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Abstract— With the recent proliferation of large language
models (LLMs), such as Generative Pre-trained Transform-
ers (GPT), there has been a significant shift in exploring
human and machine comprehension of semantic language
meaning. This shift calls for interdisciplinary research
that bridges cognitive science and natural language pro-
cessing (NLP). This pilot study aims to provide insights
into individuals’ neural states during a semantic inference
reading-comprehension task. We propose jointly analyz-
ing LLMs, eye-gaze, and electroencephalographic (EEG)
data to study how the brain processes words with varying
degrees of relevance to a keyword during reading. We also
use feature engineering to improve the fixation-related EEG
data classification while participants read words with high
versus low relevance to the keyword. The best valida-
tion accuracy in this word-level classification is over 60%
across 12 subjects. Words highly relevant to the infer-
ence keyword received significantly more eye fixations per
word: 1.0584 compared to 0.6576, including words with
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no fixations. This study represents the first attempt to
classify brain states at a word level using LLM-generated
labels. It provides valuable insights into human cogni-
tive abilities and Artificial General Intelligence (AGI), and
offers guidance for developing potential reading-assisted
technologies.

Index Terms—Large language model, brain-computer
interface, human—computer interface, EEG, eye-fixation,
cognitive computing, pattern recognition, reading compre-
hension, computational linguistics.

I. INTRODUCTION

ECENT advancements in LLMs and generative Al have
Rsigniﬁcantly impacted various aspects of human society
and industry. Notable examples include GPT, Llama models
developed by OpenAl and Meta, among others [1], [2], [3],
[4]. As artificial agents improve their proficiency, it becomes
increasingly crucial to deepen our understanding of the inter-
section between Machine Learning (ML), decision-making
processes, and human cognitive functions [5]. For instance,
both humans and machines employ strategies for semantic
inference. Humans extract crucial information from texts via
specific gaze patterns during reading [6], [7], [8], whereas
language models predict subsequent words using contextual
cues [9]. Therefore, this pilot study raises the question: Can
we differentiate individuals’ mental states when their gaze
fixates on words of varying significance within a sentence,
particularly at a word level, during tasks involving semantic
inference and reading comprehension?

The success of the prediction tasks could have signifi-
cant implications for current Al applications in both science
and rehabilitation technology. This includes Human-in-the-
loop machine learning (ML) [10], brain-computer interfaces
(BCI) for text communications [11], personalized learn-
ing and accessibility tools in real-time [12], and cognitive
training programs [13], which could be tailored to healthy
individuals or patients. For example, stroke survivors may
experience “acquired dyslexia” or “alexia,” with or without
other language challenges. Treatment strategies could involve
compensatory techniques and BCI technology to assist with
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reading, thus connecting our findings to practical rehabilitation
scenarios.

Previous studies demonstrate biomarkers that affirm patterns
in subjects during reading comprehension tasks. For example,
several neurobiological markers linked to reading compre-
hension, including P300 and N400, were first identified in
the 1980s [14]. As the groundbreaking research in reading
comprehension, the study revealed that there are distinct pat-
terns in N400 for “semantic moderate” and “semantic strong”
words [15].

Furthermore, classical theories within the cognitive sci-
ence community aim to elucidate and delineate the processes
through which humans comprehend text and make infer-
ences. Kintsch [16] introduced the Construction-Integration
(CD) model, which posits text comprehension as a two-stage
process: initially constructing a textbase (comprehending the
text at the surface and propositional level) and subsequently
integrating it with prior knowledge to form a situation model
(a mental representation of the text’s content). Evans [17]
suggests that cognition comprises two types of processes -
automatic (Type 1) and deliberative (Type 2). The automatic
process operates swiftly and relies on heuristics, whereas the
deliberative process is slower, conscious, and grounded in
logical reasoning. Similar orthodox theories of text compre-
hension include Mental Models [18] among others. While
these theories in cognitive science offer valuable insights into
text comprehension and inference, they often oversimplify
cognitive processes and do not fully account for individual
differences and context variability [19].

With the advancement of ML algorithms, BCI technolo-
gies [20], and NLP techniques [21], conducting studies on
reading comprehension in natural settings has become increas-
ingly feasible. Various signal modalities are employed in
cognitive studies to investigate subjects’ mental states, includ-
ing Electroencephalography (EEG) [22], Functional Magnetic
Resonance Imaging (fMRI) [23], Magnetoencephalography
(MEG) [24], Positron Emission Tomography (PET) [25],
and Eye-tracking methods [26]. For our study, because of
its high temporal and spatial resolution and non-invasive
properties, we specifically employ high-density EEG. Partic-
ularly, Hollenstein [27] have recorded simultaneous EEG and
Eye-tracking data while subjects engage in sentence reading
tasks, suggesting integrating these technologies with NLP tools
holds significant potential. This integration enables us to delve
deeply into the natural reading process, potentially paving the
way for developing real-time reading monitors and converting
everyday reading materials into computationally analyzable
formats [28], [29].

This study uses the Zurich Cognitive Language Processing
Corpus version 1.0 (ZuCo) dataset [27] to explore poten-
tial patterns distinguishing two specific mental states—those
triggered when subjects fixate on semantically salient words
(High-Relevance Words or HRW) and less significant words
(Low-Relevance Words or LRW) during ZuCo 1.0’s Task 3,
which is centered on semantic inference. The main contri-
bution of this study lies in the unique integration of NLP
methods, EEG, and eye-tracking biomarker analysis across
multiple information modalities. Prior work by [21] used seven

NLP methods to build a comprehensive model for extracting
keywords from sentences, employing deep neural networks for
binary classification. However, the inflexibility of the embed-
ded NLP model and the extreme data imbalance between
the two classes resulted in significant over-fitting during the
training of the classification model. As an improvement, this
study uses advanced LLMs, such as GPT-4, to generate robust
ground truths for HRWs and LRWs to the inference keyword
target. These ground truths are the foundation for extracting
EEG time series data at the word level for 12 subjects.

Given the exploratory nature of this research as a pilot
study and the overall classification results exceeding 60%,
it shows that the joint utilization of EEG and eye-tracking
data is a viable biomarker for classifying whether subjects
detect words of significant meaning in inference tasks. This
study represents the first attempt to use LLMs for labeling
word relevance, which is then integrated with EEG signal
analysis to explain potential patterns in human comprehen-
sion and inference-making, specifically concerning words with
substantial meaning.

The remainder of this study is organized as follows:
Section II presents the dataset used in our study, including
subject information, experiment paradigms, and the data col-
lection process and equipment. Section III explains our data
processing pipeline methods involving the EEG feature extrac-
tion pipeline and classification algorithms. Section IV exhibits
our LLM comparison, eye-fixation statistics, fixation-related
potential, classification results for 12 subjects across eight-
keyword relations, and the corresponding analysis. Lastly,
in Section V, we juxtapose our findings with existing literature,
deliberate on the challenges of our study, and propose potential
avenues for future research.

Il. DATASET

The ZuCo dataset consists of high-density EEG and eye-
tracking data from 12 native English speakers, aged between
22 and 54 years. It captures 21,629 words, 1,107 sentences,
and 154,173 fixations collected over 4-6 hours of natural
text reading. Participants completed the reading tasks in two
sessions, each lasting 2-3 hours and held at the same time of
day. The sequence started with Task 2, where participants read
Wikipedia sentences about relationships, followed by the first
half of Task 1, a sentiment analysis task. The second session
began with Task 3, which involved reading specific relational
content on Wikipedia, and concluded with the second half of
Task 1.

Data collection took place in a controlled environment. EEG
data were recorded using a 128-channel Geodesic Hydrocel
system from Eugene, Oregon, with a sampling rate of 500 Hz
and a bandpass filter set from 0.1 to 100 Hz, although only
105 channels were used. Impedance was maintained below
40 kOhm. Originally recorded with a reference at Cz, the EEG
data were later re-referenced to the average of the mastoid
channels for our study. Eye movements and pupil sizes were
captured using an EyeLink 1000 Plus eye tracker, which also
operated at a sampling rate of 500 Hz.

We focused on Task 3 of the ZuCo dataset, which involves
reading sentences from the Wikipedia corpus that include
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(a) Task 3 experiment paradigm

Joint selection

[Sentence in ‘AWARD’ relation]:
He won the Gold Medal of the Royal Astronomical Society in 1892, and

also later served as president of that organization.

[High relevance words to ‘AWARD’]: won, Gold Medal, Royal
Astronomical Society

[Less relevance words to ‘AWARD’]: He, the, in, 1892, and, also, later,
served, as, president, of, that, organization

(b) Example outputs by LLMs

Eye-fixation locking Feature engineering

[ High related words 1 ] (

High related words

LLMs

rest words

( Prompt Engineering
|
|
|
|

[ High related words 2 ] (

Low related words

I

J Word-level |
(o )

) |
)

(c) Classification Pipeline

Fig. 1.

Overview of Task 3 Experimental Design and Language Model-Driven Classification. (a) Setup for Task 3: Subjects read sentences

with relational keywords on-screen, while their eye movements and EEG responses were tracked. They determined if the highlighted relation
appeared in each sentence. (b) LLM Output: Displays a sentence exhibiting the “AWARD” relation with words categorized by high- and low-relevance
in red and blue font colors. (c) Classification Pipeline: Sentences are analyzed by language models to sort words by relevance. Eye-tracking data
aligns with EEG for feature extraction, culminating in a binary classification of word relevance.

specific semantic relations such as job titles, educational
affiliations, political affiliations, nationalities, and awards.
Participants were required to identify whether each sentence
contained a predetermined relation, answering control ques-
tions to confirm their responses. This task achieved the highest
mean accuracy score of 93.16% among participants. For our
analysis, we selected eight of the nine-word relations in
Task 3, excluding the “VISITED’ relation due to its ambiguous
interpretability. Of the original 407 sentences, 356 were used.
Specific participants missed certain relations; for example,
ZGW missed ‘JOB,” ZKB missed ‘WIFE, and ZPH missed
‘POLITICAL AFFILIATION’ and ‘WIFE. Task 3 sentences
were presented one at a time on a screen, with participants
briefed beforehand on the specific relations to focus on. Prac-
tice rounds were conducted before the actual data recording
to ensure understanding of the task requirements. Fig. 1 (a)
illustrates Task 3.

Eye-tracking data were processed to identify saccades,
fixations, and blinks. Fixations, defined as periods of stable
gaze, were precisely adjusted using a Gaussian mixture model
on the y-axis to ensure accurate alignment with text lines.
This meticulous adjustment facilitated the precise mapping
of eye fixations to corresponding lines of text. EEG data
were preprocessed using Automagic software, which included
importing data into MATLAB, extracting triggers, and identi-
fying bad electrodes. The data were high-pass filtered at 0.5 Hz
and notch filtered between 49x51 Hz to minimize frequency
interference. They then regressed EOG channels from the scalp
EEG to eliminate eye artifacts and then performed artifact
rejection using the Multiple Artifact Rejection Algorithm
(MARA). Next, they synchronized the EEG signals with the
eye-tracking data to segment the EEG data corresponding

to word fixations. Aligning fixations with word boundaries
and line allocations, they extracted and segmented EEG data
around each fixation time.

Our study analyzed eye-fixation and EEG data features,
specifically on both HRW and LRW. These features are gaze
duration (GD), total reading time (TRT), first fixation duration
(FFD), single fixation duration (SFD), and go-past time (GPT).
For eye-fixation features, we used the data directly from
ZuCo; for EEG data, we extracted our features based on its
preprocessed data. For additional details on the data collection
methodology and protocols, readers are referred to the original
ZuCo study [27].

I1l. METHOD
A. LLM and Word Extraction

OpenAl’s GPT-3.5-turbo (hereafter referred to interchange-
ably as GPT-3.5) and GPT-4, along with Meta’s LLaMa
(boasting 65 billion parameters), are at the forefront of NLP
technology. GPT-3.5 and GPT-4 are equipped with approxi-
mately 175 billion and 1.8 trillion parameters, respectively,
and excel in text generation tasks [4]. Additionally, Phind
has emerged as a popular and freely accessible tool for Al
dialogue generation and question-answering. These models
and tools collectively epitomize the current state-of-the-art in
language understanding and generation. We employ all four
models on the Task 3 corpus for initial semantic analysis and
sanity checks. However, in the main analysis of this study
focusing on EEG and eye-fixation data, only GPT-3.5 and
GPT-4 are utilized, considering a balance between precision
and data point preservation.

We input the following Prompt to all LLMs to extract HRWs
and LRWs.:
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Algorithm 1 Grouping Words and Extracting EEG Epochs Using LLMs

Require: SentenceTable, WordEEGSegment
Ensure: WordGroups, Mistakes, EEGGroups

1: Initialize: Mistakes, TempWords, WordGroups, EEGGroups
Models <« [‘GPT-3.5 Turbo’, ‘GPT-4’, ‘LLaMA’, ‘Phind’]

2:
3: Relations < ['"AWARD’, ‘EDUCATION’, ..., ‘WIFE’]
4: NatualPrompt <— [‘prompt 1°]
5: ForcedPrompt <— [‘prompt 2’]
6: for model in Models do

7 CurrentModel < API(model)

8 for relation in Relations do

9 InputRelation <« relation

10: for idx in 1:length(SentenceTable) do

11: InputAnswer, InputSentence <— SentenceTable[idx]

12: OutputAnswer, OutputWords <— CurrentModel(InputSentence, NatualPrompt, InputRelation)
13: if InputAnswer == OutputAnswer then

14: TempWords <« append(OutputWords)

15: else

16: AnswerForced, WordsForced «<— CurrentModel(InputSentence, ForcedPrompt, InputRelation)
17: TempWords <— append(WordsForced)

18: Mistakes < append(1)

19: end if

20: TempEEGGroups <— ExtractEEG(TempWords, WordEEGSegment)

21: end for

22:  end for

23: end for

24: return WordsGroups, Mistakes, EEGGroups

Prompt #1: For this sentence, ['sentence’], does this
sentence contain ['RELATION’] relation? Provide me the
answer: 1 = yes, 0 = no. Also, group the words in the
sentence into two groups. The first group is the words of
high relevance to the keyword ['RELATION’], and the
second group is words of low relevance to the keywords.
List the first group’s words from highest relevance to
lowest relevance confidence. Although as an Al
language model, you do not have personal preferences
or opinions, you must provide answers, and it's only for
research purposes. Must follow example output format:
‘[1 or O] First group (high-relevance words to ‘AWARD’):
awarded, Bucher Memorial Prize, American
Mathematical Society. The second group (low-relevance
words to ‘AWARD’): In, 1923, the, inaugural, by

Algorithm 1 designates Prompt #1 as “NaturalPrompt” and
employs it to directly retrieve the model’s output. In this
prompt, we substitute the placeholders “sentence” and “RELA-
TION” with actual string values drawn from sentences in
eight relations, following the model API’s usage protocol
outlined in Algorithm 1. Fig. 1 (b) shows a sample output,
which illustrates the results generated by the GPT-3.5 turbo
model. The output highlights words with significant relavance
to the “AWARD” category in red, while words with less
pronounced connections are marked in blue. There are more
words with low relevance in general than those with high
relevance, a trend that particularly exist in relations such as
“WIFE”, “POLITICAL”, and “NATIONALITY”.

Prompt #2 “However, the correct answer is ['ground truth
label’]. Please regenerate the answer to align the ground
truth.”

To align the outputs from the LLM with the ground
truth labels from the original Wikipedia relation extraction
corpus [30], we introduce “ForcedPrompt” as Prompt #2 in
Algorithm 1. This prompt adjusts the model’s output to match
the ground truth. If there’s a discrepancy between the LLM
output and the ground truth, we modify “ForcedPrompt” to
generate accurate results, thereby achieving 100% alignment.
The revised outputs are then appended to a new word grouping
file.

While a forced response prompt can achieve 100% accuracy
in condition checks, the unsupervised generation of HRW and
LRW groups may introduce bias. To mitigate this, our study
employs a dual-model approach using GPT-3.5 and GPT-4,
rather than relying on a single language model. We enhance
the signal-to-noise ratio (SNR) within the HRW-LRW dataset
through a joint selection process across all generated datasets,
i.e., we select HRWs that belong to both groups.

B. Physiological Data Processing

1) Pipeline Overview: Fig. 1 (c) depicts the overview of
EEG data processing pipelines. After the joint selection of
the HRW and LRW word groups, we extract the eye fixa-
tions and fixation-locked EEG data for binary classification
tasks. To improve the SNR, we employed feature extraction
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methods across domains of spectrum analysis, information
theory, connectivity network, and their combined features.
An embedded classifier architecture was utilized, incorporating
established classifiers such as Support Vector Machine (SVM)
and Discriminant Analysis. For Fixation-Related Potential
(FRP) analysis, EEG signal extraction was restricted to a
predefined time window for each word, ranging from 100ms
pre-fixation to 400ms post-fixation.

2) FRP Analysis: In contrast to one-dimensional ERP
averages, which can obscure dynamic information and
inter-trial variability [31], we employed ERPimage for a
two-dimensional representation that allows for trial-by-trial
analysis. Utilizing the ERPimage.m function in the eeglab
toolbox (MATLAB 2023b, EEGlab 2020), we generated FRPs
for both HRWs and LRWs across 12 subjects. A smoothing
parameter of 10 was applied to enhance the clarity of the
FRPimage, which span a temporal window from 100ms pre-
fixation to 400ms post-fixation, resulting in a comprehensive
ERP signal duration of 500ms.

3) EEG Feature Extraction:

a) Band power: We calculated the power in five EEG
frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-64 Hz).
We employed MATLAB’s “bandpower” function from the
Signal Processing Toolbox. The band power (BP) P,; is
computed as follows:

b b
Pa,,,z/ P(a))da):/ |F(0)*dw (1)

where P, j; represents the power in the frequency band [a, /],
P(w) denotes the power spectral density, |F (w)|* is the
squared magnitude of the Fourier transforms, with a and b
being the lower and upper bounds of the frequency band,
respectively. The EEG data comprised 105 channels, resulting
in 525 feature variables per trial. To address the challenge
posed by this extensive variable set, many of which exhibited
redundancy, we used Principal Component Analysis (PCA) to
reduce the dimensionality of the data to 30 variables.

b) Conditional entropy: This study used conditional
entropy (CondEn) to extract features of the EEG trail. It serves
as a metric quantifying the level of mutual information
between the two random variables [32]. The mutual infor-
mation between two discrete random variables is defined as

follows:
(x, )
I(X;Y) =" > plx,y)log (p—) 2)
ey rex pX)p(y)

where p(x) is the approximate density function. By employing
this approach, the mutual information 7 (X;Y) is computed,
establishing its connection with the CondEn 7(X;Y).

HX|Y) == p( D pxly)log pxly)  (3)

yey xeX
where H(X|Y) is the CondEn of X given Y, p(y) is the
probability of occurrence of a value y from Y, p(x|y) is the
conditional probability of x given y, the sums are performed
over all possible values of x in X and y in Y. For 105
EEG channels, we generate a 105-by-105 CondEn matrix. This

matrix is asymmetric because mutual information and CondEn
measure different aspects of the relationship between X and Y.
Flattening this matrix results in over 10,000 feature variables.
To manage this high dimensionality, we focus on one half
of the matrix and apply PCA to reduce the feature space to
30 principal components.

¢) Connectivity network: The human brain is an expansive
and intricate network of electrical activity [33]. Understanding
the intricate connections within the brain and quantifying its
connectivity has garnered increasing interest [34], [35], [36].
This study employed the Phase Locking Value (PLV) to con-
struct a weighted undirected brain connectivity network [37].
Each channel is represented as a node in the graph, and we
depict the correlation strength between channels as the edges
connecting them.

After constructing the weighted brain network, a range
of graph theory measurements can be used as features for
analyzing EEG signals. These measurements capture various
aspects of the network’s structure and organization, including
degree, similarity, assortativity, and core structures [38], [39].
We use the clustering coefficient to reduce the dimension to
30 variables.

_ 2e(N@))
T INOIIN@I= D)

In this equation, 2e(N (v)) counts the total number of edges
in the neighborhood of v, and |N()|(|N(v)| — 1) is the
total number of possible edges in the neighborhood of v.
The coefficient 2 in the numerator accounts for each edge
connecting two vertices and is counted twice. The clustering
coefficient provides insights into the tendency of nodes in a
graph to form clusters or communities, with higher values
indicating a greater density of interconnected nodes [39].

d) Combine all three features: Inspired by [40], combining
features from different domains might improve the quality of
features and classification performance. We concatenate the
three features we introduced above, resulting in 90 variables.

4) ML Classifiers and Feature Selection: Initially, the
features—BP, CondEn, and PLV-connectivity network—have
high dimensions with original dimensions of 525 (105 x 5),

5565, and 5565 (“0252—_105) + 105), respectively. We reduced

the input variables for subsequent classifier training to 30 for
each feature by applying PCA and the clustering coefficient
for feature selection. Generally, Discriminant Analysis and
SVMs are frequently used as non-neural network classifiers
in BCI [41]. We incorporated features extracted from EEG
signals to train 11 classifiers simultaneously: LDA, QDA,
Logistic Regression, Gaussian Naive Bayes, Kernel Naive
Bayes, Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaus-
sian SVM, Medium Gaussian SVM, and Coarse Gaussian
SVM. The highest classification accuracy is selected as the
final result. To ensure the validity of our outcomes, particularly
for smaller sample groups, we report 5-fold cross-validation
accuracy.

Given the significant class imbalance—LRW EEG data
points outnumbering HRW by over 3:1—we applied
non-repetitive random downsampling to the LRW class. This
ensures equal representation of HRW and LRW data points in

C(v) “4)
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TABLE |
HUMAN AND LLM ACCURACY FOR TASK 1 AND TASK3
12 subjects GPT-3.5 Turbo GPT-4 LLaMA Phind
Task 1 79.53 + 11.22 93.74 +1.99 97.444+0.83 95.174+2.13 96.07+1.73
Task 3 93.16 +4.93 95.59 + 1.48 98.82+0.94 95.80+2.16 97.14+1.28
2r Average Fixation (no fixation words included) Average Fixation (no fixation words excluded)
25
18+ ] ['55‘ ::;:: \)'vv:r':: __ [':: ::II:::: ‘)IVV::::
16 2
14+
; 0.8 % 1+
06
0.4 05
02
0 ZAB ZDM ZDN ALY ZJN PAR] ZKH ZKW  ZMG ZGW ZKB ZPH 0 ZAB ZDM ZDN ZM ZIN ZJS ZKH ZKW  ZMG ZGW ZKB ZPH
Subjects Subjects
Fig. 2. Average Fixation Counts on the HRWs and LRWs. The left figure displays the average fixation count across 12 subjects, including

words without receiving any fixations. “No-fixation” words appear in both HRW and LRW groups. The average fixation count for HRWs appears
much greater in this plot. In contrast, the right figure presents the same comparison but excludes words with no fixations, providing a more robust
assessment of the average fixation differences between HRW and LRW. As expected, when we omit instances of no-fixation words, the average
fixation count for LRWs increases significantly. However, it's noteworthy that even with this adjustment, the average fixation count for HRWs remains
higher than that of LRWs across all subjects. This observation supports the hypothesis that subjects focus more on words closely aligned with the
keyword. The whiskers in the figures represent the standard deviation across the eight keyword relations.

the training set. Consequently, the chance label of validation
accuracy is 50%.

While deep learning approaches have shown promise in
EEG classification [42], these model’s explainability remains
a subject of ongoing discussion [43], We refrained from using
deep neural network techniques in this study.

IV. RESULTS

This section presents the results of our study. First, we dis-
cuss the results pertaining to the LLM comparisons, offering
statistical insights into the differences between GPT-3.5 and
GPT-4 in generating labels for classification. Subsequently,
we showcase eye fixation statistics for HRWs and LRWs.
Next, we highlight the FRP analysis of the Fixation-locked
EEG signal. Finally, we present the outcomes of our binary
classification.

A. LLM Result Analysis

1) GPT-3.5 and GPT-4 Comparison: During our experimen-
tal investigation involving state-of-the-art LLMs, we observed
a remarkable level of accuracy when the model was tasked
with answering reading comprehension questions from Tasks
1 and 3. Table I compares the performance of different
language models on ZuCo Task 1 and 3 with that of 12 sub-
jects. Given LLMs’ generative and non-deterministic nature,
each experimental run produced slightly varying outputs.

To mitigate this variability and optimize resource utilization,
we executed each model five times and calculated the mean
of their responses as the final output. From Table I, GPT-4
has the highest mean and lowest standard deviation among
12 subjects and all LLMs. Task 1 focused on sentiment
inference, 12 subjects generally have lower accuracy than Task
3. We didn’t include Task 2 because it shares the same corpus
with Task 3. While GPT-3.5 attained a lower score of 95.59%,
it still outperformed all subjects.

GPT-3.5 and GPT-4 categorize words into HRW and LRW
sets for all sentences in Task 3. Specifically, GPT-3.5 generates
the first group of HRW and LRW, while GPT-4 produces
the second. By joint selection, we identify common elements
between these first and second HRW groups to create a
third HRW group, leaving the remaining words to constitute
the third LRW group. Unless otherwise stated, references to
HRWs and LRWs refer to the third group, jointly selected by
GPT-3.5 and GPT-4.

B. Eye-Fixation Statistics

Next, we analyzed the eye activities during the reading
process. Table II compares the fixation counts and five addi-
tional eye-fixation features for HRWs and LRWs. We excluded
the “VISITED” category from the initial nine categories of
relationships, resulting in 7271 words distributed among the
remaining eight categories after the commonset selection of
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TABLE Il
EYE-FIXATION STATISTICS
# Word . .
count .# leatlon. .# Fixation Gaze duration (GD)
. (no fixation words included) (no fixation words excluded)
(per subject)
High RW 1162 1.0584 +0.2721 1.5126 £ 0.1134 133.1522 4+ 23.2412
Low RW 6109 0.6576 + 0.2278 1.4026 4+ 0.0967 124.8666 + 22.3508
Total Sample Size 7271 - - -
P-value - 7.4666e-4 1.7902e-2 2.1496e-11
Total reading time (TRT) dﬁi;igoix?ggg) (iilrlagtllf)l?)((gtli(l))n) Go-past time (GPT)
High RW 183.7525 + 37.41 113.0653 +14.1043  71.5562 + 5.5873  209.2344 + 39.6288
Low RW 160.0450 4+ 27.1377 110.6034 4+ 14.4297  79.5498 + 7.9179  206.9365 + 33.0659
Total Sample Size - - - -
P-value 3.4834e-4 1.323e-4 4.4111e-5 0.06493
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Fig. 3. FRP and PSD Analysis. (a) FRP and PSD Analysis: The left figure displays ERPimages for channels Pz and Oz for both groups (HRW
and LRW). Alongside the ERPimages are the mean FRPs and PSD for both conditions across the channels. Areas of significant difference in
the FRPs are highlighted with shaded regions. (b) Topographic Maps of five Frequency Bands: The right figure presents the average BP for nine
subjects across five frequency bands, excluding three due to incomplete data. This includes topographic maps for HRWs and LRWs in the first and
second rows, respectively, with the third row showing the power differences between the two groups. There is a notable concentration of power in
the occipital scalp regions across all bands, indicative of visual processing involvement.

GPT-3.5 and GPT4. Among these eight categories, LRWs sig-
nificantly outnumbered HRWs by a six-to-one ratio, with 6,109
LRWs and 1,162 HRWs. However, there is a large fraction of
words don’t receive any fixation. Subsequently, we analyzed
the fixation per word metric for the HRW and LRW categories
for all 12 subjects. Note that the data from three subjects were
incomplete for one or two relationships. Table II shows that
HRWs received an average of 1.0584 fixations per word, while
LRWs received 0.6576 fixations per word, all when no fixation
words included.

‘In our analysis, we also considered excluding words
that received no fixations, followed by comparing average

fixation counts between two distinct categories: HRWs and
LRWs. The eye-fixation comparison between no-fixation word
excluded and included is shown in Fig. 2 for all 12 subjects.
We undertook this step because words lacking any fixations
are predominantly associated with the LRW category. Our
results show HRWs had an average of slightly more fixations
per word than LRWs, with values of 1.5126 and 1.4026,
respectively. The two comparisons of average fixation, show
that subjects spend significantly more time on words that
are highly related to the inference target during reading.
Importantly, it demonstrates consistency between the results
from LLMs and human understanding.
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We also compared five eye-fixation features, as presented in
the last five columns of Table II. Generally, these features all
measure the duration of a reader’s gaze on a word, capturing
nuances of first-pass reading, regressions and distinguishing
between one or multiple fixations. Among these eye-fixation
features, HRWs exhibited higher values than LRWs for four
out of five metrics, except for SFD. Furthermore, four out of
five features showed statistically significant differences, except
for the GPT.

C. Fixation-Related Potentials

Next we illustrates the FRP analysis for nine subjects.
We excluded three additional subjects because of incomplete
data regarding at least one keyword relationship.

Fig. 3 (a) displays the ERPimage, time-locked to fixation
onsets for HRWs and LRWs for Subject ZAB at PZ and OZ,
accompanied by the mean FRP and power spectral density
(PSD), respectively. The PSD at PZ and OZ for HRWs and
LRWs suggests that the cognitive processing associated with
these words does not significantly alter the power spectral
profile in the observed frequency range. However, there are
slight variations in power at the lower and higher frequencies,
specifically in the [0.5, 10] Hz and [25, 45] Hz ranges. The
FRP analysis at PZ and OZ reveals temporal windows where
the neural response to HRWs differs significantly from that
to LRWs. Notably, the OZ site shows more pronounced
differences, potentially reflecting specialized processing in
the occipital region related to visual aspects and possible
emotional or associative processing of the stimuli [44].

Fig. 3 (b) presents topographic maps representing the aver-
age band power across five frequency bands for nine subjects.
The topographic maps in the first and second rows correspond
to HRWs and LRWs, respectively. The third row illustrates
the differential BP between HRWs and LRWs. Across all
frequency bands, there is a notable concentration of power,
primarily localized in the occipital scalp regions, particularly
within the delta and theta bands. The differences observed in
the delta and theta bands might indicate increased attentional
and memory-related processes for HRWs, such as top-down
attentional modulation. The alpha suppression suggests active
engagement across conditions, while the beta and gamma
differences indicate subtle variations in cognitive processing
[45], [46].

D. Binary Classification Analysis

1) Subject-Wise Classification Results: This study assessed
the viability of using fixation-locked EEG data to detect
whether participants looked at HRWs or LRWs. As previ-
ously mentioned, we determined the relevance labels using
the GPT-3.5 and GPT-4 and reported the highest validation
accuracies of eleven classifiers.

Fig. 4 (a) illustrates the classification accuracy of words
labeled by GPT-3.5, GPT-4, and those jointly labeled by
both LLMs, based on Linear SVM. Notably, among the three
LLM-based methods for HRWs and LRWs grouping, the joint
HRW selection achieved the highest mean accuracy across
all three combined feature methods. This accuracy is slightly
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(b) Comparison of 11 Classifiers on 12 Subjects

Fig. 4. Comparisons of Accuracy by LLMs and Classifiers.
(a) Classification Accuracy by Two LLMs: The classification per-
formance, based on Linear SVM, was evaluated using two LLMs
(GPT-3.5 and GPT-4) and their jointly selected words, alongside four
feature engineering methods. The EEG feature CondEn demonstrated
superior performance. A combination of all three EEG features yielded
the highest overall performance, with a marginal enhancement in
classification accuracy noted for HRWs co-selected. (b) Comparisons
Across 11 Classifiers in 12 Subjects: The heatmap comparison high-
lights variability in the performance of different classifiers across
subjects. Linear SVMs consistently have better accuracies.

higher than that of CondEn, with mean accuracies of 60.03%
and 59.37% over 12 subjects, respectively. Importantly, all
mean accuracies surpass the chance level. Fig. 4 (b) presents a
heatmap comparison of 12 subjects’ accuracies using 11 clas-
sifiers with combined features. Although there is variability in
the performance of different classifiers across subjects, Linear
SVM and both Medium and Coarse Gaussian SVMs tend to
provide better accuracy.

2) Classifier Performance Analysis: Table III summarizes
the average and standard deviation of classification perfor-
mance among 12 subjects, using four different feature sets
and eleven machine-learning algorithms. We noted a tangible
variation in the accuracy of the classifiers across distinct
methodologies and subjects in the Table III. The Linear SVM
consistently outperformed other algorithms, exhibiting peak
mean accuracy of 60.03 + 1.72% in combined features. Using
the second feature set (BP + PCA) resulted in a marginal
decrement in the accuracy of all classifiers, with the highest
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TABLE Ill
MEAN ACCURACY + STANDARD DEVIATION ACROSS SUBJECTS

Combined BP+PCA ConEn+PCA  PLV+Clustering Coef.
LDA 57.82 £ 1.60 56.30 &+ 1.77  58.76 £ 2.04 53.29 £+ 2.34
QDA 5548 +2.34  55.17 £ 1.88  58.66 £ 1.86 53.03 + 1.83
Logistic Regression 57.58 £ 1.34  56.29 £ 1.74  58.70 £ 2.00 53.30 + 2.24
Gaussian Naive Bayes 5372 £ 1.88 55.16 £2.03 58.65 £ 2.26 51.06 £+ 1.44
Kernel Naive Bayes 53.64 £ 271 5473 £1.99 5749 £ 2.20 51.18 + 1.30
Linear SVM 60.03 +£ 1.72 5645 +2.33  59.37 £ 2.05 54.70 + 2.80
Quadratic SVM 5798 £ 1.86 5548 £ 1.67 56.26 £ 2.09 54.04 + 2.19
Cubic SVM 55.10 &+ 1.83  54.03 £ 0.97 54.82 £ 2.09 52.63 + 1.97
Fine Gaussian SVM 53.82 £ 1.79 5293 + 1.68 5235 £ 1.81 5249 £ 2.72
Medium Gaussian SVM  59.00 £ 2.57 56.73 + 1.80  58.89 £ 1.85 53.42 + 2.57
Coarse Gaussian SVM 5820 + 1.97 5648 £226 5930 £ 2.06 51.96 + 2.17

recorded at 56.73 £+ 1.80% using Medium Gaussian SVM.
In contrast, the third set (CondEn + PCA) enhanced accuracy
for specific classifiers, with the Linear SVM being paramount,
achieving 59.37£2.05% at its highest. Conversely, employing
the fourth set (PLV + clustering coefficient) precipitated a
universal decline in overall accuracy across all classifiers,
pinpointing 54.70 4+ 2.80% for Linear SVM.

V. DISCUSSION AND CONCLUSION

This pilot study introduced a novel BCI baseline that
combines LLM-generated labels, particularly from Genera-
tive Pre-trained Transformers (GPT-3.5 and GPT-4), with an
EEG-based approach for brain state classification and eye-gaze
analysis. This is one of the first efforts to use GPT capability
for this specialized intersection of cognitive neuroscience and
artificial intelligence.

A. Insights From Eye Gaze During Reading

Eye gaze serves as a significant biomarker, holding essen-
tial information for understanding the cognitive processes of
individuals engaged in task-specific reading activities [47].
In this study, we conducted average fixation analyses on
three levels: per individual subject, in relation to specific
semantic associations, and at the individual word level. These
analyses, leveraging data from 12 participants across eight
semantic relations, demonstrate that participants consistently
allocate more time to words with high semantic relevance
(i.e., keywords) during inference tasks, as corroborated by
Appendices A and B.

We also scrutinized single-word fixation statistics across
12 subjects and eight semantic categories within the HRW
and LRW groups. Notably, due to missing data for eight
relationship instances — with Subject ZGW omitting “JOB,
“ZKB missing “WIFE,” and ZPH lacking both “POLITI-
CAL AFFILIATION” and “WIFE” — we included these
gaps in the supplementary materials. Our analyses reveal that
HRW elicited significantly higher fixation counts compared to
LRW as well, shedding light on participants’ comprehension
approaches within the corpus.

Table II's eye gaze metrics distinctly show variable engage-
ment with words based on their semantic relevance. The
elevated fixation counts and prolonged gaze durations for
HRW reinforce the focus on semantically critical terms. These
terms not only captured initial attention, as reflected in the first

fixation duration, but also maintained it, evident in the total
reading time. Additionally, the shorter single fixation duration
on HRW suggests efficient cognitive processing of these terms,
while a slight increase in go-past time indicates an extra layer
of cognitive effort.

B. Fixation-Related EEG Analysis and Classification

Unlike traditional BCIs, which relied on precise stimu-
lus presentation as timing markers to extract event-related
EEG activities such as P300 and Steady-State Visual Evoke
Potentials in well-controlled laboratory environments, our
approach leveraged fixation onsets to capture EEG signals
related to words during natural reading. This implementation
significantly enhances the practicality of BCIs for real-world
applications.

Fig. 3 presents EEG data related to natural reading, reveal-
ing subtle yet discernible differences in brain activity in
response to words of varying semantic relevance. The ERP
and PSD data across the Pz and Oz channels suggest that
HRW may elicit slightly different fixation-related potentials
compared to LRW, as indicated by the shaded areas of the
graphs. The topographic maps further demonstrate average
band power across five frequency bands, with the bottom
row highlighting modest differences in power in the occipital
region, suggesting a potential disparity in visual processing.

We evaluated the performance of four distinct LLMs to gen-
erate robust labels for improving classification outcomes. Our
hybrid architecture, combining GPT-3.5 and GPT-4 as word
labelers with eye tracking and BCI components, demonstrated
robust performance, achieving an accuracy rate exceeding 60%
in the classification of word relevance. This enhancement
was realized by applying SVMs to three domain-specific
features: BP, CondEn combined with PCA, and PLV-based
graph theory techniques. Each feature was carefully chosen
for its well-established utility in BCI research and its capacity
to enhance the SNR. Additionally, we explored the pair-wise
coherence of 5-frequency bands but ultimately decided against
its use because of its computational complexity, particularly
when considering the 105 EEG channels we employed.

The most relevant work to our study is our preliminary
experiment detailed in [21], which used seven naive NLP
models to determine words ‘similar’ to inference keywords
and executed classification using a deep network. However,
this approach encountered significant overfitting after 100-150
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epochs. The CNN’s test accuracy was only marginally better
than the LDA model, with the highest test accuracy at 59.3%
for cross-subject conditions and 63.3% for within-subject con-
ditions. In contrast, our current work compares 11 non-deep
learning methods, using 5-fold validation, both enhancing the
robustness of our findings and establishing a new baseline for
classifying brain states based on word importance, especially
given the high complexity of word-level EEG classification
during natural reading comprehension.

Hollenstein et al. [48] used the same ZuCo dataset for
EEG cross-subject classification to differentiate between two
reading paradigms: normal reading and task-specific reading.
However, they applied sentence-level labels for predictions,
which diverges from our objective. Duan et al. [49] and Wang
and Ji [50] focused on brain-to-text tasks, encoding EEG
signals to match word embeddings using language models.
Our study aims to discern distinct brain states indicated by
EEG biomarkers, whereas theirs primarily translates EEG into
words with moderate success.

C. Challenges and Future Work

Despite these advances, the study has several limitations.
This study faces challenges because of the “black box” nature
of LLMs, particularly in the context of the non-deterministic
relation, such as “AWARD,” where certain outputted words
appear incongruous. This limitation might affect our findings’
generalizability and underscore the need for a quantitative
assessment to ensure the accuracy and validity of keyword
identification.

Additionally, contextual complexities often influence
semantic classifications. For example, “gold” acquire distinct
semantic relevance when juxtaposed with terms like “medal.”
The sentences incorporating specific target terms, such as
“NATIONALITY” or “WIFE,” exhibit a significant disparity
in the distribution between HRW and LRW, making them
more deterministic. These discrepancies add complexity to
the classification of EEG data and introduce the possibility of
contamination within the dataset, especially when the meaning
of words is most effectively comprehended within the context
of phrases rather than in isolation.

This study underscores the potential for more expansive
research on elucidating reading-related cognitive behaviors.
The promise of integrating LLMs into BCIs also points
towards future advancements in reading assistance technolo-
gies. While acknowledging its limitations and complexities,
our work is an early yet significant contribution, paving the
way for more integrated studies to foster a deeper understand-
ing of the multifaceted interplay between neuroscience and
computational linguistics.
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