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Spectral–Spatial Score Fusion Attention Network for
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Abstract—Convolutional neural network (CNN) and trans-
former-based models have been widely used in hyperspectral im-
age (HSI) classification due to their excellent local and global
modeling capabilities. In addition, attention mechanism is widely
embedded in these models due to the effective enhancement of
features learning. However, it is difficult to learn adaptive weights
that effectively enhance features and most of existing methods
lack transitional processing of shallow features. To overcome the
above issues, a lightweight spectral–spatial score fusion attention
network (S3FAN) with dual architecture is proposed for HSI clas-
sification with limited samples. Different from the regular dual
branch models, S3FAN first performs pixel-level interaction and
spatial feature extraction, then the obtained two sets of features
are weighted and fused. In addition, we designed a spectral–spatial
score fusion attention mechanism to enhance dynamic attention
to spectral–spatial features. We also propose a spectral transition
block to enhance model adaptability. Performance evaluation ex-
periments conducted on five HSI datasets demonstrate that S3FAN
has higher accuracy and generalization capabilities compared to
existing advanced CNN and Transformer-based methods, with
improvements in terms of OA around 3.18%–34.3% for Indian
Pines, 5.87%–28.58% for University of Pavia, 2.57%–15.37% for
Salinas, 1.64%–8.95% for Yellow River Delta, 2.87%–11.33% for
WHU-Hi-LongKou, under ten samples per class.

Index Terms—Hyperspectral image (HSI) classification, limited
samples, spectral–spatial attention (SSA), transformer.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) can not only provide
spatial information on the surface of the Earth, but also

capture richer spectral information. HSIs capture hundreds of
continuous bands, covering visible and near-infrared region to
short-wave infrared region [1]. Benefiting from the extremely
high spectral resolution of HSI, HSIs can obtain subtle changes
in surface objects in different wavelength ranges. Therefore,
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HSI classification is widely used for mineral survey [2], en-
vironmental assessment [3], precision agriculture [4], forestry
monitoring [5], target detection [6], and other research fields, as
the basis for data analysis.

In the past decades, machine learning and pattern recognition
methods have greatly promoted the development of HSI classi-
fication, including but not limited to support vector machine [7],
random forest [8], and representation learning [9]. However, the
focus on low-level handcrafted features greatly limits further
exploration of the above methods.

In recent years, deep learning (DL) has been widely used
in HSI classification due to its powerful ability to learn high-
level features. Some typical DL frameworks are stacked au-
toencoders [10], deep belief networks [11], recurrent neural
networks [12], convolutional neural network (CNN) [13], long
short-term memory networks [14], generative adversarial net-
work (GAN) [15], etc. Recently, Feng et al. [16] designed multi-
complementary GANs with contrastive learning, prompting two
groups of GANs to generate different multiscale samples to cope
with the complex sample distribution in HSIs.

In the above DL framework, CNN is the most widely used due
to its excellent ability for spectral and spatial feature extraction.
CNN can be roughly divided into 1-DCNN [17], 2-DCNN [18],
3-DCNN [19], [20], [21], [22], and hybrid CNN methods [23],
[24], [25]. Under the condition of sufficient training samples,
these CNN-based methods achieve relatively good performance.
However, due to the fixed receptive field, these methods are dif-
ficult to take into account both coarse-grained and fine-grained
feature structures [26]. Therefore, some improved residual net-
works and deeper networks are proposed to enhance the ability
to capture deep discriminative features and promote regulariza-
tion [27], [27], [29].

As the depth of the network continues to increase, the com-
putational complexity of the model continues to increase, and
the efficiency of feature extraction is greatly reduced. In this
case, in order to extract more valuable features and weaken the
weight of invalid information to improve the performance of
the model, the attention mechanism is introduced into the DL
framework. Attention mechanisms are usually embedded into
the network as modular network modules, and can be roughly
divided into spectral attention, spatial attention, spatial-spectral
attention, and self-attention.

1) Spectral attention: Spectral attention is generally a simple
and effective multiplication mechanism for spectral bands,
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focusing on the channel characteristics of the input data.
Mou and Zhu [30] proposed a spectral attention module to
learn and recalibrate strengths of different spectral bands,
selectively emphasize useful bands, and suppress less in-
formative ones. Li et al. [31] designed a novel dual-channel
attention method for improving the spectral feature learn-
ing capability of the classifiers based on nonlocal and
global interchannel correlations. To enhance the difference
of hyperspectral data between categories, Liu et al. [32]
designed a classification method based on group spectral
attention with “squeeze-and-excitation” module [33] as
reference.

2) Spatial attention: Spatial attention can calculate indepen-
dent weights for heterogeneous pixels and obtain global
spatial information, which may weaken spatial homogene-
ity and heterogeneity in HSI [34]. In [35], spatial attention
module has been used to establish the spatial correlation
of different features. Zhang et al. [36] proposed a novel
spatial attention module to alleviate the degradation of
performance as the input patch size increases by capturing
the homogeneous pixels in the input patch. Xue et al. [37]
added a spatial attention module to model discriminative
and representative features.

3) Spectral–Spatial attention: The single use of spectral at-
tention or spatial attention in the process of extracting
discriminative features makes the model focus on spectral
sequence or space, which inevitably leads to the neglect of
the other. In this context, more and more methods use the
two together, or propose spectral–spatial joint attention.
Dong et al. [38] designed an attention module consisting
of spectral and spatial axes, by which the salient spectral–
spatial features will be emphasized. In [39], a spectral
attention that implicitly implements band selection for
HSI data and a spatial attention that adaptively selects
spatial information from different pixels in the field are
proposed and embedded in the residual block. This way
of stacking the attention mechanism with the residual
block greatly enhances the ability to refine features. Roy
et al. [40] proposed an adaptive spectral–spatial kernel
attention module to learn selective 3-D convolutional ker-
nels for HSI classification, and Lu et al. [41] proposed
a 3-D channel and spatial attention effectively express
the region of interest and conducive to information flow
within the network. Xie et al. [42] adaptively guided the
basic CNN to focus on different spectral channels and
spatial positions through global spectral–spatial attention
incorporated into each convolutional layer, achieving the
capture of discriminative features from shallow to deep
layers.

Although the introduction of the attention mechanism has
greatly promoted the performance improvement of the above-
mentioned CNN-based methods, it essentially does not escape
the disadvantages of CNN focusing on local features and lacks
pixel-level interaction of spectral sequence features. Information
is lost during the downsampling process, and deep networks
consume a lot of computing resources [43]. This characteristic

makes CNN more capable of extracting local spatial features
than modeling the global dependencies of spectral sequences.

Recently, transformer architecture [44] formed by com-
bining the self-attention mechanism with the multilayer per-
ceptron (MLP) and the demonstration of Vision Transformer
(ViT) [45] promotes the introduction of this excellent mod-
eling ability of long-distance dependence into HSI classifica-
tion to overcome the shortcomings of CNNs in global per-
ception. However, transformer-based methods exhibit robust
capabilities for global spectral feature modeling but strug-
gle to extract local spatial features effectively [46]. To give
more consideration to the hierarchy of feature extraction and
further improve the performance of the transformer, many
transformer-based methods incorporating convolution have been
proposed.

1) Transformer with traditional structure: In [47], a trans-
former with dense connection is designed to capture spec-
tral sequence relationships. From a sequence perspec-
tive, Hong et al. [48] implemented learning spectral local
sequence information from adjacent bands of HSIs. To
capture much more spectral–spatial information, Yang
et al. [49] proposed to encode the input representations
along the height, width, and spectral dimensions. Xu
et al. [50] reconstructed Swin Transformer [51] in 1-D
space for patchwise HSI classification. Tang et al. [52]
designed a newly double-attention transformer encoder,
which fuses the local spatial information with global spec-
tral features, to maximize spectral–spatial information
fusion.

2) Transformer combined with CNN: Sun et al. [53] used
CNN to extract shallow spectral–spatial features before
extracting deep semantic features. In [54], grouped con-
volution was used to extract discriminative spatial-spectral
features from nonoverlapping subchannels. Ouyang
et al. [55] utilized the local representation ability of CNN
to contribute richer image features to Transformer model.
In [56], CNN kernel is used in the spectral transformer
to refine the spectral value. Roy et al. [57] used spectral
and spatial morphological convolution combined with at-
tention mechanisms to improve the interaction between
structural and shape information. Zhang et al. [58] com-
bined multiattention and transformer to select bands and
spatial areas to pay more attention to the key areas. In [59],
a hierarchical attention designed to replace self-attention,
promoting the effective combination of CNN and
transformer.

Although all the above methods have good performance when
the training samples are sufficient, these deep models are prone
to overfitting problems when the training samples are severely
constrained [60]. In order to deal with few labeled samples, the
most challenging issue in hyperspectral classification scenar-
ios [61], some transfer learning [62], [63], [64], active learning
[65], [66], [67], and few-shot learning (FSL) [54] methods have
been proposed. In transfer learning, Yang et al. [68] proposed
an effective transfer learning method that used hierarchical deep
neural networks for shallow feature transfer and deep feature
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classification to retain source domain features. In [69], a gener-
ative domain adaptation method was proposed to make the dis-
criminant boundary of the classifier more suitable for the target
domain. Qin et al. [70] designed a novel cross domain method
based on feature disentanglement to preserve discriminative
information from the heterogeneous data space. In active learn-
ing, an iterative semisupervised CNN framework [71] was
proposed through active learning and superpixel segmentation
techniques. Zhao et al. [72] proposed an adaptive superpixel seg-
mentation active learning framework to select important samples
for the transformer model to cope with limited labeled samples
tasks. As for FSL, Xi et al. [73] proposed a deep prototypical
network with hybrid residual attention, which can effectively
investigate the spectral–spatial information in the HSI. Zeng
et al. [74] designed a multistage relational network with dual
metric to effectively represent the class distribution with fewer
labeled samples. In [75], a spectral–spatial siamese network
(S3Net) was proposed to resolve the challenge of overfitting in
DL models.

The above DL methods have all achieved excellent
performance in HSI classification. However, these meth-
ods still have many limitations when dealing with limited
samples.

1) The CNN-based methods have strong ability to capture
local spatial relationships benefit from the excellent local
extraction capabilities and parameter sharing mechanism,
but lack the ability to model long-distance relationships
between pixels, and are difficult to ensure the continuity
of spectral sequence features.

2) The transformer-based methods can ensure the integrity of
the spectral sequence and the modeling of long-distance
dependencies. However, the lack of hierarchical feature
extraction results in models that often rely on deeper
encoders and lack the ability to represent local spatial
features. Although some models utilize CNN to extract
shallow features, the lack of feature transition processing
leads to frequent linear mapping that destroys feature
correlation.

3) Existing transfer learning, active learning, and FSL meth-
ods for limited samples are overly reliant on complex
training techniques and data preprocessing, such as data
augmentation, domain adaptation, and metric learning.
While enriching the number of trainable samples, they
inevitably increase the complexity of training.

4) Although the existing attention mechanism can focus on
spectral or spatial tasks, the lack of feature similarity learn-
ing leads to insufficient intermediate feature representa-
tion capabilities, making it difficult to provide adaptive
weights for the feature extraction process.

Very recently, a new white-box transformer is proposed [76],
in which a multihead subspace self-attention (MSSA) operator is
designed to replace the self-attention mechanism in traditional
ViTs as the gradient descent step for compressing the token
sets, and achieves better performance. MSSA greatly reduces
the number of parameters, which creates excellent conditions
for feature fusion of two-stream network architecture.

In this article, we proposed a dual architecture lightweight
spectral–spatial score fusion attention network (S3FAN) that
achieves efficient weighted extraction and feature recalibra-
tion and fuses spectral–spatial features and spectral interac-
tion features. First, after dimensionality reduction using prin-
cipal component analysis (PCA), spectral score fusion attention
(SpeSFA) is designed to achieve adaptive weighting of spectral
features, and use lightweight spectral ResNet to realize fea-
ture dimensions first enlarging and then compressing. Second,
we designed a spectral transition (ST) block, which combined
fully connection and convolution together to perform feature
recalibration on the spectral features compressed by spectral
ResNet. Third, MSSA operator is adopted to form transformer
encoder to capture spectral interaction features and spatial score
fusion attention (SpaSFA) and spatial ResNet are designed to
obtain spectral–spatial features. Finally, the spectral interaction
features and spectral–spatial features are aligned in the feature
dimension and weighted fused, and global average pooling
(GAP) is used for classification.

The main contributions of our work can be summarized as
follows.

1) Score fusion attention, including SpeSFA and SpaSFA of
dynamically updated weights and fully considered feature
similarities are designed to obtain fused attention scores.
With these two attentions, adaptive attention weights for
spectral and spatial extraction are calculated to enhance
feature extraction capabilities.

2) ST block is designed to achieve reweighting of spec-
tral features and perform global and local feature re-
calibration on the extracted spectral features to adapt
to the subsequent feature extraction process. Experi-
ments show that this transitional processing of extracted
features has a significant effect on further improving
performance.

3) Spectral ResNet is constructed to achieve pre-extraction
of spectral features. MSSA is introduced to match MLP
to achieve pixel-level spectral sequence interaction of
self-correlation, and the resulting spectral interactive fea-
tures are weighted fused with spatial features extracted
by spatial ResNet. The proposed S3FAN shows advan-
tages over other advanced methods in its performance
on multiple datasets for HSI classification with limited
samples.

II. PROPOSED METHODOLOGY

An overview of the proposed S3FAN is shown in Fig. 1.
First, PCA dimensionality reduction is performed on the in-
put HSI dataset, and then the patch X ∈ Rh×w×C centered
on the target pixel is fed to the spectral weighted extraction
and transition module (SWETM). Second, through SpeSFA
and spectral ResNet in SWETM, high-dimensional intermediate
features are extracted and compressed to varying degrees to
obtain dual-branch output features. And then, ST blocks are
used to reweight spectral features. Third, the two branch features
are input to spectral subspace interaction module (SSIM) and



14524 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Graphical illustration of the proposed S3FAN.

TABLE I
ARCHITECTURAL DETAILS OF THE PROPOSED S3FAN

spatial weighted extraction module (SWEM), respectively. And
two deep discriminant features obtained are first dimensionally
reduced through GAP and then weighted and fused to achieve the
complementarity of spectral interactive features and spectral–
spatial features, the resulting fusion features are presented in
the form of low-dimensional vectors. Finally, the fused features
are classified through GAP, a parameterless classification head,
and the classification result will be used as the predicted label
of the central pixel of the original patch. Layer specification as
well as the input and output size of each module in the proposed
S3FAN are presented in Table I.

A. Spectral Weighted Extraction and Transition Module

1) Spectral Score Fusion Attention: As shown in Fig. 2, the
input patch xl ∈ Rh×w×C first enters a 1-D convolution layer
(this module is used as a 1-D convolution by setting the spatial
size of the 3-D convolution to 1) to simply extract spectral
discriminative features, then performs residual connection to
obtain intermediate features xl+1 ∈ Rh×w×C , the formulas are
as follows:

xl+ 1
2 = f1(xl) + xl (1)

f1(x
l) = ReLU

(
BN
(
Conv(xl)

))
(2)

Conv(xl) = Wl · xl + bl (3)

BN(x) =
x− mean(x)√

var(x) + ε
· γ + β (4)

ReLU(x) = max(x, 0) (5)

where f i(·) is a complete convolution layer, including a 1-D con-
volution Conv(·), batch normalization layer BN(·), and ReLU
activation function ReLU(·). In (3), Wl is the weight matrix and
bl is the bias. In (4), γ and β are learnable parameter vectors and
ε is a parameter for numerical stability.

Then, use 2-D average pooling and 2-D maximum pooling,
respectively, on the intermediate features xl+ 1

2 ∈ Rh×w×C to
obtain two representation vectors vavg, vmax ∈ R1×1×C :

vavg =
1

h× w

h∑
i=1

w∑
j=1

xl+ 1
2 (i, j) (6)

vmax = max
(
xl+ 1

2 (i, j)
)

(7)



CHENG et al.: SPECTRAL–SPATIAL SCORE FUSION ATTENTION NETWORK FOR HSI CLASSIFICATION WITH LIMITED SAMPLES 14525

Fig. 2. Graphical illustration of SpeSFA.

In this way, the most significant features and global features
of each HSI band can be extracted to form two sets of feature
vectors.

To achieve dimension scaling of the feature vector to en-
rich the features and extract them, vectors are input into the
convolution block. This convolution block is composed of two
convolutional layers.

[v′avg, v
′
max] = ReLU

(
Conv1([vavg, vmax])

)
(8)

v′avg, v
′
max ∈ Rm×1×1×C

[v∗avg, v
∗
max] = ReLU

(
Conv2([v′avg, v

′
max])

)
v∗avg, v

∗
max ∈ R1×1×C (9)

where v′avg, v′max are the output features of the first convolutional
layer,m is the dimension of feature vectors, and v∗avg and v∗max are
the output discriminant vectors. The weights of the convolutions
in this process are shared to learn the similarity of the two feature
vectors, and help reduce the number of parameters and accelerate
the convergence of the model.

To achieve dynamic attention to spectral features, first, v∗avg
and v∗max are summed to promote information interaction and
enrich feature expression to obtain vsum. Second, v∗avg, v∗max,
and vsum are adaptively weighted and summed after calculating
the attention scores through sigmoid to obtain the attention of
score fusion, this treats each set of features independently to
introduce more nonlinear features. Finally, these three scores
are multiplied with the input features as follows:

vsum = v∗avg + v∗max (10)

se = r1 × σ(vsum) + r2 × σ(v∗avg) + r3 × σ(v∗max) (11)

xl+1 = se · xl (12)

where se is the spectral attention score, r1, r2, and r3 are the
adaptive normalized weights, and xl+1 is the output feature map
of spectral attention.

2) Spectral ResNet: The lightweight spectral ResNet we de-
signed has been presented in Fig. 1. After performing a convolu-
tional layer to extract features and expand the feature dimension,
insert the residual connection and perform subsequent extraction

Fig. 3. Graphical illustration of ST block.

work. The formula is expressed as follows:

xl+2 = f2(xl+1) (13)

xl+2 = [xl+2
1 , xl+2

2 , . . . , xl+2
10 ] ∈ R10×h×w×C

where xl+2 is the high-dimensional feature map after the first
convolutional layer. To ensure sufficient spectral features for
spectral semantic extraction and reduce spectral intervention
during spatial information extraction, differential output is
adopted for spectral ResNet as follows:

F i
SpeRes(x

l+1) = f5
i

(
ReLU

(
xl+2 +BN

(
f4(f3(xl+2))

)))
xl+3
i = F i

SpeRes(x
l+1) ∈ Rh×w×di (14)

where xl+3
i ∈ Rh×w×di is the output feature of spectral ResNet.

We believe that spectral features need to be treated differently
for semantic extraction and spatial extraction. The feature of
the upper branch is compressed into xl+3

1 ∈ Rh×w×C(d1 = C)
to ensure the continuity and completeness of the spectral se-
quence. The lower branch is xl+3

2 ∈ Rh×w×KS(d2 = KS < C)
to weaken the impact of spectral dimensions on spatial extrac-
tion.

3) ST Block: As shown in Fig. 3, ST block efficiently com-
bines global and local interactive sequence information. Specif-
ically, GAP is first used on the input feature xl+3

i ∈ Rh×w×di

to obtain the spectral representation vector. Linear mapping and
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1-D convolution are used to obtain spectral weight values ω1
i

and ω2
i , thereby achieving complete and local modeling of spec-

tral sequence correlation. The input feature is then reweighted
according to the spectral dimension. In order to further realize
the global and local interaction of the spectral sequence and
realize spectral feature recalibration, the two weight vectors are
weighted and summed and the input features are reweighted.
Finally, the three reweighted features are summed. The corre-
sponding formulas are as follows:

Conv1d(x,W ∗) =
k∑

i=1

xi ·W ∗
i

ω1
i = σ

⎛
⎝Conv1d

⎛
⎝ 1

h× w

h∑
k=1

w∑
j=1

xl+3
i (k, j),W ∗

⎞
⎠
⎞
⎠

ω2
i = σ

⎛
⎝Linear(

1

h× w

h∑
k=1

w∑
j=1

xl+3
i (k, j),W1)

⎞
⎠

xl+4
i = (r′1 × ω1˜T

i + r′2 × ω2˜T
i ) · xl+3

i + ω1˜T
i · xl+3

i

+ ω2˜T
i · xl+3

i (15)

where W ∗ is the weight of 1-D convolution convolution.
Linear(·) represents linear transformation. xl+4

i ∈ Rh×w×di de-
notes the output of ST block. Specifically, the output of the upper
branch (ST block1) is xl+4

1 ∈ Rh×w×C , whereas the output of
the lower branch (ST block2) is xl+4

2 ∈ Rh×w×KS .

B. Spectral Subspace Interactive Module

As shown in Fig. 1, the output feature of ST block1 xl+4
1 ∈

Rh×w×C serves as input into SSIM to achieve spectral se-
quence interaction of pixels. Before entering the transformer
encoder, xl+4

1 ∈ Rh×w×C performs preprocessing. To high-
light the central pixel of the patch and reduce the weaken-
ing of the central pixel by the spatial information brought
by the surrounding pixels, so that the transformer can fo-
cus more on realizing the global interaction of the spectral
sequence, we use pixel embedding in the tokens mapping.
First, patch-level features are stretched into pixel-level tokens
xl+4
1 = [yl+4

1 , yl+4
2 , . . . , yl+4

h∗w] ∈ Rh∗w×C through pixel embed-
ding. yl+4

i ∈ R1×C(i = 1, 2, . . . , h∗w) denote pixel-level spec-
tral vectors. Then, tokens are mapped to the hidden layer
xl+4
1 ∈ Rh∗w×C → X ∈ Rh∗w×D by linear projection (D is the

dimension of the hidden layer), and then, class token and position
embedding are performed, its expression is as follows:

Xi = yl+4
i · E ∈ R1×D, X[CLS] ∈ R1×D,PEpos ∈ R(h∗w+1)×D

X = [X[CLS], X1, X2, . . . , Xh∗w] + PEpos (16)

where E represents the linear projection. X[CLS] and PEpos de-
note learnable classification token and positional information,
respectively.

Next, we iteratively perform MSSA and MLP, and the follow-
ing represents the formula for the lth layer:

Z l
2
= MSSA(LN(Xl)) + LN(Xl) (17)

Fig. 4. Graphical illustration of MSSA operator.

Zl = MLP(LN(Z l
2
)) + LN(Z l

2
) (18)

where Z l
2

and Zl denote the output features of MSSA module
and MLP module, respectively. LN(·) is layer normalization.
As in (17) and (18), residual connection prevents gradient dis-
appearance. The combination of MSSA and MLP enables the
global correlation between sequences to be fully considered,
and the spectral sequence features to fully interact. MSSA
compresses the sequence composed of input spectral vectors,
extracts global relationships, and aggregates information. MLP
projects aggregated information into a specific semantic space.
More details are given below.

1) Layer Normalization (LN): LN is an important means to
ensure stable training and faster convergence of the model and
effectively avoid gradient explosion. LN is applied over each
input feature as follows:

LN(X) =
X − μ

δ
· Γ + β (19)

where μ and δ are the mean and standard deviation of X , while
Γ and β are learnable affine transform parameters.

2) Mutihead Subspace Self-Attention (MSSA): To further
learn the pixel-level global dependence of spectral sequences, we
use MSSA [76], a self-attention mechanism that is different from
MHSA. Fig. 4 shows the MSSA operator process. Sufficient
correlation calculations are performed on the pixel-level spectral
sequence features in the subspace to achieve global modeling of
the spectral sequence. In detail, the linear operators of value, key,
and query are all set to be the same as the subspace basis U ∗,
which greatly reduces the number of parameters. The counting
process of MSSA can be formulated as follows:

V = K = Q = U ∗

SSA = Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

MSSA(Q,K, V ) = Concat(SSA1,SSA2, . . . ,SSAh)W0

(20)

where h is the number of heads and W0 is the parameter matrix.
3) MLP: MLP excels in modeling long-range dependencies

of markers in sequences, consisting of linear projection and
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Fig. 5. Graphical illustration of SpaSFA.

GELU activation function. The specific formulas are as follows:

GELU(x) = 0.5x

(
1 + Tanh

(√
2

π
(x+ 0.044715x3)

))

(21)

MLP(z) = Linear (GELU(Linear(z,W ′)),W ′′) (22)

where x and z denote input feature maps.

C. Spatial Weighted Extraction Module

1) Spatial Score Fusion Attention: As shown in Fig. 5,
SpaSFA is structurally similar to SpeSFA, but changes have been
made in specific components to adapt to the spatial dimension
and weaken the influence of spectral dimension. In the pre-
extraction and convolution block, 2-D convolution that is more
focused on extracting spatial features and spectral dimension
are used. In addition, after unfolding the spatial domain, a 1-D
pooling operation was performed on the spectral domain to
achieve the purpose of weakening the spectral dimension and
obtain two sets of representation matrices of spatial features. In
this way, the size of the spatial dimension will not be lost due
to pooling, avoiding the destruction of spatial information. The
details are described below.

The output feature of ST block2 is xl+4
2 ∈ Rh×w×KS . First,

perform a convolution pre-extraction and residual connection on
it to get xl+5

2 , and then unfold it: xl+5
2 ∈ Rh×w×KS → xl+6

2 ∈
Rh∗w×KS . Next, 1-D average pooling and 1-D maximum pool-
ing are applied to it, respectively, to obtain two spatial matrix
Savg and Smax. Then, input the two matrix into the weight-shared
convolution block to obtain the deep features and learn the spatial
similarity. Then, use sigmoid on the obtained deep features, re-
spectively, and use sigmoid on the summed features and perform
weighted fusion to obtain the fused spatial score Sa. Finally, the
spatial fraction is inner product along the spectral dimension of
the input feature as follows:

xl+4
2 = [X l+4

1 , X l+4
2 , . . . , X l+4

KS ], X
l+4
i ∈ Rh×w×1

Zi = X l+4
i � Sa =

⎡
⎢⎢⎢⎢⎣
Xi

11S11 Xi
12S12 · · · Xi

1˜wS1˜w

Xi
21S21 Xi

22S22 · · · Xi
2˜wS2˜w

...
...

. . .
...

Xi
h1Sh1 Xi

h2Sh2 · · · Xi
hwShw

⎤
⎥⎥⎥⎥⎦

(23)

zl+4 = Concat(Z1, Z2, . . . , ZKS) ∈ Rh×w×KS

(24)

where � represents Hadamard product and zl+4 denotes the
output feature of spatial attention.

2) Spatial ResNet: As shown in Fig. 1, Spatial ResNet con-
sists of a reasonable combination of four 2-D convolutional
layers and a residual connection to simply and effectively extract
spatial features. In order to ensure the focus on extracting local
spatial information, the feature dimension remains unchanged
during this process to avoid unnecessary information redun-
dancy. The formula is as follows:

zl+5 = FSpaRes(z
l+4) ∈ Rh×w×KS (25)

where zl+5 is the output feature map.

D. Adaptive Feature Fusion and Classification

The complementary information between features of different
scales can be aggregated to continuously enhance the representa-
tion ability of features [77]. To achieve the complementarity be-
tween the global pixel-level spectral features obtained by SSIM
and the local patch-level spatial features captured by SWEM
and obtain the most discriminative features, thereby further
improving classification performance, we perform weighted fu-
sion after dimensionally aligning the spectral interative features
ZL ∈ R(h∗w+1)×D obtained by SSIM and the spatial-spectral
features zl+5 ∈ Rh×w×KS obtained by SWEM, the details are
described below.

First, class token X ′
[CLS] employed to represent features for

subsequent classification are extracted from spectral interactive
features ZL ∈ R(h∗w+1)×D. After identity mapping of the class
token, 1-D average pooling is used to achieve parameter-free
dimensionality reduction to obtainXse ∈ R1×c. At the same time,
1-D average pooling is also used to the reshaped spectral–spatial
features zl+5 ∈ Rh∗w×KS to obtain Xsa ∈ R1×c. Then, the two
discriminant features are weighted and fused to obtain spectral–
spatial fusion features Xfused ∈ R1×c. Finally, parameter-free 1-
D average pooling is still used as the classification head for
classification. The formula represent feature fusion is as follows:

Xfused = λ × Xse + (1− λ)× Xsa (26)

where λ is the adaptive normalized weight.
In the entire process of feature dimension alignment and clas-

sification, the reason why parameter-free 1-D average pooling is
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Algorithm 1: S3FAN.

Input: HSI data X̂ ∈ RH×W×B and ground truth image
Y ∈ RH×W , number of PCs C, training epoch for
S3FAN epoch, depth of transformer encoder L.

Output: Predicted labels for HSI.
1: Reduce the demension of HSI by PCA.
2: Split training set and testing set, build dataloaders.
3: for i=1 to epoch do
4: I. SWETM
5: Obtain weighted features x̂ through SpeSFA;
6: Apply (14) on x̂ to get output features x̂1 ∈ Rh×w×C

and x̂2 ∈ Rh×w×KS ;
7: Apply ST Blocks on x̂1 and x̂2 to get reweighted

features x̂1
1 and x̂1

2.
8: II. SSIM and SWEM
9: While using pixel embedding and (16) for x̂1

1, use
SpaSFA for x̂1

2 to get x̂2
1 and x̂2

2.
10: for j=1 to L do
11: Apply (17) and (18) on x̂2

1.
12: end
13: Apply (25) on x̂2

2.
14: III. Adaptive Feature Fusion and Classification
15: For the output of SSIM and SWEM, after aligning the

dimensions, using (26) to get fused feature;
16: Use GAP to obtain classification vectors;
17: Get the predicted label using arg max;
18: Calculate Lcre−LS using (28) with Adam optimizer.
19: end

used as a means of dimensionality reduction and classification is
because the extraction of deep discriminative features has been
completed in the previous process. Parameter-free pooling can
reduce the overall parameter amount of the model and avoid
overfitting.

Label smoothing cross-entropy loss function is used to calcu-
late training loss and update model weights, the formula can be
represented as follows:

Lcre = −
N∑
i=0

yilog(ŷi) (27)

Lcre−LS = (1− ε0)Lcre − ε0
N

N∑
i=0

log(ŷi) (28)

where N is the number of categories, yi and ŷi are the true
label and the predicted class probabilities of the ith sample. ε0
represents label smoothing factor.

At the end of this section, the pseudocode of S3FAN algorithm
is shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

A. Hyperspectral Datasets

We select five publicly available and popular datasets includ-
ing Indian Pines, University of Pavia, Salinas, Yellow River
Delta, and WHU-Hi-LongKou to verify the proposed method.

Fig. 6. Indian Pines. (a) False-color composite image (R: 50, G: 27, B: 17).
(b) Ground-truth map.

Fig. 7. University of Pavia. (a) False-color composite image (R: 102, G: 56,
B: 31). (b) Ground-truth map.

All of them are used for parameter sensitive analysis, ablation
study, and to evaluate the classification performance. The num-
ber of labeled samples corresponding to different categories in
different datasets is presented in Table II. And the false-color
composite images and ground-truth maps corresponding to these
five datasets are shown in Figs. 6–10, respectively.

B. Experimental Settings

1) Hyperparameters: For training epoch, the training pro-
cess would be stopped when the training loss stabilizes. In the
experiment for five datasets, the training epoch was uniformly
set to 50, and the training loss is stable under this setting. For
all datasets, the batch size is set to 32. In addition, other hy-
perparamerters, including the number of principal component,
patch size, learning rate, depth of transformer encoder, and the
input dimensions of ST block2 are analyzed in the experiment
of parameter sensitive analysis.

2) Training Samples: To evaluate the classification perfor-
mance of the model under limited sample conditions, we select
ten labeled samples per class for training randomly, and the
rest of samples are constructed for testing, in the experiment
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TABLE II
NUMBER OF LABELED SAMPLES PER CLASS FOR FIVE DATASETS

Fig. 8. Salinas. (a) False-color composite image (R: 57, G: 27, B: 17). (b)
Ground-truth map.

Fig. 9. Yellow River Delta. (a) False-color composite image (R: 55, G: 28, B:
8). (b) Ground-truth map.

Fig. 10. WHU-Hi-LongKou. (a) False-color composite image (R: 174, G: 118,
B: 57). (b) Ground-truth map.

of ablation study and performance comparison. If there are few
labeled samples for a certain class that the selected samples
are less than half of the total labeled samples, we select half
of the labeled samples for the train set, and the remaining
samples for the test set. In addition, 20 labeled samples per
class are randomly selected for the parameter sensitive analysis.
However, for the generalization performance experiment, we set
the labeled samples per class in the range of [5, 10, 15, 20, 30,
40, 50].

3) Performance Comparison: We compare the proposed
method with other advanced DL methods, including six CNN-
based methods and five transformer-based methods. Specifi-
cally, the CNN-based methods include three common DL meth-
ods, 3-DCNN [19], HybridSN [25], and spectral–spatial residual
network (SSRN) [28], and the other three methods are resid-
ual spectral–spatial attention network (RSSAN) [39], which
inserts spectral–spatial attention into residual network, A2S2K
ResNet [40], which has a spectral–spatial kernel attention, there
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Fig. 11. Evolution of OA as a function of (a) number of PCs, (b) patch size, (c) learning rate, (d) transformer depth L, and (e) output dimension KS.

are also two FSL methods, including S3Net [75] and multi-
stage relation network with dual-metric (DM-MRN) [74]. Five
transformer-based methods include SpectralFormer (SF) [48],
hyperspectral image transformer (HiT) [49], spectral–spatial to-
kenization transformer (SSFTT) [53], group-aware hierarchical
transformer (GAHT) [54], and local transformer with spatial
partition restore (SPRLT) [34]. The parameter settings of these
methods are the same as those presented in the corresponding
articles.

4) Running Platforms and Metrics: All experiments were
run with 12th generation Intel (R) Core (TM) i7-12700, NVIDIA
GeForce RTX 4070 (12 GB), and 64 GB RAM, based on
PyTorch 2.1.1 and CUDA 12.1. For the purpose of improving the
stability of experimental results, we present the average result
of ten independent experiments. The evaluation metrics include
three commonly used metrics, namely, overall accuracy (OA),
average accuracy (AA), and kappa coefficient (κ). Furthermore,
to evaluate the complexity of the model, training time (s), test
time (s), and the amount of parameters are used as evaluation
indicators.

C. Parameter Sensitive Analysis

1) Dimensionality Reduction Using PCA: To find the opti-
mum reduced-dimension of PCA, Fig. 11(a) shows the evolution
of OA with the number of PCs. We can easily see that for Indian
Pines and University of Pavia, the effect of PCA for dimension-
ality reduction is not significant, but their OA performance is the
best when the number of PCs is set to 110 and 50, respectively.
For the other three datasets, most of the performance after dimen-
sionality reduction has been significantly improved compared to

that without PCA dimensionality reduction. For the other three
datasets, most of the performance after dimensionality reduction
has been significantly improved compared to that without PCA
dimensionality reduction. For Salinas, Yellow River Delta, and
WHU-Hi-LongKou, the highest OA can be achieved when the
number of PCs is set to 40, 90, and 40, respectively. Therefore,
the above configurations are used for subsequent experiments.

2) Patch Size: To select the optimum patch size for each
dataset, we set patch size in the range of [5, 7, 9, 11, 13, 15,
17]. As shown in Fig. 11(b), for Indian Pines, OA achieves
the best performance when the patch size is set to 7 × 7.
For University of Pavia, when patch is set to 13 × 13, the
highest OA can be achieved. Both Salinas and Yellow River
Delta achieve the highest OA when the patch is set to 17 × 17.
For WHU-Hi-LongKou, when the patch is adjusted to 9× 9, OA
performs best. Therefore, according to the above experimental
results, patches are set for these five datasets.

3) Learning Rate: To find the optimum learning rate for each
dataset, we set it in the range of [0.00005, 0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05]. As shown in Fig. 11(c), for all five datasets,
when learning rate is set to 0.0005, OA achieves the highest
level. Therefore, learning rate is kept at 0.0005 in all other
experiments.

4) Depth of Transformer Encoder: In order to evaluate the
influence of transformer encoder at different depth on model
performance, as shown in Fig. 11(d), depth L is set in the
range [1, 2, 3, 4, 5, 6]. As can be seen, for all five datasets,
OA performance is relatively low when L is larger or smaller,
that is, when transformer encoder depth is deeper or shallower.
Besides when L is set to 3, the proposed model achieves optimal
performance in all datasets.
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TABLE III
ABLATION ANALYSIS OF SCORE FUSION ATTENTION AND ST BLOCK

Fig. 12. Ablation analysis of score fusion attention. (a) Shared weights. (b)
Attention mechanisms.

5) Feature Dimension of SWEM: The feature dimension of
SWEM represents the feature dimension size for spatial ex-
traction, which is actually controlled by the number of output
channels of the last convolution layer of spectral ResNet. In order
to find the compressed feature dimension size that is optimum
for the spatial extraction module, we set the output dimension of
lower branch (KS) of spectral ResNet in the range [5, 10, 15, 20].
As shown in Fig. 11(e), We can clearly see that when KS is set
to 10, the performance of the proposed model achieves optimal.

D. Ablation Study

1) Effectiveness of Score Fusion Attention (SFA): We re-
moved the proposed SpeSFA and SpaSFA, respectively, to con-
duct experiments, and compared the accuracy achieved by the
complete S3FAN to verify the function of SpeSFA and SpaSFA.
It can be clearly seen from Table III that when only SpeSFA
or SpaSFA is retained, the accuracy that the model can achieve
will be better than eliminating both at the same time. After only
adding SpeSFA, OA has the most obvious growth on University
of Pavia, with an increase of 2.48% compared to the no-attention
mechanism. By only adding SpaSFA, the OA of all datasets also
increased. Among them, the most significant improvement was
LongKou, which increased by 1.23%. Furthermore, when the
proposed SpeSFA and SpaSFA are added at the same time, as
shown in Table III, the performance achieved by the model is
significantly improved compared to the no-attention mechanism,
especially on Indian Pines and University of Pavia, which in-
creased by 2.64% and 3.03%, respectively. In addition, to prove
the effectiveness of shared weights in SFA in improving model
performance, we removed the shared weights mechanism in
SpeSFA and SpaSFA, and compared the accuracy obtained with
the accuracy under the complete SFA mechanism. As shown in
Fig. 12(a), SFA (Ours) achieves higher OA than SFA (without

TABLE IV
ABLATION ANALYSIS OF ST BLOCK

shared weights). Specifically, the classification accuracy of the
model on the five datasets decreases by 0.48%–1.81%, when
SFA removes shared weights. To further demonstrate the im-
provement of SFA on model performance, we replaced other
advanced attention mechanisms, including SimMA [78], and
spectral–spatial attention (SSA) module [79], to compare the
accuracy. Fig. 12(b) shows the accuracy comparison of the model
under three attention mechanisms. Obviously, the model using
SFA has improved performance compared with the other two
attention methods, especially on University of Pavia, which is
improved by at least 2.64%.

2) Effectiveness of ST Block: In the proposed S3FAN, the
ST blocks realize effective transition from spectral weighted
extraction to subsequent tasks and achieve the spectral feature
recalibration and the enhancement of the representation ability
of features. This strategy of reweighting the extracted features
has significantly improved model performance. To confirm the
effectiveness of ST blocks, the ST blocks are all removed
first, and then added successively. As shown in Table III, the
embedding of ST blocks obviously improves the performance
of OA, especially for Indian Pines, University of Pavia, and
Yellow River Delta. In addition, compared with the complete
S3FAN and the S3FAN without ST blocks, OAs are greatly
improved on all datasets. As shown in Table III, for University
of Pavia and Indian Pines, OAs have the most dramatic improve-
ment, increasing by 5.32% and 5.24%, respectively. Besides, for
Salinas, Yellow River Delta, and LongKou, the improvement of
OAs are also significant, with OAs increasing by 2%, 4.3%, and
1.1%, respectively. To further demonstrate the improvement of
ST block on model performance, we compared the two feature
recalibration methods, ECA [80] and SRM [81]. As shown in
Table IV, compared with the other two methods, the accuracy
of the model using ST block is improved on the five datasets.
Especially on Indian Pines, University of Pavia, and Salinas, the
accuracy is 1.01%, 1.41%, and 0.6% higher than the suboptimal
ECA method, respectively.
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TABLE V
ABLATION ANALYSIS OF MODULES OF S3FAN

TABLE VI
ABLATION STUDY OF WEIGHTED FUSION FOR FEATURE FUSION

3) Effectiveness of Modules of S3FAN: In the proposed
S3FAN, a total of three modules can be divided into SWETM,
SSIM, and SWEM. To verify the effectiveness of these three
modules, SWETM, SSIM, and SWEM are removed and added
in order. Since the discriminative nature of spectral information
is the basis of pixel-level HSI classification, the removal of
SWETM will inevitably lead to a decrease in feature discrimi-
nation ability. As shown in Table V, after eliminating SWETM,
even if SSIM and SWETM are retained at the same time, the
accuracy results are not good. In the case of only retaining
SWETM, although the accuracy is improved compared to the
former, it is not outstanding enough. Next, SWETM-SSIM and
SWETM-SWEM are compared to verify the role of fusion of
spectral interaction features and spectral–spatial features. For In-
dian Pines and Salinas, the OA performance of SWETM-SSIM is
superior, while for the other datasets, SWETM-SWEM achieves
better OA performance. However, after weighted fusion of the
features extracted by these two feature extraction strategies,
for all datasets, OA has been significantly improved. Specifi-
cally, compared to SWETM-SWEM and SWETM-SSIM, OAs
increase 9.62% and 2.56%, respectively, for Indian Pines, 1.48%
and 2.47%, respectively, for University of Pavia, 1.2% and
0.37%, respectively, for Salians, 1.02% and 4.75%, respectively,
for Yellow River Delta, 0.58% and 0.58%, respectively, for
LongKou. To achieve the complementarity of spectral and spa-
tial features captured by SWETM-SSIM and SWETM-SWEM,
weighted fusion is used in feature fusion stage. To validate the

TABLE VII
ABLATION ANALYSIS OF PCA FOR DATA DIMENSIONALITY REDUCTION

superiority of weighted fusion, we substitute weighted fusion
with other feature fusion methods, including Conv2-D [82],
pooled activation fusion module (PAFM) [83], and AF Oper-
ation (AF) [84], and then conduct comparative experiments. As
is reported in Table VI, weighted fusion achieves the highest
accuracy among all methods, with fewer model parameters than
Conv2-D, PAFM, and AF.

4) PCA for Data Dimensionality Reduction: The dimension-
ality disaster caused by the spectral information redundancy
of HSIs is not conducive to subsequent information extraction
and classification tasks. In this experiment, we compare the
OAs of different dimensionality reduction methods on Indian
Pines, University of Pavia, and Salinas, including independent
component analysis (ICA), sparse principal component analy-
sis (SPCA), linear discriminant analysis (LDA), singular value
decomposition (SVD), and the widely used PCA. As shown in
Table VII, when PCA is employed for dimensionality reduction,
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Fig. 13. Evolution of OA as a function of training samples per class. (a) Indian Pines. (b) University of Pavia. (c) Salinas. (d) Yellow River Delta. (e) WHU-Hi-
LongKou.

TABLE VIII
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS IN INDIAN PINES (10 LABELED SAMPLES PER CLASS FOR TRAINING)

the model achieves the best performance on the three datasets,
and the OA accuracy is 0.08%, 0.74%, and 0.36% higher than
the suboptimal method, respectively.

E. Generalization Performance

To evaluate the generalization performance of the proposed
S3FAN, the classification results of different advanced methods
under few training samples in the range of [5, 10, 15, 20,
30, 40, 50] from five different datasets are compared in this
experiment. Details are shown in Fig. 13, S3FAN achieved the
highest accuracy under all conditions of training samples on
all datasets, which shows that our proposed method has better
generalization performance than other methods. The proposed

S3FAN not only has the highest OA than other methods when
the number of labeled samples per class for training is 5, but as
the number of samples increases, its performance still exceeds
other advanced methods.

F. Classification Results

In order to verify the superiority of the proposed S3FAN
under few labeled samples, we randomly select 10 labeled
samples per class for training and the rest are used for testing
to compare the classification performance with other methods.
The classification accuracy result of different methods for Indian
Pines, University of Pavia, Salinas, Yellow River Delta, and
WHU-Hi-LongKou are reported in Tables VIII–XII. To more
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TABLE IX
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS IN UNIVERSITY OF PAVIA (10 LABELED SAMPLES PER CLASS FOR TRAINING)

TABLE X
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS IN SALINAS (10 LABELED SAMPLES PER CLASS FOR TRAINING)

TABLE XI
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS IN YELLOW RIVER DELTA (10 LABELED SAMPLES PER CLASS FOR TRAINING)

TABLE XII
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS IN WHU-HI-LONGKOU (10 LABELED SAMPLES PER CLASS FOR TRAINING)
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Fig. 14. Classification maps obtained by different methods in Indian Pines (10 labeled samples per class for training). (a) Ground truth, (b) 3-DCNN (59.34%),
(c) HybridSN (77.02%), (d) SSRN (86.55%), (e) RSSAN (70.33%), (f) A2S2K (90.46%), (g) S3Net (85.89%), (h) DM-MRN (80.44%), (i) SF (81.57%), (j) HiT
(62.33%), (k) SSFTT (66.49%), (l) GAHT (62.27%), (m) SPRLT (87.63%), and (n) S3FAN (93.64%).

Fig. 15. Classification maps obtained by different methods in University of Pavia (10 labeled samples per class for training). (a) Ground truth, (b) 3-DCNN
(68.49%), (c) HybridSN (87.48%), (d) SSRN (91.20%), (e) RSSAN (80.78%), (f) A2S2K (86.43%), (g) S3Net (90.05%), (h) DM-MRN (90.53%), (i) SF (83.69%),
(j) HiT (75.05%), (k) SSFTT (80.17%), (l) GAHT (76.37%), (m) SPRLT (84.35%), and (n) S3FAN (97.07%).

intuitively and visually compare and reflect the classification
performance based on S3FAN and other methods, we display
the ground truth of the five datasets and the classification results
of S3FAN and other methods on the five datasets in Figs. 14–18.

1) Indian Pines: The classification accuracy results of Indian
Pines are reported in Table VIII. It can be seen that the average
OA and κ × 100 achieved by S3FAN are significantly higher
than other methods. Specifically, OA achieves 93.64%, which
is better than other methods by 34.3% to 3.18%. And kappa

achieved 92.79%, which was an improvement of 38.44% to
3.57% compared with other methods. It is noted that S3Net
performs best in AA, considering that S3Net uses a differen-
tiated sample pairing strategy as a FSL method to provide the
model with more learnable features, thereby enabling the model
to perform better on categories with fewer learnable samples,
such as Grass-pasture-moved, Oats, and Stone-streel-towers.
DM-MRN also performs very well on categories with fewer total
samples, because the sample recombination strategy increases
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Fig. 16. Classification maps obtained by different methods in Salinas (10 labeled samples per class for training). (a) Ground truth, (b) 3-DCNN (82.68%), (c)
HybridSN (93.55%), (d) SSRN (94.23%), (e) RSSAN (91.73%), (f) A2S2K (95.04%), (g) S3Net (95.84%), (h) DM-MRN (94.85%), (i) SF (92.62%), (j) HiT
(86.49%), (k) SSFTT (87.95%), (l) GAHT (89.93%), (m) SPRLT (93.89%), and (n) S3FAN (98.41%).

the variety of classification tasks in the training period. In
addition, S3FAN performs best than other methods in seven out
of 16 land cover categories. Especially for Corn notill, Corn
mintill, and Soybeans mintill categories, most other methods
perform mediocrely in these three categories, whereas S3FAN
has achieved significant improvements. The corresponding clas-
sification maps generated by different models are shown in
Fig. 14. It can be clearly seen that the classification map of
S3FAN is smoother and less noisy than other models. Compared
with the most competitive S3Net, for the four categories of
Corn notill, Corn mintill, Soybeans mintill, and Bldg grass
tree drivers, which have a large number of total samples, the
classification processing of S3FAN is obviously better. Besides,
S3FAN can classify samples in unlabeled areas smoothly and
accurately.

2) University of Pavia: The classification accuracy results of
University of Pavia are reported in Table IX. Obviously, S3FAN
achieved the best classification performance under the three
accuracy indicators of OA, AA, and κ × 100, with values of
97.07 ± 2.10, 95.82 ± 2.19, and 96.13 ± 2.77, respectively.
Specifically, these three indicators outperform the suboptimal
performances by 5.87%, 1.61%, and 7.59% respectively. At

the same time, S3FAN achieves the highest classification ac-
curacy in five of nine land cover categories. Especially for
Self-Blocking Bricks, in which S3FAN has achieved a more
significant accuracy improvement compared to other models.
These performances exceed other advanced models by a huge
margin. The corresponding classification maps produced by
different models are shown in Fig. 15. The classification map
generated by S3FAN exhibit better homogeneity within areas
representing the same land cover categories. For Asphalt, Bare
soil, and Meadows, three categories with large total sample
numbers, the classification results of S3FAN are significantly
smoother than other models. Compared with the two FSL meth-
ods, S3Net and DM-MRN, the cases of misclassifying Meadows
into Trees and Bare Soil are significantly less. In addition, for the
classification of samples in unlabeled areas, the result of S3FAN
exhibits obviously fewer fragmented regions.

3) Salinas: The classification accuracy results of Salinas are
reported in Table X, and S3FAN achieves the best classification
performance across three indicators OA, AA, and κ × 100,
reaching values of 98.41± 0.98, 98.71± 0.87, and 98.23± 1.09,
respectively. Furthermore, even though other methods perform
well on this dataset, the results of these indicators surpass
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Fig. 17. Classification maps obtained by different methods in Yellow River Delta (10 labeled samples per class for training). (a) Ground truth, (b) 3-DCNN
(92.03%), (c) HybridSN (97.18%), (d) SSRN (94.12%), (e) RSSAN (94.07%), (f) A2S2K (97.16%), (g) S3Net (91.16%), (h) DM-MRN (89.99%), (i) SF (96.48%),
(j) HiT (92.98%), (k) SSFTT (89.87%), (l) GAHT (94.43%), (m) SPRLT (95.27%), and (n) S3FAN (98.82%).

Fig. 18. Classification maps obtained by different methods in WHU-Hi-LongKou (10 labeled samples per class for training). (a) Ground truth, (b) 3-DCNN
(89.47%), (c) HybridSN (95.26%), (d) SSRN (95.54%), (e) RSSAN (91.14%), (f) A2S2K (94.69%), (g) S3Net (87.32%), (h) DM-MRN (94.62%), (i) SF (92.50%),
(j) HiT (88.05%), (k) SSFTT (91.11%), (l) GAHT (87.08%), (m) SPRLT (91.62%), and (n) S3FAN (98.41%).

other methods by significant margins, with improvements rang-
ing from 15.73% to 2.57% for OA, 11.62% to 1.01% for
AA, and 17.49% to 2.86% for κ × 100. In addition, S3FAN
achieves the highest averaged OA among the ten categories of all
categories. Especially for Grapes untrained, other CNN-based

methods or transformer-based methods perform mediocrely on
this type of land cover category, and S3FAN has achieved
significant improvement. The corresponding classification maps
produced by different models are shown in Fig. 16. It is obvious
that the classification map of S3FAN is far superior to other
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methods. Specifically, in the classification map of S3FAN, the
phenomenon of unclear boundaries of land cover categories is
greatly improved compared with other methods, the transition of
blocky land cover categories is smooth, especially for Vineyard
untrained, Fallow rough plow, and Fallow smooth. At the same
time, there are many fewer fragmented areas in the map.

4) Yellow River Delta: The classification accuracy results
of Yellow River Delta are shown in Table XI. The classifica-
tion performance of S3FAN is superior to other methods on
three accuracy indicators. In detail, OA, AA, and κ × 100
reach 98.82%, 96.59%, and 98.43%, respectively, which is
a significant improvement compared with other methods. At
the same time, the corresponding standard deviations of the
three indicators also reach relatively low levels. In addition,
among the 23 land cover categories, S3FAN achieves the highest
classification accuracy in nine of them and the second highest
classification accuracy in six of them, especially for Reed and
Cotton categories, the classification performance of S3FAN is
outstanding in these two categories. The corresponding classifi-
cation maps generated by different methods are shown in Fig. 17.
Compared with other classification methods, the classification
map generated by S3FAN has significantly fewer fragments,
less noise, and is smoother and clearer. Besides, for the clas-
sification of samples in unlabeled areas, S3FAN rarely mis-
classifies Sea into other categories, due to the powerful feature
learning ability of S3FAN. While for the categories on land, the
boundaries of land cover categories using S3FAN are clearer and
smoother.

5) WHU-Hi-LongKou: The classification accuracy results of
WHU-Hi-LongKou are shown in Table XII. For this data set, the
performance of S3FAN is significantly improved compared to
other methods. The three accuracy indicators exceed the results
of other methods by a large margin. Specifically, the three
indicators achieve 98.41%, 94.80%, and 97.9%, respectively,
with improvements ranging from 11.33% to 2.87% for OA,
22.6% to 4.86% for AA, and 14.43% to 3.72% for κ × 100.
In addition, S3FAN has the highest accuracy in four of the nine
land cover categories in WHU-Hi-LongKou dataset. Especially
for the category Roads and houses, while other methods per-
form mediocrely in this category, S3FAN achieves significant
improvements. The corresponding classification maps generated
by different methods are shown in Fig. 18. Obviously, the
classification map of S3FAN is superior to that of the other
models. The classification map of S3FAN is visually smoother
and clearer. Specifically, for Broad leaf soybean, there are many
fewer dots or blocks of color fragments compared to other
methods. The boundaries between Roads and houses and Mixed
weed are also clearer and more separable. At the same time, it
is extremely rare for S3FAN to mistakenly classify Corn and
Cotton into Broad leaf soybean.

IV. DISCUSSION

A. Complexity Analysis

To analyze the complexity of S3FAN, we compare the run-
ning time and parameters size of CNN-based methods and
transformer-based methods under ten labeled samples in five

datasets. As shown in Table XIII, HiT has the largest number
of parameters compared to other methods, mainly because it
uses a feature mapping method that combines convolution and
MLP, and contains multiple stages. In terms of training time,
S3FAN has obvious advantages over FSL methods that are
specifically designed for limited samples, such as S3Net and
DM-MRN. S3Net takes longer to train, which is attributed to its
differentiated input strategy, which embeds patches with differ-
ent sizes into the dual branches of the Siamese network, while
DM-MRN takes longer to train due to the sample recombination
strategy. In terms of parameter quantity, due to the rational use
of dimension reduction, lightweight design of the model, and
full utilization of discriminant features, the parameter quantity
of S3FAN on the five datasets remains at a low level, which
greatly avoids the risk of model overfitting. Therefore, S3FAN
achieves shorter training time and testing time and a smaller
number of parameters. In summary, S3FAN achieves excellent
performance for few labeled samples HSI classification while
avoiding consuming too much computing resources.

B. Feature Separability

We visualize the feature separability by using t-distributed
stochastic neighbor embedding, to verify the feature separability
of the proposed S3FAN. As shown in Fig. 19, we conduct
experiments on Indian Pines, University of Pavia, Salinas, and
Yellow River Delta datasets. For Indian Pines, samples are more
clustered on the map produced by S3FAN (Ours), and can
better separate Soybean notill and Soybean clean, Corn notill
and Soybean mintill. For University of Pavia, the separability
of Meadows and Trees is better than the other two variants.
From Fig. 19(g)–(i), S3FAN (Ours) can clearly separate Grape
untrained and Vineyard untrained compared to S3FAN (without
SWEM) and S3FAN (without sematic extraction). For Yellow
River Delta, S3FAN (without SWEM) is similar to S3FAN
(Ours), both are better than S3FAN (without SSIM), but a sample
representing Fallow land in S3FAN (without SWEM) is not
separated from Bare land.

V. CONCLUSION

In this article, we propose a lightweight S3FAN for HSI
classification with limited samples. It mainly includes three
modules, SWETM, SSIM, and SWEM. SWETM weights the
spectral features to extract and reweight them, and then the
features enter SSIM and SWEM, respectively. The two sets of
output features obtained by SSIM and SWEM are weighted,
fused, and classified. The performance of S3FAN is further
improved and its superiority is demonstrated on five datasets.

Specifically, SpeSFA in SWETM and SpaSFA in SWEM can
calculate weighted fusion attention scores through rich discrim-
inant features. In SFA, the weight sharing of the convolutional
layer allows learning the similarity between feature vectors
while keeping the number of parameters small, and the adaptive
fusion of attention scores further enhances the representation
ability of intermediate vectors or matrices for spectral sequences
or spatial maps, thereby realizing dynamic attention that adapts
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TABLE XIII
RUNNING TIME (S) AND PARAMETER SIZE OF DIFFERENT METHODS

Fig. 19. Feature separability for different variants of S3FAN (10 labeled samples per class for training). (a) S3FAN (without SWEM), (b) S3FAN (without SSIM),
(c) S3FAN (Ours) for Indian Pines, (d) S3FAN (without SWEM), (e) S3FAN (without SSIM), (f) S3FAN (Ours) for University of Pavia, (g) S3FAN (without
SWEM), (h) S3FAN (without SSIM), (i) S3FAN (Ours) for Salinas, (j) S3FAN (without SWEM), (k) S3FAN (without SSIM), and (l) S3FAN (Ours) for Yellow
River Delta.
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to features. ST blocks embedded in SWETM realize the recali-
bration of extracted spectral features, making the shallow spec-
tral features adapt to the subsequent deep extraction process, thus
avoiding structural damage to the extracted features. In addition,
SWETM provides high-quality spectral features for subsequent
SSIM and SWEM, and the weighted fusion of features from
SSIM and SWEM enriches feature representation and enhances
feature separability.

Although the experiments of S3FAN show its excellent clas-
sification ability and feature separation ability under a small
number of samples, the spectral subspace interaction and spa-
tial weighted extraction rely on the pre-extraction of spectral
features, and there is still much room for optimization in dif-
ferential processing of spectral features. Furthermore, to ensure
the lightweight of the model, the proposed S3FAN divides and
conquers the spectral and spatial processing, the fused features
are not further explored. In the future, we will explore the interac-
tion between spectral and spatial semantic features and improve
the joint representation ability of the attention mechanism for
spectral and spatial features.
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