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Abstract— In this article, we honor Prof. John W. Bandler
and his legacy in RF and microwave modeling and automated
design optimization. We showcase his pioneering breakthroughs
in minimax optimization, pth norm formulations, yield optimiza-
tion, and nonlinear circuit design optimization. We highlight
advances in direct electromagnetic (EM) microwave optimization,
circuit response sensitivities, and efficient S-parameters sensi-
tivity calculations. We explore the port-tuning version of space
mapping (SM) for EM-based analysis, techniques for industrial
microwave design of satellite systems, and post-manufacture
hardware tuning. The integration of artificial neural networks
(ANNs) with SM for enhanced EM-based design optimization and
yield prediction, cognition-driven microwave filter design, and
parallels between SM and artificial intelligence (AI) is examined.
Finally, we speculate on the future integration of cognitive science
with engineering design, leveraging the synergy of AI, machine
learning (ML), and SM.
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I. INTRODUCTION

THE early 1950s marked the advent of computer-aided
analysis and design of high-frequency circuits and struc-

tures such as microwave and millimeter-wave waveguide
components and antennas. Prof. John W. Bandler stands out
among the pioneers who shaped this field of study early on
with methodologies and techniques, which we use and build
upon to this day. In this article, we wish to pay homage to him
and his legacy, highlighting his groundbreaking contributions
to RF and microwave modeling and his visionary insights
into automated design optimization. We showcase his pivotal
technical breakthroughs and their enduring impact.

In Section II, we recall Prof. Bandler’s pioneering work on
minimax optimization, pth norm formulations, yield optimiza-
tion, and nonlinear circuit design optimization. In Section III,
we discuss direct electromagnetic (EM) microwave optimiza-
tion, first in the frequency domain and then in a hybrid
frequency/time arrangement where a frequency-domain opti-
mizer controls a time-domain EM simulator whose transient
field response is Fourier-transformed and returned to the
optimizer in the frequency domain. Section IV presents
innovative analysis methods for microwave circuit response
sensitivities, notably adjoint sensitivities, and efficient EM-
based S-parameters sensitivity calculations for accurate design
and image-reconstruction.

Section V is devoted to space mapping (SM), a break-
through that dramatically reduces the computational burden
of the direct optimization of fine or high-fidelity EM models,
by iteratively mapping a coarse but fast low-fidelity physics-
based model, such as an equivalent circuit, to the fine model
accuracy. After a short introduction to the basics of SM,
we present SM-based surrogates and make an initial compar-
ison with artificial intelligence (AI), followed by a discussion
of coarse EM models for SM, and an example of frequency
SM between fine and coarse transmission-line matrix (TLM)
models. In Section V-C, we explore the port-tuning version of
SM for efficient EM-based analysis and design.

Section VI describes the contributions to SM-based post-
manufacture tuning of microwave hardware, and Section VII
reports industrial-scale applications of SM. Section VIII elab-
orates on the relationship between SM and AI, introduces
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neural SM as a pioneering AI approach, deals with cognition-
driven design, and contrasts AI- and SM-based methods. It also
projects potential new developments, envisioning a closer
integration of cognitive science with engineering design, lever-
aging AI, machine learning (ML), and SM. Finally, Section IX
concludes this article.

II. FOUNDATIONS OF CIRCUIT OPTIMIZATION

By 1969 [1], Bandler had already contributed the very first
comprehensive review of microwave circuit design optimiza-
tion [2]. In that foundational work [2], he explains the basic
concepts and the state-of-the-art formulations in that early
stage of CAD for network optimization [2].

A. Minimax Optimization

Bandler pioneered in 1969 a minimax formulation tailored
for impedance transformers optimized by heuristic direct
search methods [3], [4]. A few years later, in 1975, mathe-
matically rigorous minimax formulations were published by
Madsen [5], using gradient-free [6] and gradient-based [7]
optimization algorithms. Madsen’s work provided a solid
foundation [1] for Bandler’s robust gradient-based minimax
methods for microwave circuit design optimization [8], [9].

B. Least pth Norm Formulations

Almost simultaneously with his initial work on minimax
optimization, Bandler formulated in the early 1970s innovative
least pth norm objective functions solved by gradient-based
optimization methods [10], [11], resulting in effective and
practical CAD tools for parameter extraction and active device
modeling [12], [13].

C. Statistical Analysis and Yield-Driven Design

Bandler’s work on generalized pth norm objectives, espe-
cially Huber norms [14], were also instrumental for his
seminal contributions on statistical device modeling and ana-
log fault location [15], as well as on circuit-based statistical
analysis (Monte Carlo performance, worst case analysis, yield
prediction, and so on) and yield-driven design (design with
tolerances and uncertainties, design centering, yield maximiza-
tion, and so on) [16], [17], [18], [19], [20], [21].

An excellent review of Bandler’s work on the above three
foundational aspects of circuit optimization is found in [22].

D. Nonlinear Circuit Design

The late 1980s’ state of the art in nonlinear microwave
circuit simulation techniques [23], mostly based on harmonic
balance (HB), was enriched by Bandler’s work on sensitivity
analysis of nonlinear circuits [24]. A few years later, Ban-
dler et al. [25] developed gradient-based yield optimization of
nonlinear circuits, as well as a simultaneous small- and large-
signal HB-based minimax optimization method to extend the
dynamic range of power amplifiers [26]. A brief retrospective
on Bandler’s work on nonlinear circuit optimization is in [27].

III. DIRECT EM OPTIMIZATION

Performing direct full-wave EM optimization of microwave
physical structures was considered unfeasible in the 1980s
and early 1990s [1]. Defeating the opinion of experts from
academia and industry [1], Bandler demonstrated in 1993 the
first direct EM optimization method applied to microwave
filter design [28], where he used response surface modeling,
database updates, and smooth gradient estimation to keep the
computational cost reasonable.

A. Direct EM Optimization in Frequency-Domain

In the early 1990s, Bandler and his team had developed
and commercialized a general-purpose CAD program called
OSA90/hope1 [29] that featured Datapipe1 communication
protocols, which allowed it to control external executable
programs running on the same or on other remote computers.
In particular, it could control EM field solvers running on
various hardware platforms, with automated planar parameter-
ization through Empipe1 [30]. Sonnet Software’s tool em2 [31]
was the first commercial full-wave EM simulator employed in
nominal [28] and yield-driven [32] direct EM optimization.
Bandler soon extended his method to 3-D EM optimization in
frequency-domain [33].

B. EM Optimization in Hybrid Time–Frequency Domain

Since microwave structures were traditionally analyzed and
designed in the frequency domain, it seemed natural to use a
frequency-domain simulator as the objective function server.
However, this requires in each optimization cycle a number of
field simulations equal to the number of required frequency
points, while a time-domain simulator yields in a single
analysis an arbitrary number of frequency points over a wide
bandwidth using an impulse excitation. A collaborative project
involving researchers from Bandler’s and Hoefer’s teams was
initiated to connect for the first time the OSA90/hope program
with time-domain TLM simulators developed at the University
of Victoria, including a version running on a massively parallel
DECmpp 12 000. The basic simulation technique is shown in
Fig. 1. The TLM simulator takes input parameters from the
OSA90/hope via an input pipe. The simulator then declares
meshes of appropriate size, sets up boundary conditions, and
performs one wideband TLM simulation. It then computes
wideband S-parameters via Fourier transform and pipes them
back to OSA90/hope.

The details of this hybrid time–frequency CAD system
were presented in 1993 [34], illustrating the optimization of
a Ka-band waveguide filter and comparing the CPU times of
TLM simulations on various platforms available in the early
1990s. Further developments in hybrid time–frequency domain
optimization using parallel TLM simulators are found in [35].

IV. ADJOINT SENSITIVITIES FOR MICROWAVE CIRCUIT
AND EM-BASED OPTIMIZATION

As an avid proponent and a developer of fast fully auto-
mated design approaches [2], Bandler was acutely aware of a

1Trademarked.
2Registered trademark.
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Fig. 1. Combination of OSA90/hope with a TLM simulator through UNIX
high-speed data pipes. From [34].

major bottleneck: the gradients and Hessians of the microwave
responses (network voltages, currents, and scattering parame-
ters) in the design-variable space were not available. Thus, the
potential of an entire category of powerful design-optimization
methods relying on response gradients (or response sensitiv-
ities) remained largely unrealized. The response sensitivities
had to be computed using response-level finite-difference
approximations or parameter sweeps with multidimensional
surface approximations. Not only is this approach prone to
errors, but also it is extremely inefficient since it requires
many system analyses, scaling with the number of design
variables [36], [37]. Most microwave design problems aim
at optimizing simultaneously many such variables: circuit
component values, geometrical and shape attributes of struc-
tural components, EM properties, biasing, and so on. The
response-level sensitivity approximations with so many design
variables would often render the gradient-based design opti-
mization impractical.

When the first adjoint-variable methods for circuit response
sensitivity analysis emerged in the late 1960s [38], [39],
[40], Bandler immediately grasped their significant potential
in microwave design. These methods, commonly referred to as
adjoint sensitivity analysis, offered two important advantages.
First, all response sensitivities are computed with two circuit
analyses at the most, regardless of the number of optimized
variables. The first (original) analysis is the one that yields
the circuit responses (voltages and currents). The second
(adjoint) circuit analysis yields the so-called adjoint responses,
which, too, are voltages and currents. However, if the circuit
is reciprocal, the adjoint analysis is not needed since the
adjoint responses are equal to response counterparts already
calculated in the original analysis [36], [37]. Second, the
sensitivity formula yielding the response gradient in the entire
design-variable space is exact. Therefore, the result is far more
accurate than any response-level approximation. Consider the
adjoint formula for the derivatives of the voltage Vk at the kth
port of a multiport network, where the kth port is excited by
a current source of 1 A [36]

∂Vk

∂xn
= −

M∑
m=1

X̂T
m
∂Hm

∂xn
Xm, n = 1, . . . , N (1)

where xn is the nth design variable (e.g., a circuit com-
ponent value); N is the number of such variables; M is
the number of subnetworks, from which the entire circuit

is built; Hm is the mth subnetwork hybrid matrix; and Xm

and X̂m are the vectors of voltages/currents at the ports of
the mth original and adjoint subnetworks, respectively. It is
clear from (1) that as long as the voltage/current original and
adjoint solutions are accurate, the derivatives’ accuracy is also
ensured.

Until the early 1970s, most microwave structures were
modeled with equivalent circuits. Bandler and Seviora [41]
formulated the adjoint sensitivities of the generalized incident
and scattered waves at the network ports, not only relative to
circuit component parameters but also relative to frequency.
Moreover, they extended the theory to the Hessian of the
wave state variables. These formulas then allowed for the
accurate and efficient computation of the sensitivities and
Hessians of the generalized S-parameters of microwave
circuits. Applications followed in the sensitivity analysis
of the group delay of microwave circuits [42] and the
responses of cascaded networks (e.g., filters) [43], [44].
Later, Bandler et al. [24] developed exact sensitivities for
HB analyses of nonlinear microwave circuits and used them
to perform yield optimization of circuits operating under
large-signal excitation [25], [45].

In the early 2000s, Bandler with Bakr and Nikolova [46],
[47] developed methods for field-based adjoint sensitivity
computations with full-wave EM simulators exploiting ana-
lytical and finite-difference system matrices, suitable for
various numerical EM methods: the method of moments,
the transmission-line matrix method [48], the finite-
element method [49], and the finite-difference time-domain
method [50]. Similar to the adjoint sensitivity analysis of cir-
cuits, the adjoint sensitivity formulas need only one additional
(adjoint) full-port EM analysis. With reciprocal structures
(e.g., passive and isotropic), there is no need for an adjoint
analysis since the adjoint-field solution is equal to or obtained
from the field solution given by the original EM simu-
lation, whose simulation also provides the responses (e.g.,
S-parameters). Thus, only one full-port simulation provides
both the responses and the field distributions needed to com-
pute the response sensitivities.

In the 2010s, Bandler contributed to the development of
analytical field-based S-parameter sensitivity formulas for
shape and EM-property design variables of metallic and
dielectric reciprocal structures [51], [52]. Similar to the earlier
field-based adjoint sensitivities, these formulas employ the EM
field distributions provided by the original full-port simulation
that also provides the S-parameters. However, unlike the ear-
lier approaches, the formulas are analytic, i.e., they are directly
applicable with field solutions of any EM simulator, regardless
of how the numerical method discretizes the structure or forms
the system matrix to obtain the field solution.

The accuracy and efficiency of the adjoint-variable com-
putations are now fully exploited in modern commercially
available microwave CAD tools, accelerating design optimiza-
tion, parameter extraction, modeling, and statistical analysis
and design. The legacy of Bandler’s work on sensitivity
analysis lives in ongoing research that develops or uses adjoint
sensitivity theories. This is an extensive subject, but a few
glimpses are provided by applications in SM optimization [53],
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Fig. 2. SM general concept. From [62].

[54], ANN-based modeling and design [55], [56], [57], [58],
and microwave and millimeter-wave imaging [59], [60].

V. SM: A BREAKTHROUGH IN OPTIMIZING EXPENSIVE
MODELS

SM was invented by Bandler in 1993 [1] and first pub-
lished in 1994 [61]. The inspiration for SM stems from
the intuition that experienced engineers rely on to address
complex problems, coupled with the cognitive process of
relating or mapping objects between different experiences or
realities [62].

SM avoids the direct optimization of computationally
expensive models (also known as fine models or high-fidelity
models, e.g., finely discretized full-wave EM models), by itera-
tively mapping a coarse model (fast low-fidelity physics-based
model, e.g., equivalent circuits) to the fine model accuracy.

A. Basics of SM

The SM concept is illustrated in Fig. 2. The fine model is
frugally used in the validation space (“reality check”), while
the coarse model is intensively used in the optimization space
(it provides “prior knowledge”). The relationship between
them is established by a mapping (“intuition”).

The essence of the SM methods is to establish a mapping
P between the fine model design parameters, xf, and those of
the coarse model, xc, simply by

xc = P(xf) (2)

such that the mapped coarse model responses, Rc(P(xc)),
approximate the fine model responses, Rf(xf), in a region of
interest.

Starting from the coarse model optimal design x∗
c (marked

by ① in Fig. 2), the current (inverse) mapping is used to
predict the next iterate in the fine model space (②), which
is then validated by a fine model evaluation (③) to check if,
in “reality,” the design specifications are optimally met. If not,
a “feedback” procedure (④, typically by parameter extraction)
is implemented to enhance the mapping P, from which the
next fine model design is predicted. SM has been proven to
efficiently solve complex microwave and other engineering
problems within a few iterations [1], [63], [64], [65].

Fig. 3. Contrasting SM-based surrogates and AI-based surrogates.

B. SM-Based Surrogates and Initial Comparison With AI

SM-based surrogates have been proposed in a variety of
schemes, as illustrated in Fig. 3. Both the original SM [61] and
the aggressive SM (ASM) [66] are widely known, with ASM
being notable for using Broyden’s updates and quasi-Newton
steps to achieve fast convergence [65]. Implicit SM (ISM)
[67], [68] utilizes a set of preassigned parameters to establish
an indirect mapping between the coarse and fine models.
Output SM (OSM) [69], [70], [71] addresses residual mis-
alignment between the coarse and the fine model responses by
adjusting the output of the coarse model. Tuning SM (TSM)
[72], [73], [74], [75] combines the port-tuning technique (see
Section V-C) and the SM approach to create a “tunable”
surrogate model allowing fast optimization.

For an initial comparison, classical AI-based surrogate
modeling is represented in Fig. 3 alongside other SM-based
surrogates. An AI-based surrogate [76] can be constructed by
using ML methods to directly emulate the fine model behavior,
e.g., by using neural networks and Gaussian processes [76].

C. Coarse Models for SM

Typically, a coarse model for SM consists of an equivalent
circuit model or some physics-based analytical approxi-
mation [65], [77]. Less frequently, the coarse model is
implemented by some metamodel (response surface model,
ANN model, Kriging model, and so on) developed from
fine model simulations [65] or from measurements [78]. The
performance of SM heavily depends on the quality of the
underlying coarse model used. Koziel et al. [79] developed for-
mal methods to assess the quality of coarse models (equivalent
circuits) based on convergence results for SM optimization.

Coarse models have also been implemented by simplified
and coarsely discretized full-wave EM models [80], [81], [82],
[83], which can be especially useful for microwave problems
with no equivalent circuits, e.g., antenna structures in working
environments [84]. Interpolated [85] and variable-resolution
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Fig. 4. Filter EM responses obtained with a fine and a coarse TLM grid.
They can be mapped upon each other by frequency scaling. From [89].

coarsely discretized frequency-domain EM models [86],
[87], [88] have also been successfully employed in SM
optimization.

D. Frequency SM Between Fine and Coarse TLM Models

If TLM models of the same microwave structure with a fine
and a coarse mesh discretization are used, it should be possible
to accomplish the mapping between them through a simple
frequency shift. Indeed, after Hoefer and Bandler discussed
this hypothesis, the University of Victoria team provided its
TLM simulator MEFiSTo to investigate and test this idea.
Fig. 4 compares |S11| of a six-section H -plane waveguide filter
computed using a coarse and a fine TLM mesh discretization.
The study and results are described in [89]. Bandler’s team
confirmed [86] that the frequency-scaled model yielded a
smaller specification error than other coarse model types.

VI. PORT TUNING

EM analysis of microwave structures has revolutionized
microwave design over the last four decades [90]. Correctly
applied, it provides unprecedented analysis accuracy, often
yielding success on first fabrication. However, a major imped-
iment to successful application is long analysis times of hours
or even days.

A methodology now known as “port tuning” provides a
solution. After an initial EM analysis, we can optimize struc-
ture dimensions at circuit theory speed while also maintaining
full EM accuracy. A short overview is provided in [91],
which includes additional detailed references for the interested
practitioner. Port tuning is a special case of SM [92], [93].

Fig. 5 shows an illustrative microstrip parallel connected
open circuited stub laid out in an EM analysis tool (Sonnet2).
Note that there is a narrow gap in the middle of the stub.
Two internal ports, 3A and 4A, are placed in the gap, one
on either edge of the gap. The “A” indicates that the two
ports share the same ground reference, which in this case
is the microstrip ground plane. These ports, along with the
input and output ports, 1 and 2, are fully deembedded [94].
High accuracy deembedding of tuning ports is required for
the specific port-tuning implementation shown here. This EM
analysis results in four-port S-parameters.

Fig. 5. Simple microstrip stub illustrates tuning ports, 3A and 4A, inserted
into a microwave circuit.

Fig. 6. Four-port EM analysis S-parameters are loaded into a circuit theory
program and a circuit theory transmission line is attached to the tuning ports.

Fig. 6 shows the EM S-parameters loaded into a schematic
of a circuit theory analysis tool (included in Keysight ADS2).
A circuit theory transmission line is connected between the
internal ports. Port tuning is now realized by tuning the length
(the arrowed “Len” variable) of the circuit theory transmission
line to optimize the overall length of the stub. The circuit
theory transmission-line length can be varied over a wide range
provided stub interaction with the rest of the circuit remains
sufficiently constant. The stub may be shortened by specifying
a negative length circuit theory transmission line.

If high accuracy deembedded internal EM ports are not
available, then an infinitesimal gap port may be used even
if it is not deembedded. Since the gap port does not use
the microstrip ground as a ground reference, a circuit theory
transmission line cannot be used to tune the circuit. Instead,
a circuit theory inductor can be used provided only small
changes are required.

A full 60-GHz filter with tuning ports added in the middle
of resonators (Fig. 7) additionally requires tuning of the
coupling between resonators. It is easiest to tune circuit theory
capacitors connected, for example, between ports 8C and 10C,
and so on. Alternatively, for broadband use, add appropriate
lengths of circuit theory coupled line with even-mode char-
acteristic impedance set to a large value and tune odd-mode
characteristic impedance.
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Fig. 7. 60-GHz filter with 14 tuning ports, arrowed. The resulting 16-port
EM analysis is read into a circuit theory program and appropriate tuning
components inserted.

Once the initial EM analysis is complete and a tuning port
model is constructed for a given type of filter or circuit,
optimizing that type of filter or circuit for completely new
requirements is performed at circuit theory speed and with
EM accuracy, making EM analysis combined with port tuning
an absolutely required part of modern microwave design
methodology.

VII. SM-BASED POST-MANUFACTURE TUNING OF
MICROWAVE HARDWARE

Microwave hardware must be designed and manufactured
with high accuracy to meet the tough requirements of com-
munication system front ends [95]. For satellite applications,
where higher operational frequencies (K - and Ka-bands) are
increasingly being used [96], and waveguide technology is the
preferred choice for implementing low-loss filters, dimensional
accuracies below 10 µs are often required in their fabrication
processes. Such accuracy levels are not sufficient in some
applications (e.g., very narrowband channel filters) or must be
relaxed to reduce manufacturing costs. Thus, the inclusion of
tuning elements (typically screws) becomes mandatory. As it
is well known, the manual tuning of microwave filters is
not a simple task, requiring significant effort, experience, and
practical guidelines [97].

Recently, different computer-aided optimization strategies
have been proposed to support post-manufacturing tuning of
microwave filters [95, Ch. 19]. Among them, SM is one of
the most efficient techniques [98]. The Technical University
of Valencia, Spain, has contributed several SM-based tuning
methods, many of them in fruitful and long-lasting collabora-
tion with Prof. Bandler.

A. Tuning of Waveguide Filters Using ASM

In [99], the team from Valencia successfully applied
ASM [66] to correct the fabrication errors of circular waveg-
uide dual-mode filters, widely used in output multiplexers. For
this purpose, a prototype was built with replaceable parts,
including rectangular metal ridges as tuning elements. The
measured response of the prototype was used as fine model
results, whereas the coarse model was based on the efficient
(but accurate) full-wave simulation of the real structure with
FEST3D (now part of CST Studio Suite [100]). The optimal
dimensions of the metal ridges were obtained, in just three
iterations, using the Broyden update for the related mapping

Fig. 8. Robotic tuner used in a high-precision tuning process (penetration
accuracy of screws about 1 µm). From [103].

Fig. 9. RW filter (with tuning elements) used for accurate EM simulations in
SM-based tuning techniques. The same structure but with no tuning elements
is used as coarse model. From [103].

matrix [99]. The same procedure was also successful with the
full tuning of a rectangular waveguide (RW) filter [101], but
using this time real tuning screws driven by a high-precision
robotic tuner (see Fig. 8).

Although this ASM-based tuning method performs very
well, it requires a moderate (but relevant) computational effort.
This is because, at the i th iteration of ASM, the penetration
depths of the employed tuning elements (in xf) are related to
those of the simulated filter (in xc) by

x(i+1)
f = x(i)f −

(
B(i)

)−1(x(i)c − x∗

c

)
(3)

where B(i) is the Broyden-updated matrix [65], [66] of the
local linear mapping at the i th iteration. For instance, in [101],
the optimum (x∗

c) and extracted (x(i)c ) depths in the coarse
model were obtained through optimizations of an RW filter
with tuning elements (see Fig. 9) using the commercial tool
FEST3D, and this certainly requires a computational effort.

A very significant advance in the ASM technique for the
design of microwave waveguide filters is reported in [102],
where it is shown that when the physical structures of waveg-
uide filters are identical, in both the coarse and fine models,
matrix B is the identity matrix I, so there is no need for any
update, i.e., (3) converges in just one iteration. This is the so-
called “One-Step ASM” method, providing convergent results
in just one iteration. This approach is effective even if the
structures in the coarse and fine models are not identical, but
just very similar, as is the case for the real and simulated
filters in our tuning procedure. In that case, however, one
iteration is not enough, but a significantly faster convergence
is achieved with respect to the classical ASM method. This
alternative procedure was fully validated in [103], where the
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Fig. 10. Results (at different iterations) of the SM-based tuning procedure
applied to the RW filter in Fig. 9. From [103].

tuning process of a sixth-order filter (see Fig. 9) was completed
in just four iterations.

As mentioned before, applying this ASM-based tuning
technique requires the intensive use of a detailed full-wave
model, which can make the tuning process slow and unhandy.

B. Efficient ASM-Based Tuning Procedure

A more efficient approach consists of using a much simpler
geometry as the coarse model structure (e.g., the filter shown
in Fig. 9 but without tuning elements). In this case, FEST3D
quickly provides accurate results for a faster optimization.
Here, xc contains the lengths and widths of the resonators and
coupling elements of the RW filter, whereas xf still contains
the penetration depths of tuning elements. Thus, B cannot be
chosen as I and must be properly initialized before starting
the ASM iterations.

Matrix B (or its inverse) can be initialized by applying
slight perturbations to all tuner depths in the filter and then
extracting the corresponding coarse model parameters (with
no tuners) that match those filter responses [103]. In this way,
the initialized B is kept in (3) for all ASM iterations. By this
method, the 6th-order RW filter of Fig. 9 is tuned, almost
perfectly, in only four iterations (Fig. 10) and 21 min, saving
70% in time cost with respect to the previous ASM-based
approach [103].

Initializing B can be done using a detailed highly accurate
full-wave 3-D EM model (with tuners) or from measurements
in the physical filter, in which case a robotic tuner can be
employed (see Fig. 8). Details are given in [103] and [104].

Even though the previous SM-based tuning techniques were
applied to RW filters, similar SM-based approaches have been
successfully used to tune other hardware technologies with
very different types of tuning elements [105], [106].

VIII. INDUSTRIAL-SCALE SM APPLICATIONS

Practicing engineers have been applying optimization and
inverse modeling techniques to industrial RF and microwave
components exploiting CAD tools. To perform compo-
nent design, the physical parameters of the component

Fig. 11. Ten-channel multiplexer for satellite applications with 140 design
variables.

Fig. 12. Frequency response of the 15-channel multiplexer designed by SM.

are determined to satisfy the required design specifications.
EM simulations are usually compulsory in the microwave
design process for verification. However, high-fidelity EM
simulation can be computationally expensive. To address this
issue, SM technologies have been applied in industry.

SM is widely used in the design of satellite payloads. One
important satellite industry SM application is for designing
multiplexers. A large-scale multiplexer has many channels,
making the design optimization problem very complex, with
a prohibitive computation cost if high-fidelity EM simulation
is directly used. In [107] and [108], finite-element EM-based
simulators and SM optimization are combined to produce
an accurate design for manifold-coupled output multiplex-
ers with dielectric resonator (DR) loaded filters. While the
EM-based simulator serves as the fine model, a coupling
matrix (CM) representation is used as a coarse model. As a
result, a ten-channel multiplexer with 140 design variables was
successfully designed and fabricated [108], as illustrated in
Fig. 11. Also, a 15-channel multiplexer was designed using
SM-based optimization. Fig. 12 shows that the corresponding
measurement result agrees with the ideal curve, validating the
effectiveness of SM.
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Fig. 13. Coaxial T-switch designed by SM [109]. (a) Three-dimensional
layout and (b) coarse model block diagram for the two paths (xdc1 and xdc2
contain distinct coarse model parameters for each path).

Another significant industrial application of SM is in the
design process of switches. In [109], a six-path coaxial
T-switch is designed by SM. Only two paths are considered
based on the symmetry, as shown in Fig. 13(a). A multiple
SM algorithm is developed to evaluate each switch path
parameter. As suggested in Fig. 13(b), the algorithm iteratively
enhances the coarse model of each path. Then, the enhanced
mapped coarse models are optimized to meet the required
specifications.

It is well known that ANN and SM can be combined to opti-
mize microwave filters [110]. Inverse ANN models can also be
developed to facilitate microwave filter design. For that appli-
cation, the nonuniqueness [111] and high dimensionality [112]
challenges of training ANNs have been addressed. In [113],
the homotopy continuation (HC) is applied to expedite the
database construction for an ANN inverse model. ANNs can
also be exploited to model large-scale multiplexers [114],
leading to improved performance and reduced design cycles.

In addition to filters and multiplexers, SM and ANN
are industrially applied to other components. For example,
an ANN-based inverse model is used in [115] to design mul-
tiple directional couplers automatically and efficiently, which
is promising to be generalized for a variety of components.

IX. SM AND AI: RELATIONSHIP AND POTENTIAL NEW
DEVELOPMENTS

A. Neural SM as a Pioneering AI Approach to Microwave
Modeling and Design

Artificial neural networks (ANNs), inspired from
rudimentary biological neural networks, are nowadays a
well-established, powerful, and general-purpose fundamental
technique of AI [116]. Initial applications of ANN to RF
and microwave engineering started in 1993 [117], [118].
On a totally separated track, Bandler published SM in 1994

Fig. 14. NSM for accurate statistical analysis and yield prediction [122].

[61], inspired from engineering intuition [62], to intelligently
exploit the computational efficiency of inaccurate simplified
physics-based coarse models to optimally design highly
accurate but computationally expensive fine models in a very
efficient manner. Starting in 1999, Bandler et al. pioneered the
smart combination of ANN and SM to formulate EM-based
modeling [119] and design optimization [120] algorithms.

Neural SM (NSM) can be used for efficient statistical
design [121]. Highly accurate yield prediction based on
NSM [122] is illustrated in Fig. 14. It exploits the classical
input SM function P in (2), which can be implemented linearly
or by an ANN [123]. Variable ψ in Fig. 14 represents the
independent variable (frequency, time, biasing voltages, and
so on). The output mapping Q is intended to eliminate the
inherent error in the responses of any SM-based coarse model,
Rc(P(xf), ψ), with respect to the actual fine model responses,
Rf(xf). The ANN implementing Q is sensitive not only to the
design parameters xf but also to the independent variable ψ
(see Fig. 14), achieving a highly accurate approximation of
the fine model responses within the design space where the
statistical analysis is performed [122]. NSM has also been
applied to statistical nonlinear device modeling [124], [125].

The basic steps in neural inverse SM (NISM) for nominal
design optimization [126] are illustrated in Fig. 15. The
starting point is parameter extraction (step 1 in Fig. 15), where
the best coarse model design xc is found to make Rc as close
as possible to the fine model response at the current iterate,
Rf(xf). In step 2, a regularized ANN is trained to approximate
the current inverse mapping between all the accumulated
corresponding designs [127] (w has all the weighting factors
and other free parameters in the ANN). The next iterate,
x(new)

f , is predicted in step 3 by simply evaluating the current
already trained inverse neuro-mapping at the optimal coarse
model design x∗

c . The whole cycle is repeated for additional
refinements. Applications to linear frequency-domain [127]
and nonlinear transient [128] problems have been reported.

Neural SM approaches [129], [130] naturally invite specu-
lation on future developments to capitalize on the current full
capacity of other AI and ML techniques in combination with
SM.

Fig. 16 illustrates a feasible future development where SM
and other AI techniques are exploited. This approach can
be especially suitable to develop fast and accurate SM-based
models valid over very large regions in the design space. It is
inspired by the work by Burrascano and Mongiardo [131],
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Fig. 15. NISM for nominal design optimization [127].

where self-organizing feature maps (SOMs) are used to iden-
tify clusters of similar responses, for which a specialized ANN
model is developed following a “black-box” approach [132].
In contrast, the approach in Fig. 16 uses other AI clus-
tering techniques (k-means, k-medoids, k-nearest neighbor,
and so on), exploits the inherent knowledge available in the
physics-based simplified coarse models, and implements each
input mapping (iML1, . . . , iMLk) by any appropriate ML tech-
nique, such as support vector machines, Bayesian or Gaussian
process regression, conventional ANN, generalized regression
neural networks, and Kriging. Furthermore, the accuracy of
the resultant SM-based model in Fig. 16 can be enhanced by
implementing output mappings (oML1, . . . , oMLk) to elimi-
nate possible residuals of the mapped coarse models.

B. Cognition-Driven Design

Cognition-driven design is a phrase introduced by Prof.
Bandler while exploring future directions of microwave CAD.
Bandler emphasized the need of fusion between advanced
neuroscience and engineering design [133].

A cognition-driven formulation for optimization is an effort
to address the challenge of SM when explicit coarse models
are not available [134], [135], [136]. It exploits the concept
of feature parameters to assist SM, as opposed to using
coarse-mesh EM models. Several works have investigated
possible feature parameters in model responses, e.g., [137],
[138], [139], [140]. The cognition-driven formulation aims
to explore the use of intermediate feature-space parameters
in SM. A cognition-driven SM formulation for EM-based
optimization of equal-ripple microwave filters is described
in [134]. This optimization can proceed with neither explicit
coarse models nor explicit surrogate models. In [134], interme-
diate feature-space parameters, including the feature frequency
parameters and ripple height parameters, are used to set up two
new kinds of SM. The design variables are mapped to feature
frequency parameters, which are further mapped to the ripple
height parameters, thus the concept of SM in our optimization.
By formulating the cognition-driven optimization directly in
the feature space, the method can increase optimization effi-
ciency as well as the ability to avoid being trapped in local
minima. This technique is regarded as “cognitive” [62] in the

Fig. 16. Potential future development on AI and SM to address large design
spaces.

sense that a meaningful coarse or surrogate model is implied
by the engineer’s knowledge, intuition, and experience [133].

For instance, in a filter design optimization process, an expe-
rienced designer could first adjust the frequency locations of
reflection zeros relative to the passband, rather than trying to
push the S-parameter values in the initial design stage. In the
subsequent design stages, the designer could adjust the ripple
height using the fact that making two frequency locations of
reflection zeros closer (further apart) will reduce (increase)
the height of the passband ripple in the frequency response
curve. By adopting such strategy, the design optimization can
be reformulated by introducing new feature parameters, i.e.,
by exploiting a new feature parameter space, called the feature
frequency space, as explained next.

For an equal-ripple bandpass filter, a filter response curve
(e.g., |S11| versus frequency) has several minimizers, which
are referred to as feature frequencies, and several maxima,
which are referred to as ripples. The feature frequencies
correspond to the reflection zeros at which the filter has
maximum transmission. In a cognition-driven SM formulation,
the feature frequencies are used to establish a mapping. For
example, Fig. 17 shows |S11| in dB of a microwave filter,
where the feature frequencies f = [ f1 f2 f3 f4]T are used
as intermediate design parameters of the feature space to
establishing a mapping between the physical or geometrical
design variables xf (i.e., the original optimization variables)
and the feature frequency parameters f .
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Fig. 17. Illustration of feature parameters t and f in the response of a
microwave filter. From [134].

Fig. 18. Results comparison for three different optimization methods for
a cavity filter with bad starting point. From [134]. (a) Very bad starting
point for all three methods. Using cognition-driven SM method, (b) all the
feature frequencies move to the passband after the first stage, and (c) good
equal-ripple response is obtained after 12 iterations, avoiding being trapped in
a local minimum. (d) Using coarse–fine mesh SM, the optimization process
falls into a local minimum. Using direct EM optimization, a final response
similar to that one in (d) is obtained after 300 iterations.

The maximum values of |S11| in dB between these fea-
ture frequency points are also important features of the
|S11| response curve and are represented by a new set
of feature parameters, called ripple height parameters t =

[t1 t2 t3]T (see Fig. 17), similar to those used in [139]
and [140]. In general, the cognition-driven SM formulation for
equal-ripple filter design uses the feature frequency parameters
f = [ f1, f2, f3, . . . , fM ]T and the ripple parameters t =

[t1, t2, . . . , tM ]T from the EM simulation response, where M
is the number of poles of the filter.

The optimization proceeds in two stages. In the first stage,
a mapping is built from the design variables xf to the feature
frequency parameters f as

f = F(xf) (4)

where F represents the corresponding mapping. Through this
stage, the locations of feature frequencies f are adjusted in
terms of the frequency band specifications. In the second stage,
an additional mapping is created from the feature frequency
parameters to the ripple height parameters as

B(i)
(

f(i)d − f(i)
)

+ c(i) = ta − t(i) (5)

Fig. 19. Comparison between AI models and SM. The classification of AI
models is inspired by [141].

where matrix B(i) and vector c(i) together represent the linear
mapping parameters at the i th iteration between the f and t
spaces, vector ta contains the desired ripple height parameters,
and vector f (i)d has the desired feature frequency parameters
at the current iteration [134]. To ensure convergence, a trust
region method is applied while updating the design parameters
at both stages [134].

Fig. 18 illustrates the optimization process of a waveguide
cavity bandpass filter [134]. Using conventional direct EM
optimization (150 h) or using a coarse–fine mesh EM-based
SM (24 h), optimal solutions are highly dependent on starting
values, and in the case of Fig. 18, the final solution by
those methods is trapped in a local minimum where the
design specifications are violated. With the cognition-driven
SM optimization, an EM optimal design is achieved from that
same starting point (11 h), exceeding the design specifications.
The cognition-driven SM formulation increases optimization
efficiency and finds a better result in less time compared to
coarse–fine mesh EM SM and direct EM optimization.

C. Contrasting AI and SM

AI models excel at handling extensive datasets and
high-dimensional design spaces. AI-based surrogate optimiza-
tion (AISO) is predominantly executed in two steps: the
training of the model and the prediction, similar to the map-
ping and prediction steps in the SM process. This procedural
resemblance suggests the feasibility of integrating the two
methodologies.

As depicted in Fig. 19, deep learning methods are char-
acterized by high complexity and low explainability [141].
Their black-box nature can obscure the principles behind
specific outcomes, making it challenging for engineers to
understand and refine their outputs. Conversely, SM with
embedded physics-based knowledge offers a simple but highly
explainable approach. The complementary nature of these
two approaches suggests that integrating SM with AI could
potentially enhance the AI model.

An emerging and promising application of AI is the
effective incorporation of large language models (LLM) into
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electronic design automation (EDA) [142]. LLM tools, such
as ChatGPT, Gemini, and Llama, combined with state-of-the-
art SM and ML approaches, might offer a breakthrough to
streamline interoperability of different EDA tools to address
highly complex design tasks with stringent specifications in
record time-to-market. Microwave study cases and theoretical
frameworks in this arena are yet to be developed.

X. CONCLUSION

We have endeavored to provide a comprehensive overview
of John W. Bandler’s seminal and pioneering contributions
to the art and science of microwave circuit design and opti-
mization. His creative concepts transcend the purely technical
and mathematical aspects of engineering to enter the realm
of the cognitive, imaginative, and intuitive capabilities of the
design engineer. The resulting concept of SM has become
a cornerstone of present and future design optimization in
microwave engineering and beyond. Its affinity with ML and
AI is rapidly expanding its potential as a ubiquitous and
indispensable engineering paradigm.

John’s accomplishments as the godfather of SM extend
beyond his own original and pioneering contributions. He has
mentored and inspired his students, associates, and colleagues
to leverage his ideas and to promote his legacy through their
own creativity. He will be remembered and appreciated by
many future generations of engineers.
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