given by the
multiplication of both kernels:

th(lv.]) = GS(mv n, la.]) X Gr(ma n, lv]) (3)

Finally, the output of the bilateral filter needs to be normal-
ized otherwise the range of the output image would exceed the
specified limits. The normalized output of the entire filter is
given by (4):

e @ DWir (i, j)
Om, n) = 200 CIWy )
2 ijee Wer(Q,))
where O(m, n) represents the output pixel of the bilateral
filter; 2 is the filter window centred at the original pixel
(m, n).

B. GAUSSIAN-ADAPTIVE BILATERAL FILTER

To improve the filtering performance, the GABF in [13] is
adopted in this article. The main principle of the GABF is
briefed as follows. Inside the bilateral filter, the photometric
filter is designed to preserve the edges and the contours in the
images. However, the photometric filter is considerably vul-
nerable to additive noise because the edge-preserving effect
significantly degrades when the noise level of the image
is relatively high. Therefore, a low-pass filter needs to be
deployed in order to provide a guidance for the photometric
filter, as illustrated in Fig. 1.

For a given image f, in order to achieve the adaptive
bilateral filter, the traditional Gaussian filter is applied to
generate a low-pass guidance for the photometric filter.
The Gaussian filtering process is achieved by averaging
the adjacent pixels with weights based on the distances
from the original pixel. The entire process can be described
as:

2ipea WEANFG, )

fE(m, n) = — 5)
Z,-,,-GQ W, j)
where the filter kernel is defined as:
. SD(m, n, i, j)
WEG. ) = exp(———2 5= ©)
O—S

After the low-pass filtering, the output of the Gaus-
sian filter can be used as the input of the aforemen-
tioned bilateral filter. Thus, the GABF kernel can be
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FIGURE 2. (a) The approximated 6-bit geometric kernel; (b) Pirate image
filtered by the 6-bit kernel; (c) Pirate image filtered by the standard 8-bit
kernel.
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FIGURE 3. (a) The comparison of the approximated weights and the
precise weights, o = 40; (b) The piecewise functions of the photometric
weights approximation method.

described as:
W (i, j)

SD(m, n, i, j)* I (m, ) — f3G I

202 202
where the low-pass guidance is obtained by (5). The com-
bination of the geometric filter on f and the photometric
filter on f# can perform strong preservation of the edges and
contours in the images, which significantly reduce the impact
of various noise on the photometric filter of the bilateral filter.
Therefore, the filtering output O(m, n) of the GABF can be
described as:

= exp(— )exp(— ) (D

> ijeal GHWER G, j)
O(m, n) = Y
ijen W, j)

The complete process of the GABF is illustrated in Fig. 1.

®)

C. THE PIECEWISE APPROXIMATION METHOD

In order to save hardware resources, the filter weights arep-
recalculated and stored in the LUTs. However, storing all
the weights in the LUTs also consumes lots of hardware
resources like registers. Therefore, in order to reduce the
number of the filter weights without weakening the denoising
effect, a piecewise approximation method for filter kernels is
proposed. In this article, the standard deviation o of the geo-
metric kernel is set to 1.0. Considering the trade-off between
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smoothing effect and noise suppression, a filter mask of 5 x
5 is selected.

In the approximation of geometric kernel, to limit the
bit-width of weights, all the geometric weights are approx-
imated to 6-bit unsigned integers. As shown in Fig. 2(a), the
geometric weights are approximated to integer values ranging
from 1 to 63. Additionally, to test the denoising effect of
the approximated kernel, the Pirate image with o, = 18
Gaussian white noise is filtered in MATLAB by the proposed
kernel and the standard 8-bit kernel separately. The results of
both kernels are presented in Fig. 2(b) and Fig. 2(c), where
very little difference between these two kernels can be found
in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [26].

For the photometric kernel, the weights depend on the
gray value difference which ranges from 0 to 255 under the
situation of 8-bit pixels. Likewise, the photometric weights
are scaled to 6-bit unsigned integers, which limits the highest
weight value to 63. Besides, the parameter o, is set to 3oy,
according to the 3o principle.

In Fig. 3(a), the precise weights curve shows that the
gradient of the curve varies at different gray value differences.
Therefore, in order to limit the number of the photometric
weights, a piecewise approximation method is proposed. The
main idea of this approach is deleting the weights whose cor-
responding gradients are close to zero. As shown in Fig. 3(b),
the proposed piecewise functions are adopted to approximate
the photometric weights. Furthermore, in Fig. 3(a), the yellow
curve represents the approximated values of the photometric
weights when o, is set to 40, which shows little difference
from the precise curve.

IlIl. THE NOVEL HARDWARE ARCHITECTURE

The entire hardware architecture of the FPGA-based GABF is
illustrated in Fig. 4. The design concept of the proposed archi-
tecture is subdividing the filter into three functional modules,
which are a register matrix module with line buffers, a pixels
and weights sum calculation module and a normalization
module. The register matrix module transforms the input pix-
elsinto 5 x 5 filter mask and separate the pixels into 6 groups,
and each of them is connected to the calculation module
respectively. Eventually, the calculation result is normalized
to ensure the output is within the specified limits.

The module-based design concept can significantly reduce
computing complexity and simplify the validation pro-
cess [27]. Besides, by virtue of the design concept, the filter
can be implemented as a highly parallel structure which can
greatly reduce the hardware resources utilization.

A. REGISTER MATRIX MODULE

Due to the nonlinearity of the photometric filter, the photo-
metric weights need to be calculated respectively for every
pixel in the filter mask. As mentioned in Section II-C, the
size of the filter mask is set to 5 x 5. In the current
situation, the filtering of one pixel demands the calcula-
tion of 24 photometric weights, which results in high-level
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FIGURE 4. The entire hardware architecture of the proposed FPGA-based GABF.
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FIGURE 5. (a) Hardware architecture of the register matrix module. To improve readability, only the first and the last pixel group are

presented. (b) The detailed pixels grouping method.

computing complexity. In addition, since the filter mask is
shifted by one pixel at each clock along the pixel rows,
extra storage for the adjacent pixels is required during the
filtering process. In order to save hardware resources and
reduce additional latency, four 8-bit FIFOs are implemented
as data buffers so that five pixel rows can be stored.

The entire module is described in the left dashed box of
Fig. 4. The bold black box represents the 5 x 5 filter mask.
As the input pixel stream flows into the module by one pixel
at a clock, the storage of block FIFOs and registers is shifted
by one pixel, which generates a dynamic filter mask at each
clock.

The parallel weights calculation and the normalization
process at the final stage demand a great deal of hardware
resources, which makes it difficult to be completed within just
one pixel clock. In order to accelerate the filtering process,
a design concept from [19] based on clock domain changing
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and pixels grouping is adopted and modified, which is illus-
trated in Fig. 5(a). To transfer the entire filter mask into next
module simultaneously, all 25 pixels need to processed in one
pixel clock in order to keep up with the input pixel stream.
Furthermore, considering the symmetry of the geometric fil-
ter, all the pixels in the filter mask except the center pixel are
sorted into six groups based on their Euclidean distances from
the center pixel, while the center pixel doesn’t belong to any
group and is straightly transfered to the next module without
any processing. The entire grouping method is depicted in
Fig. 5(b). In view of the number of groups, the pixel clock
is quadrupled so that all the pixels can be extracted from the
module in just one pixel clock. As shown in Fig. 5, six 4-to-1
multiplexers are implemented to extract pixels from each
group at every quadruple pixel clock. The counter in Fig. 5,
which works under the quadruple pixel clock, produces a
2-bit signal to control the output of each pixel group. Besides,
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the enable signal of the counter is triggered when the entire
filter mask is full.

Since all the pixel groups are processed and pipelined to
the next module simultaneously, the method of pixel group-
ing and clock domain change can significantly improve the
synchronization and parallelism of the GABF.

TABLE 1. The average PSNR and SSIM of the test images.

0./, Noisy Image MATLAB Results ~ ModelSim Results

PSNR (dB)/SSIM  PSNR (dB)/SSIM  PSNR (dB) / SSIM
5/15 34.195/0.839 35.683/0.947 35.121/0.920
10/30 28.280/0.610 33.232/0.901 32.851/0.873
15/45 24.680/0.444 31.365/0.824 31.095/0.809
20/60 22.329/0.344 30.105/0.771 29.817/0.749
25/75 20.341/0.270 29.032/0.723 28.555/0.683
30/90 18.828/0.221 27.832/0.691 27.448/0.658

Test images: Cameraman, House, Pirate, Peppers, Boat, Lake[28][29].

TABLE 2. The average PSNR and SSIM comparison.

o [19] [23] [25] Proposed
"/“r  PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR /SSIM
10/30 31.00/0.85 32.74/0.86 31.786/0.831 32.851/0.873
20/60 27.00/0.71 N, 28.295/0.724  29.817/0.749
30/90 24.70/0.59 26.76/0.65 26.497/0.643  27.448/0.658
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FIGURE 6. Hardware architecture of weights calculation.
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FIGURE 7. Hardware architecture of the output pixel calculation.

B. THE CALCULATION MODULE

The calculation module consists of two parts, which are the
weights calculation part and the output pixel calculation part.
The weights calculation part works under the quadruple pixel
clock, and the corresponding detailed block diagram is illus-
trated in Fig. 6. After the pixels in the filter mask have been
divided into six groups, each pixel group is connected to a cal-
culation pipeline separately. First, the gray value of the pixel
is subtracted from that of the center pixel from f# in order to
obtain the absolute value of the gray value difference between
the original image and the low-pass guidance. To avoid
the exponential calculation of the photometric weights, the
approximated values are stored in the photometric weights
LUT. The LUT utilizes the aformentioned absolute value as
the address to select the corresponding weight for the pixel.
The entire filter weight is then obtained by the product of the
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N,: Not available.

photometric weight and the corresponding geometric weight.
Additionally, the original pixels and the filter weights are
forwarded to the next stage for further calculation. To syn-
chronize with the pixels and weights, the center pixel from
the original image is also preserved and forwarded to the next
stage through several registers for the weighted pixel sums
calculation.

The output pixel calculation part contains three compo-
nent, including the weighted pixels sum calculation, the
weights sum calculation and the normalization, which are
shown in Fig. 7. The six pixel groups are connected to six
multipliers respectively in order to be multiplied by the cor-
responding weight group. As for the center pixel from f, it is
processed separately and multiplied by the highest values of
photometric weights and geometric weights. The outputs of
the seven multipliers are linked to an adder tree to calculate
the weighted pixels sum. To calculate the weights sum, six
weight groups together with the product of the maximums
of both weights are connected to another adder tree. At the
last stage, the output result needs to be normalized in case of
exceeding the specified limits. Considering the fraction part,
the weighted pixels sum is shifted 2 bits to the left before
divided by the weights sum. Therefore, the first 8 bits of
the result represent the integer part of the output gray value,
while the ninth bit of the result stands for the fraction part.
The sum of both parts is the normalized gray value of the
output pixel. Additionally, the asynchronous clock domain
synchronization is achieved through several registers, which
are omitted in Fig. 7 for improving readability.

IV. EXPERIMENTAL RESULTS
A. PERFORMANCE ANALYSIS
In order to evaluate the efficacy of the proposed FPGA-based
GABF in terms of noise reduction and edge preservation, the
image results are assessed using the PSNR and SSIM metrics.
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FIGURE 8. Comparison of the MATLAB results and the ModelSim results (65 = 15; or = 45).

TABLE 3. Implementation results of the GABF.

[19] [23] [25] The Proposed Design
Filtering method BF BF BF GABF
Resolution 512x512 512x512 1024x1024 640x480
Platform Xilinx Virtex-5 XC72020 i Vi Altera Cyclone IV
Kernel Size 5x5 5x5 5x5 5x5
Registers N, 2635 N, 2940
SRAM (kbit) N, 0 N, 196
DSPs 29 32 36 8
Max. Freq. (MHz) 220 244 236.697 240
Max. Framerate (fps) 52.45 926.8 56.43 95.65

N,: Not available.

The test images are processed using MATLAB-based
GABEF algorithm for comparison with the ModelSim sim-
ulation. The objective of the comparison is to analyze the
impact of FPGA implementation on image quality. In order
to simulate a range of noise levels, the grayscale test images
are corrupted by additive white Gaussian noise with varying
standard deviations.

As introduced in Section II-C, the standard deviation of
geometric kernel oy is set to 1.0, while the standard devia-
tion of the photometric kernel is set to o, = 30,. Table 1
presents a comparison of the average PSNR and SSIM values
between the MATLAB and ModelSim results. As illus-
trated in Table 1, the proposed architecture exhibits minimal
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discrepancies when compared to the MATLAB-based GABF.
The comparison results of PSNR and SSIM demonstrate that
the denoising and edge-preserving performance is compara-
ble to that of the MATLAB-based GABF.

Moreover, the PSNR and SSIM results are compared with
several recent works that have also been implemented on
FPGAs. For purposes of comparison, the ModelSim results
are evaluated using the same image set and standard devi-
ation. As evidenced in Table 2, the proposed FPGA-based
GABEF is capable of achieving superior image quality com-
pared to previous works.

Additionally, Fig. 8 describes the image comparison
between the MATLAB results and the ModelSim results.
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The o0, and o, of the test examples are set to 15 and 45.
As shown in this figure, the quality of the ModelSim results is
nearly the same as that of the MATLAB results. Furthermore,
judging from the image examples in the enlarged detailed
information part, it is difficult to discern any notable discrep-
ancies between the simulation outcomes of Modelsim and
MATLAB.

B. THE HARDWARE IMPLEMENTATION RESULTS

To analyze the hardware resources utilization, the GABF
is implemented on the Altera Cyclone IV EPACE10 FPGA
with OV5640 CMOS Image Sensor. The detailed implemen-
tation results are shown in Table 3. The design in this article
consumes 2940 registers, 196Kbit SRAM and 8 DSPs. The
piecewise approximation method, which has significantly
reduced the number of the filter weights, only costs 114 bits
registers compared with [19] that stored all of the weights by
occupying 2048 bits registers. The pixel clock of the image
sensor is set to 60 MHz, and the image format is set to 8-bit
gray scale image.

Due to the quadruplication of the pixel clock, the maximal
frequency reaches 240 MHz. With the resolution of 640 x
480, the maximal framerate can reach 95.65 fps. By virtue of
the parallelized architecture and the approximation method,
the power dissipation of this design is limited to 93.22 mW,
which is lower than the previous works.

V. CONCLUSION
In this article, we proposed a highly synchronized hardware

architecture of the Gaussian-adaptive bilateral filter (GABF)
with the piecewise filter weights approximation method
for real-time image denoising. The approximated GABF
was implemented on a low-cost Altera Cyclone IV FPGA
platform.

The LUT-based approximation method has significantly
reduced the computational complexity. Moreover, the hard-
ware implementation of the GABF demonstrates minimal
discrepancies when compared to the MATLAB-based GABF
in terms of noise reduction and edge preservation. Further-
more, the highly parallel modules have greatly accelerated
the filtering process and reduced hardware resource con-
sumption. Eventually, the proposed design in this article
has achieved better performance in terms of noise reduction
and edge preservation compared with several recent works.
In regard to practical applications, our proposed design is
suitable for a range of scenarios, including medical imagery,
depth reconstruction, data fusion, detail enhancement, and 3D
fairing.
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