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ABSTRACT UnmannedAerial Vehicles (UAVs) have proliferated across diverse domains. However, optimal
UAV operations necessitate precise and reliable navigation systems. UAVs predominantly rely on the
Global Navigation Satellite System (GNSS), such as the Global Positioning System (GPS), for navigation.
Nevertheless, GNSS signals are susceptible to blockage, reflection, and spoofing, introducing significant
risks, including navigation loss and potential UAV loss. This research investigates cutting-edge navigation
solutions, emphasizing deep learning-based visual localization approaches tailored for UAVs. Our focus is
on scenarios characterized by GPS-denied environments where GPS signals may be absent or unreliable.
We provide a comprehensive review of contemporary deep learning-based visual localization approaches
and compare them to traditional aerial visual localization methods, such as template matching and feature
matching. This comparison highlights both the potential benefits and challenges associated with these
approaches. Furthermore, we systematically evaluate and classify recent deep learning-based methods based
on main criteria, including model type/architecture, reference imagery, operational context, and resultant
accuracy levels. Our findings underscore the substantial promise inherent in various approaches while also
shedding light on their unique deployment challenges. Finally, we discuss potential research directions,
to inspire further innovations and progress in this domain. The ultimate goal is to develop more accurate,
dependable, and secure navigation solutions for UAVs.

INDEX TERMS Deep learning, GPS-denied, localization, visual localization, navigation, UAVs.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) have found wide-ranging
applications in various fields, such as surveying andmapping,
search and rescue, exploration and surveillance, inspection,
payload transportation, firefighting, public security, border
security, and object tracking. These applications require
autonomous or semi-autonomous operations, which entail
accurate navigation capability [1], [2], [3], [4].

Navigation solutions or localization systems can generally
be categorized into two main types: absolute localization
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and relative localization. Absolute localization provides
information about the position using a global or standard
coordinate system, answering the question: ‘‘Where am I
about a fixed, universally recognized point or system?’’.
On the contrary, relative localization provides information
about the position of a specific starting point or a previously
known position, answering the question: ‘‘Where am I in
comparison to where I was before or to a specific reference
point?’’ [5].

The majority of existing navigation techniques rely on
the integration of the Global Navigation Satellite System
(GNSS) and Inertial Navigation Systems (INS) for position
estimation [6], [7], [8]. GNSS is considered an absolute
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navigation system, as it provides position data about a global
coordinate system [9]. On the contrary, INS is considered a
relative navigation system, as it tracks changes in position,
velocity, and orientation from a known starting point. GNSS
typically offers reliable long-term accuracy, although its
short-term precision leaves room for improvement [10].
INS excels in providing high short-term accuracy; however,
it struggles to maintain this accuracy over the long term due
to the accumulation of errors. These errors originate from
the numerical integration process used to convert acceleration
measurements into displacement estimations. Consequently,
the accuracy of The INS tends to degrade over time [11].
The combination of GNSS and INS systems yields an

effective solution for position estimation. This integrated
approach results in precise data, produced by cost-effective
and lightweight sensors.

However, this approach can suffer from serious reliability
issues such as blocked signals, multipath reception, and
Non-Line-Of-Sight (NLOS) conditions [12], which can
significantly degrade the system’s accuracy as long as the
signal is compromised or not received correctly.

Multipath reception refers to the phenomenon where one
or more reflected signals from the satellite interfere with
the direct signal. On the other hand, NLOS conditions
occur when the direct signal from the satellite is blocked
and the GNSS system receives a reflected version of the
signal instead. These challenges underline the complexity of
maintaining accuracy and reliability in GNSS-INS integrated
navigation systems. Figure 1 illustrates the common GNSS
reception issues such as blocked signals, NLOS signals, and
reflected signals. Also, Figure 2 shows that GNSS-INS nav-
igation systems may also be susceptible to signal spoofing,
where an attacker can manipulate the system by usurping
the signal. This manipulation may deceive the compromised
system into believing it is in a different location, effectively
allowing the attacker to control the UAV [13], [14]. Based on
the above, it’s clear that maintaining the integrity of signals
in GNSS-INS systems is crucial to prevent such security
breaches and ensure the safe and accurate operation of UAVs
in sensitive applications.

Given the aforementioned challenges, researchers have
started exploring vision-based and vision-aided localization
techniques as alternative solutions to GNSS-INS systems.
Vision-based localization in UAVs takes images captured by
the onboard camera and extracts distinctive features used to
estimate the position of the UAV. Vision-based localization
systems for UAVs can be divided into Relative Visual Local-
ization (RVL) systems and Absolute Visual Localization
(AVL) [10]. RVL encompasses popular methods such as
Visual Odometry (VO) and Simultaneous Localization and
Mapping (SLAM). However, the main challenge with RVL
is still the same as in the traditional methods discussed
previously which is the accumulation of error, also known as
drift, over time.

In their early stages of development, traditional RVLmeth-
ods relied on handcrafted features and geometric techniques

FIGURE 1. Examples of common GNSS reception issues [11].

FIGURE 2. Example of GNSS reception issues: Signal spoofing [13].

to estimate the position and orientation of aerial vehicles
using visual data. While these methods showed promise
in some scenarios, they often struggled to handle diverse
environments, occlusions, and varying lighting conditions
effectively [15].
Therefore, the momentum of the research effort has shifted

towards AVL methods, which are more immune to drifting
errors observed in RVL methods [16]. Such methods utilize
previously collected data (e.g., images from a past flight or
satellite data) that are assumed to be precisely georeferenced
to localize the UAV. The accuracy of the georeferenced data
affects the accuracy of the localization [11]. Popular AVL
methods include template matching, feature point matching,
and most recently, deep learning-based methods. Often, these
methods are integrated with VO or SLAM to enhance results
by providing continuous position estimation.

Several reviews have been conducted in the field of visual
localization, each contributing to the body of knowledge
but with unique focal points that distinguish them from our
current work. For instance, in their work, Lu et al. [17]
published a review paper that does not concentrate on
deep learning-based methods, creating a disparity between
their scope and ours. Similarly, Leung and Shamwell [18]
presented a comprehensive review of outdoor visual local-
ization. Despite their thorough investigation, their research
did not specifically cater to UAV localization. This lack of
focus on UAV-specific challenges and perspectives limits
its applicability to UAV-based applications, setting it apart
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from our study. Couturier et al. published two notable papers
in this field [10], [11]. The first paper focused primarily
on relative localization methods, thus differing from our
emphasis on absolute visual localization. Their second paper,
which is closely aligned with ours, offered an exhaustive
review of AVL methods, covering both traditional and deep
learning-based approaches. Despite the similarity, this review
significantly contributes to the literature by including more
recent works and advancements in the field, extending the
scope beyond 2020. Therefore, our review can be considered
a complementary extension of Couturier et al.’s work,
offering updated insights into the rapidly evolving domain of
absolute aerial visual localization for UAVs.

The contributions of this work are as follows:

1) We provide an overview of traditional aerial visual
localization methods used in GPS-denied environments,
discussing their strengths and limitations.

2) We review and categorize state-of-the-art deep
learning-based approaches used for various localization
problems, offering a comprehensive summary of
contemporary research in this field. This review covers
the most recent work up to the date of publication.

3) We discuss and identify the challenges and current gaps
in the domain of deep learning-based visual navigation
in GPS-denied environments.

4) We suggest potential future research directions based on
the current landscape of the work.

The remaining of this paper is organized as follows:
Section II discusses traditional aerial visual localization
methods for UAVs in Global Positioning System (GPS)-
denied environments, focusing on template matching-based
and feature matching-based methods, while Section III
reviews and classifies deep learning-based aerial visual local-
ization techniques for UAVs in GPS-denied environments.
In Section V, we discuss the challenges facing the real-world
deployment of these techniques. In Section VI, we present,
identify, and discuss potential research directions in this field,
and conclude this paper in Section VII.

II. TRADITIONAL METHODS FOR AERIAL VISUAL
LOCALIZATION IN GPS-DENIED AREAS
This section reviews traditional aerial visual localization
methods shown in Figure 3, focusing on template matching
and feature matching methods, given their widespread appli-
cations and robust performance. It also thoroughly presents
and examines the underlying principles, algorithms, charac-
teristics, and challenges associated with these methods.

A. TEMPLATE-MATCHING-BASED METHODS
Template-matching, a.k.a, direct matching, is a method
used in computer vision and image processing that relies
on matching a sub-image within an input image with a
reference template [8]. The process of template matching
typically involves finding the similarity between the reference
template and different regions within the input image, using

mathematical formulas such as cross-correlation [19], [20],
Sum of Squared Differences (SSD) [21], or normalized cross-
correlation [22]. The region with the highest similarity score
is considered the best match and its position is identified as
the position of thematching area within the template. In aerial
visual localization, the current view from the camera attached
to the UAV is matched with a previously saved map or image,
relying on the image patch comparison operator to obtain a
measure of similarity among two image patches. Once a good
match is found, the current absolute locationwill be estimated
from the reference image.

Dalen et al. [23] presented a novel approach that estimates
the absolute position of a drone in indoor and outdoor
environments, using a Particle Filter (PF) in conjunction
with a vision-based SLAM system. A key aspect of their
methodology is the use of Normalized Cross-Correlation
(NCC) for template matching, crucial for comparing onboard
drone images with photographic maps. The NCC, defined by
Lewis [24], is expressed as:

γ (u, v) =

∑
x,y[f (x,y)−f̄x,y][t(x−u,y−v)−t̄]√∑
x,y[f (x,y)−f̄x,y]2[t(x−u,y−v)−t̄]2

Here, γ (u, v) is the NCC result, with 1 indicating a full
positive correlation and −1 indicating a negative correlation.
The pair (u, v) represents the location on the map f where the
template t is matched. t̄ and f̄ denote the average intensities
of the image patches that are being matched. Lewis suggests
optimizing the NCC computation using the Fourier transform
for the entire map. The NCC result is then converted into
a Probability Density Function (PDF) for particle filtering,
focusing on positive correlations.

The PF, preferred over the Extended Kalman Filter (EKF)
due to its adaptability to non-Gaussian noise, involves steps
such as initialization, propagation, measurement update,
resampling, and statistical measures. The final position
estimate and variance obtained from the PF are integrated into
the EKF for navigation updates.

The effectiveness of this method was tested both in
simulations and real-world flight tests. For outdoor testing,
a Yamaha RMax helicopter (GTMax) was used, flying at
30.5 m altitude and 3 m/s speed, with Bing Maps as the
global map and Google Maps images for simulation. Despite
challenges due to mismatches between simulated and actual
imagery, the system exhibited robust performance.

Real-world tests in Ft. Benning, Georgia, involved flights
at 61 m altitude, using differential GPS for navigation and
validation. The system showed an average position error
of 3.6 m and a maximum error of 12.5 m compared to
GPS positioning. Additionally, in a closed-loop test, the map
alignment algorithm converged to the correct location within
50 seconds, with the PF updating the EKF’s absolute location
after 60 seconds. The error plots confirmed the position error
within the 2σ bounds of the EKF-where σ refers to the
standard deviation in the statistical analysis-.
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FIGURE 3. Classification of visual localization methods.

Overall, this system provides accurate absolute position
estimates for drone navigation in both indoor and outdoor
environments, demonstrating its robustness and accuracy. It is
designed to function without absolute visual localization but
can leverage it when available, enhancing the state estimate.

Yol et al. [25] introduced a novel method for the localiza-
tion of UAVs using vision processing only. They developed
an image registration technique based on Mutual Information
(MI), which effectively determines the two-dimensional
motion parameters of the UAV between a current image and
a reference image. This approach ensures robustness against
variations in lighting conditions and environmental changes.
It also enhances the algorithm’s efficiency as the derivatives
related to the displacement parameters are calculated using
the reference image’s gradient, allowing these derivatives to
be precomputed. The testing environment included flight-test
data acquired with a GoPro camera mounted on a hexacopter
UAV. The flight data was collected over the Université de
Rennes 1 campus, with the UAV positioned approximately
150 meters high. The UAV’s geographical localization and
altitude were logged through an embedded GPS, which
was used solely as a ‘‘ground truth’’ to validate the
computed localization. The researchers used a georeferenced
mosaic extracted from Google Earth as a reference for
image matching, simulating conditions of the real world.
Additionally, a motorized Nadir system was utilized, wherein
the UAV’s pitch and roll motions were counterbalanced
via a brushless gimbal. The study demonstrated impressive
accuracy, with the estimated trajectory closely aligning with
the ground-truth data gathered via GPS. Specifically, the

results exhibited a Root Mean Square Error (RMSE) of
6.56m in latitude, 8.02m in longitude, and 7.44m in altitude.
Although the method demonstrated robustness in challenging
conditions, including seasonal changes and significant light-
ing variations, it exhibited errors stemming from perspective
effects caused by the UAV’s altitude. These errors have
the potential to impact the navigation process. Yol et al.’s
research notably contributes to UAV localization using
vision-based techniques, showing promising results in real-
world testing. Subsequent efforts may involve integrating this
approach into a comprehensive global estimation framework
incorporating inertial measurement units (IMU) data. This
would enable real-time onboard localization in case adequate
CPU power is available on the UAV.

B. FEATURE-MATCHING-BASED METHODS
Feature point matching is a computer vision technique that
refers to recognizing points of interest (features) of an object
across images with slightly different viewpoints. These points
of interest are extracted from images and represented using
a descriptor, which describes the local appearance of the
feature. The goal of feature point matching is to match these
features between images, or within a single image and use
the matched features to estimate the relative position and
orientation of the images, or to perform image stitching,
object recognition, or other computer vision tasks [26].
There are various algorithms for feature extraction,

description, and matching, including Scale-Invariant Feature
Transform (SIFT) [27], [28], Speeded Up Robust Features
(SURF) [29], Oriented FAST and Rotated BRIEF (ORB)

113052 VOLUME 12, 2024



O. Y. Al-Jarrah et al.: Exploring Deep Learning-Based Visual Localization Techniques

[30], Harris corner detection, and RandomSample Consensus
(RANSAC) [31], [32]. Feature point matching is considered
an efficient alternative method to template matching as it
is faster and requires less data storage capacity, allowing a
larger area to be covered in the localization process. In aerial
visual localization, the feature points are extracted from
a real flight image and compared with features extracted
from images stored in a database. This database is made
by processing the referenced images that usually have
differences in illumination, scale, rotation, and viewpoint.

Couturier andAkhloufi [10] presented an RVL system, that
leverages feature point detection during in-flight missions,
activated when the GNSS signal is unavailable. The system
employs a monocular camera to detect and track visual
features in the surrounding environment, allowing estimation
of the UAV’s motion relative to these features. The system
underwent testing in diverse scenarios, considering various
feature extraction methods. Among these methods, the ORB
(Oriented FAST and Rotated BRIEF) demonstrated superior
performance with the lowest mean absolute error. The
estimated average distance between the best match and
ground-truth localization was around 70 meters at an altitude
of 150 meters. Although originally presented as an RVL
solution, this approach could also be regarded as an AVL
solution since it utilizes pre-existing maps for referencing.

Shan et al. [33] developed a framework that combines
Histogram ofOrientedGradient (HOG), PF, andOptical Flow
(OF). The framework was presented for Google Maps-aided
UAV navigation in a GPS-denied environment. HOG features
were used for registration on Google Maps. PF was used in
the matching process to avoid sliding window searches. For
efficiency, the search is confined around the UAV location
predicted byOF. Experiments were performedwith real flight
data from a UAV operating in a 40 m × 225 m environment.
An RMSE of 6.77 m was obtained in the results. Feature
matching methods are robust to environmental factors and
can handle large changes in scale and viewpoint, making
themwell-suited for aerial visual localization tasks. Template
matching methods are simple and efficient, but they are
sensitive to changes in scale, rotation, and illumination,
which can limit their performance in real-world applications.
Depending on the specific requirements of a given task, one
methodmay be more suitable than the other, or a combination
of both methods may be used to achieve the best results.

III. DEEP LEARNING-BASED METHODS IN AERIAL
VISUAL LOCALIZATION
Deep learning is a subset of machine learning that uses
neural networks, inspired by the human brain, to analyze
and process vast amounts of data. Unlike traditional machine
learning which works best with structured data, deep learning
excels with both structured and unstructured data [34]. Neural
networks consist of an input layer, multiple hidden layers,
and an output layer. Data flows through these layers, getting
processed using weights, biases, and activation functions.
The primary goal is to adjust these weights and biases

to minimize the error in predictions, known as the cost
function. This adjustment is achieved through a process called
backpropagation, where the system learns from its mistakes.
Deep learning has various applications, from recognizing
images and speech to advanced predictive analytics [35]. It’s
the backbone ofmanymodernAI-driven solutions, enhancing
accuracy and efficiency in numerous domains.

Deep learning has become a powerful tool in various fields,
including aerial visual localization for UAVs. Traditional
methods rely on hand-crafted features and models that are
pre-designed to extract certain characteristics from images.
Deep learning offers an end-to-end approach that can
automatically learn the relevant features directly from the raw
images which makes it increasingly popular in this field. The
advantage of deep learning-based AVL is that it can provide
a more robust and accurate solution compared to traditional
visual localization techniques, especially in challenging
environments, such as low-light or cluttered scenes [36].
However, the performance of deep learning-based AVL
depends heavily on the quality and variety of the training
data. Optimally, the dataset should be collected from the
environment where the solutions are intended to be deployed.
Otherwise, if testing data significantly differs from the
training data, which is known as data drift, the performance
of the solution will deteriorate [37].
In the context of AVL, various deep learning techniques,

such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and their variants, have been
explored to achieve state-of-the-art results in aerial visual
localization for UAVs [38]. In this section, we will review the
recent deep learning-based methods and approaches adopted
in the aerial visual localization field.

A. CNNs-BASED METHODS
CNNs are a type of deep learning neural network that is
commonly applied to analyze visual imagery, detect objects,
and separate different parts of an input image. Typical CNNs
use special filters to identify specific patterns and shapes
within an image, that are used to recognize objects in the
input image [39]. CNNs have proven to be very effective
in computer vision applications and are used in a variety
of tasks, including facial recognition [40], [41], [42], self-
driving cars [43], [44], [45], and medical image analysis [46],
[47], [48]. They are particularly well-suited for tasks like
object detection, classification, and localization because they
can recognize patterns and features in images.

In line with the utility of CNNs as an AVL approach,
Amer et al. [49] proposed an aerial visual localization
method, particularly in GPS-denied urban environments
for UAV applications. They innovatively employed a CNN
model, leveraging the foundational architecture of a pre-
trained VGG16-Net [50]. This approach was pivotal in
demonstrating the practical application of CNNs for complex
image analysis tasks necessary for drone localization. They
gathered an extensive collection of geotagged images from
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urban areas and trained the model to recognize distinct
features of the environment, such as building facades, roads,
and intersections. The innovative aspect of their approach
was in training the CNN model to not only recognize these
features but also to extract features from these images to
create what they called ‘‘deep urban signatures’’ which assist
the drones in navigation and precise self-localization within
complex urban landscapes. The deep urban signatures are
then used in a matching mechanism to match the signatures
of images captured in real-time by a drone’s onboard camera
with the signatures of those in the pre-trainedmodel database,
enabling accurate estimation of the drone’s location. Several
experiments were conducted to evaluate and compare its
performance with traditional feature-based approaches, using
a dataset of images captured by a drone flying over a large
urban area. A commercially available drone, specifically the
Phantom DJI model, equipped with an integrated camera
featuring a 94-degree field of view was used to conduct
several experiments at various altitudes, with a maximum
altitude of 333m. Experiments results show that the proposed
approach outperforms the traditional approach in terms of
accuracy and computational efficiency, demonstrating the
potential of deep learning techniques for improving drone
localization in urban environments. The model was able to
discriminate between 7 different districts with an average
accuracy of 91.2%. For neighborhood retrieval, an overall
localization error of 200.75 meters in 6 districts has been
achieved.

Advancing the application of CNNs even further,
Nassar et al. [51] presented a framework that uses conven-
tional computer vision methodologies with CNNs to ensure
precise localization in GPS-denied environments, a signif-
icant challenge in urban UAV navigation. The framework
begins with a calibration stage where a SIFT detects the
key points in the input image, while RANSAC estimates a
‘homography matrix’, which illustrates the transformation
between the drone’s view and a reference satellite map. This
stage is crucial as it aligns the drone’s perspective with
the map. Following calibration, the framework engages in
sequential frame registration. Here, it uses the ORB algorithm
to process frames at regular intervals. This stage continuously
updates the calibrated reference map, keeping the drone’s
perspective in sync with the map. A critical advancement is
the utilization of the U-Net algorithm to perform ‘semantic
segmentation’. This phase is designed to extract meaningful
shape information from both UAV-captured and satellite
images, focusing on identifiable urban features like buildings
and roads. The segmented elements are further refined
throughmorphological operations, ensuring cleaner andmore
defined feature extraction. The final and most critical phase
involves Semantic ShapeMatching (SSM). This step matches
the semantically segmented shapes from the UAV and
satellite images, employing a scoring system based on shape
features like area, location, and orientation. The framework
uses these matched shapes to compute a refined homography,
adjusting the UAV’s current location with improved accuracy.

The proposed framework was tested on two datasets,
achieving an impressive average geolocation error of just
over 10.4m and 6.3m, respectively. The incorporation of deep
learning for semantic segmentation further reduced the error
rate to around 5.1m and 3.6m. One limitation of the system,
though, is its reliance on known urban areas for optimal
performance. However, it’s worth noting that the calibration
process assumes that the transformation between the two
images can be adequately described by a homography. This
is a reasonable assumption when the scene being imaged is
flat, or the drone is high above the ground so that any depth
differences in the scene can be ignored. However, if there are
significant depth differences (like in mountainous terrain),
the transformation may be more complex and not ade-
quately described by a single homography matrix. Overall,
Nassar et al.’s approach represents a substantial advancement
in the field of UAV localization in GPS-denied environments,
effectively combining the precision of deep learning with the
robustness of traditional computer vision techniques.

Mugal et al. [52] introduced a visual localization method
designed for UAVs in GPS-denied environments. Their
system integrates onboard camera footage with archived geo-
referenced imagery, leveraging deep learning to pinpoint
the UAV’s location within a pre-stored ortho-mosaic map
with remarkable accuracy. The core of their approach
lies in the development of a network that employs a
neighborhood consensus technique. This method enhances
feature point matches between the aerial image and the stored
orthomosaic. Utilizing ResNet-101, a deep CNN known
for its robust feature extraction capabilities, the network
extracts convolutional features from the images. The next
step in their process involves constructing a correlation
matrix that meticulously captures feature matches for each
pinpointed feature point. The ingenuity of their model
is further exemplified in the subsequent step, where a
trainable network refines the reliability of correspondences.
This is achieved by applying probabilistic constraints, and
meticulously aligning each feature point from the source
image with corresponding points in the orthomosaic. A novel
aspect of their system is the integration of a soft-argmax layer,
which intelligently identifies the best match indices. These
indices are then processed through a fully connected network,
culminating in the precise determination of point correlations.
Mughal et al. also incorporates RANSAC to establish
direct correspondences between images, thereby bolstering
the durability and precision of their vision-based UAV
localization model. This approach allows for the accurate
identification of the UAV’s position on the map through
its camera feed. The training of their model is conducted
on a set of template images, each meticulously labeled to
signify correspondences with the relevant orthomosaic. Data
augmentation techniques, including image transformations,
are employed to enhance the model’s robustness and
generalizability. The training process, spanning 185 epochs
with early stopping at a learning rate of 0.0008, leverages
stochastic gradient descent with momentum for optimization.
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FIGURE 4. Step-wise procedure of the methodology proposed by
Amer et al. [49].

Notably, their system exhibited a minor decrease in matching
accuracy when tested with a different UAV from the one used
for data collection, indicating a high degree of specificity
to the training conditions. The mean error recorded was
3.594 m, with a maximum error of 31.281 m, demonstrating
the system’s overall effectiveness in real-world scenarios.
In conclusion, Mughal et al.’s research presents an approach
to visual-based UAV localization in GPS-denied areas.
By harnessing the power of deep learning and integrating
efficient outlier detection methods like RANSAC, they have
devised a system capable of accurately determining UAV
positions using aerial images. Despite a slight variation in
accuracy under different operational conditions, the system’s
performance is remarkable, highlighting its potential for
real-world application. Furthermore, the team’s contribution
extends beyond their innovative methodology; they have
generously made available their source code and an original
dataset, consisting of 2052 high-definition aerial images
collected from diverse flights across Pakistan, covering an
area of approximately 2 km2.
In their study, Goforth and Lucey [53] developed a

method that utilizes a monocular RGB camera mounted
on the UAV and leverages pre-existing satellite imagery
for localization. The method stands out for its use of
CNN representations, trained on readily available satellite
data, to address the challenges posed by differences in
image-capturing conditions such as seasonal and perspective
changes. A key aspect of their methodology is the develop-
ment of an optimization process that jointly minimizes errors
between adjacent UAV frames and the satellite map. This
optimization significantly increases the localization accuracy,
especially in environments with few landmarks. The method,
therefore, demonstrates improved performance over recent
systems, achieving an average localization error of less than
8 meters in a GPS-denied flight at an altitude of 0.2km
and over a distance of 0.85km. The approach involves three
primary steps; The First step is Visual Odometry, where
the Initial motion parameter estimates are derived using
visual odometry, a crucial step for determining the UAV’s
trajectory and orientation. The second step is the satellite
map comparison where a subset of recent frames is compared
to the satellite map to geolocalize those frames. The CNN
representations play a vital role in aligning the UAV imagery
with the satellite images under varying conditions. The
last step is joint optimization which is the most important
step where the geolocalized pose of all UAV frames is
refined through a joint optimization process. This process
considers both frame odometry and map alignment, crucial
for accurate localization across all UAV frames, even those

FIGURE 5. The procedure of the presented methodology by
Nassar et al. [51].

not directly compared with the map. By integrating deep
learning with satellite imagery and employing an innovative
optimization process, they have crafted a method that is
not only accurate but also capable of generalizing across
different environments, from urban to rural settings. Their
work underscores the potential of advanced machine learning
techniques in enhancing UAV navigation and localization
where conventional GPS systems fall short.

Arturo and Martinez [54] presents a groundbreaking
method for UAV localization in the challenging environment
of autonomous drone racing, an area that requires high-speed
and precise maneuvering. Their novel approach, named
‘GreySeqNet,’ is a compact CNN that significantly differs
from traditional methods by using a sequence of grey-scale
images rather than color images as input. The core innovation
of their method lies in the network architecture, which
is based on the Inception model. This architecture is
adept at handling different views of the same object and
effectively extracting necessary features for localization.
GreySeqNet processes a stack of three consecutive grey-
scale images, providing a more comprehensive view of the
scene’s dynamics while reducing computational load. One
of the key technical advancements of their approach is
the separation of the final layer of feature extraction for
each axis (x, y, z), allowing the network to specialize in
capturing specific displacement features for each axis. This
architectural decision enhances the network’s ability to gen-
eralize pose estimation across different racing scenarios. The
training of GreySeqNet involves a novel dataset generated
within the Gazebo simulator, offering a rich and varied set
of aerial images that mimic real-world racing conditions.
This extensive training ensures the model’s robustness and
accuracy in predicting the UAV’s pose. Arturo andMartinez’s
system was rigorously tested in a simulated racing envi-
ronment. The experiments demonstrated that GreySeqNet
achieves a high-frequency operation (up to 83 Hz on GPU)
with an average camera pose error of around 31 cm,
making it highly suitable for real-time applications in drone
racing. In addition to its core functionality, the model
employs a Kalman Filter with a constant velocity model
to smooth out the predictions, contributing to more stable
and accurate drone flight trajectories. This integration of
advanced deep learning techniques with practical filtering
methods represents a significant step forward in the field of
autonomous drone localization, particularly in GPS-denied
scenarios like drone racing. While the study by Arturo and
Martinez introduces a technically advanced and practical
approach for UAV localization in the context of autonomous
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drone racing, it is important to note that their focus primarily
lies on processing grey-scale image sequences for high-
speed navigation, rather than aligning visual data with a
reference for global positioning. This distinction means that,
although innovative, their methodology does not directly
address the specific challenges of global UAV localization in
GPS-denied environments as per our primary topic of interest.
However, the underlying principles and techniques they’ve
developed could be adapted or expanded upon to make their
approach more relevant to our area of focus, particularly
by incorporating mechanisms for reference-based global
positioning.

Relying on the coordinates or sizes of reference objects,
Pi et al. [55] introduced two mapping approaches namely,
projection fromPerspective to orthogonal based onReference
Objects’ Coordinates (PROC) and projection from Perspec-
tive to orthogonal based on Reference Objects’ Size (PROS).
These approaches utilize two CNN models, Model-P and
Model-O, which handle different views, Perspective View
(PV) and Orthogonal View (OV), respectively. The views
are derived from input images captured by an onboard RGB
camera, respectively. Testing of the approaches demonstrated
that Model-P achieved a 97% mean Average Precision
(mAP), showing superior performance compared to Model-
O, which achieved a 51% mAP. This difference can be
attributed to the similarity of the Targets of Interest (ToIs)
and objects’ appearances in the orthogonal view compared
to the perspective view. The projection results obtained
from the PROC and PROS approaches showed that both
methods achieved Average Projection Errors (APEs) as small
as 11.85 inches for PROS and 13.86 inches for PROC.
These results indicate that the proposed methods are feasible
solutions for real-time localization and mapping using only
RGB camera inputs. However, they rely on single UAV video
input and need reference objects on the ground, which might
not be available in unknown locations or territories. Future
research may explore using other visual inputs (e.g., thermal
imagery) and creating ad-hoc reference points using multiple
cooperative UAVs. It is worth noting that the proposed
methods allow for the localization and mapping of ToIs from
the RGB camera’s inputs, without explicitly estimating the
UAV’s position.

Cabrera-Ponce et al. [56] introduced an innovative
approach for geolocation using CNNs on aerial images
captured by drones, aiming to accurately deduce GPS
positions from these visuals. This method stands out for
its focus on efficiency and accuracy, employing streamlined
CNN architectures that balance rapid inference speeds with
predictive reliability. The study rigorously compares this
new approach against leading models such as PoseNet [57],
PoseNet + LSTM, VGG16, and ResNet-50 [58], demon-
strating significant advancements in processing speed and
accuracy. By optimizing the CNN architecture, unnecessary
layers are discarded, and the Fully Connected (FC) sections
are minimized, enhancing the model’s geolocation capabili-
ties without compromising performance. A pivotal aspect of

FIGURE 6. The components of Mugal et al. [52] proposed framework.

their research involves the experimental design and the use of
diverse datasets gathered at different elevations. This method-
ological choice not only tests the model’s robustness across
various terrain types but also its adaptability to changing
altitudes, a critical factor for real-world UAV navigation. The
detailed experimentation, conducted on Ubuntu 16.06 with
PyTorch 1.1.0, OpenCV 3, and CUDA 9.0 on an Nvidia
GeForce GTX 960M and managed through ROS, offers
profound insights into the model’s performance. The results
of the study, featuring a prediction error range of 2.8 to
6.1 meters and an impressive processing speed of 103 frames
per second, significantly outperform the fastest contemporary
models, which achieve 69 fps. This showcases the model’s
potential to revolutionize drone-based geolocation tasks by
offering a quicker and more accurate alternative to existing
solutions. Furthermore, the study underscores the practical
applications and future directions of drone technology,
especially in scenarios where GPS signals are unreliable or
unavailable. However, the research also prompts a critical
evaluation of potential limitations, such as the model’s
reliance on clear visual cues and computational demands,
which could challenge deployment on drones with limited
processing capabilities. These considerations are crucial for
the practical application and scalability of UAV solutions.
In summary, the work of Cabrera-Ponce et al. marks a
significant contribution to UAV navigation and autonomous
operations, demonstrating the feasibility and benefits of
using CNNs for drone-based geolocation. It emphasizes
the importance of efficiency, adaptability, and practical
applicability in drone technology advancements, paving
the way for future innovations that could transform UAV
operations across various sectors by enabling more reliable
and independent navigation capabilities.

Cao et al. [59] presented an innovative approach to
the visual localization of UAVs in satellite remote sensing
images. Their method leverages an enhanced DenseNet [60]
CNN model and a quality-aware template matching tech-
nique. In terms of methodology, the researchers utilized
the University-1652 dataset [61], which uniquely contains
both UAV and satellite view images of various scenes.
To further improve the training and adaptability of the
CNN to UAV localization, they collected additional UAV
images using a DJI Phantom 4 Pro V2.0 from Nanjing
University of Science and Technology. The feature extraction
was carried out via four CNNs: AlexNet [62], VGG [50],
ResNet [58], and DenseNet [60]. From comparing these
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FIGURE 7. The components of Goforth and Lucey [53] proposed
framework.

networks, DenseNet proved superior in feature extraction and
localization and thus was selected for further enhancements.
The authors opted for DenseNet121 to mitigate overfitting,
which presents features at different levels. The transition
layer of DenseNet121 was used for feature extraction due
to its ability to compress the model and its suitability
for matching small images. The researchers introduced a
multi-scale feature fusion technique, fusing features from
Transition Layers 2 and 3 of DenseNet121. This fusion was
shown to improve the overall UAV localization performance.
The team trained their improved DenseNet121 network
on their dataset for 300 epochs, using a cross-entropy
loss function and a Stochastic Gradient Descent (SGD)
optimizer with a momentum value of 0.9. The experimental
results showcased that the improved method significantly
increased the localization accuracy of the UAVs, with the
error largely within 5 meters. Compared to traditional
template matching methods like NCC, TM_SQDIFF, and
TM_SQDIFF_NORMED, their method demonstrated similar
or superior accuracy but significantly faster detection speed.
The authors concluded that their approach of using an
enhanced DenseNet model and a quality-aware template
matching technique effectively allows for UAV localization in
large-scale satellite remote sensing images, offering notable
advantages for feature extraction and localization accuracy.

Notably, certain studies do not primarily concentrate on
aerial visual localization to determine the UAV’s position
directly. Instead, these studies adopt analogous methods
to trace specific trajectories or fulfill distinct applications
that hinge upon the precise positioning of an object, such
as deliveries using UAVs. One such study was made by
Amer et al. [63]. They focus on using visual inputs to
navigate a UAV along a specific trajectory, particularly in
GPS-denied situations. The purpose of their research is not
directly about localizing the UAV in standard coordinates but
rather about maintaining its desired path using visual cues
when GPS data is unavailable. However, tracking a trajectory
does involve a form of localization, as the UAV needs to know
where it is relative to its intended path. However, this type of
localization is usually more about the relative position (i.e.,
am I on the path or not?) rather than the absolute position (i.e.,
what are my exact coordinates?). However, it can be modified
to be a complete visual localization solution.

The core of their methodology lies in the amalgamation
of deep CNNs and regression models to guide drone steering
commands. This approach relies exclusively on visual data
from an onboard camera. In one of their key works, the team
utilized a pre-trained VGG-16 network to extract features

FIGURE 8. The components of Arturo and Martinez [54] proposed
framework where it’s based on pose estimation performed by a compact
CNN.

from the visual inputs. These features were then fed into
a Fully Connected Neural Network (FCNN) or a Recurrent
Gated Neural Network (GRU), which functioned as the
regressor, predicting the drone’s yaw angle for navigation.

Amer et al. enhanced their model’s resilience to drift
and variability in starting points by introducing the concept
of flight path augmentation. This technique involved the
creation of multiple auxiliary navigation paths, which were
slightly deviated versions of the optimal path. These paths
formed a ‘navigation envelope’ for training the model.
For training data collection, the team employed synthetic
environments generated using the Unreal Engine with the
AirSim plugin. They created and trained on multiple paths
in abstract and complex realistic scenarios. Each path was
augmented with noise for robustness. The training was
conditioned on path starting points and visual feedback,
leading to improved model performance and minimizing
conflicting decisions during autonomous navigation.

The team’s experiments showcased the superior perfor-
mance of the FCNN as a regressor compared to the GRU,
achieving lower error rates in both abstract and realistic
environments. Specifically, their approach realized an aver-
age of 1.37 meters cross-track distance across four paths
in simulated environments, highlighting their methodology’s
robustness and potential real-world applicability. Despite the
promising results, Amer’s research also indicates some areas
for future work. As the current model was trained and tested
only in simulated environments, real-world testing and vali-
dation are essential next steps. Further enhancements could
also include the use of Generative Adversarial Networks
(GANs) for style transfer between synthetic and real training
images, which could enhance system performance and reduce
the size of the training dataset.

On the other hand, Luo et al. [64] delves deeper into precise
localization in GPS-denied or GPS-unreliable environments.
They propose a framework, KeepEdge, which leverages
visual information and edge computing to enhance the
localization accuracy of a UAV for parcel delivery. This
involves following a given trajectory and identifying the exact
delivery location. This is a form of absolute positioning,
where the UAV can determine its location in a standard
coordinate system. In the proposed system, the UAV takes
photos and sends them to an edge server. The edge server,
equipped with a deep learning model, interprets the images,
identifies the target delivery position, and sends back the
coordinates to the UAV. This allows the UAV to adjust its
flight path and accurately pinpoint the delivery location.
To overcome the issue of resource constraints on UAVs,
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FIGURE 9. The components of Pi et al. [55] proposed framework.

they adopt a teacher-student paradigm for model training.
A larger deep learning model (the teacher) is trained in the
cloud, and knowledge distillation is used to create a smaller,
more efficient model (the student) that is deployed on the
edge server. The results indicate that the proposed solution
significantly improves the accuracy of UAV deliveries. This
is especially noticeable in complex environments with weak
or unreliable GPS signals. The authors provide a comparative
analysis of their solution with other photo-matchingmethods,
illustrating the robustness and efficiency of their system.
However, they have yet to mention the accuracy of the
estimated position directly, which makes it incomparable
with the other work mentioned in the survey.

Zhuofan Cui et al. [65] introduces a method for geo-
localizing UAVs. The core of their approach is the use of a
Vision Transformer, a type of neural network that excels at
processing image data. This model is particularly adept at
capturing both local and global information, which is essen-
tial for the accurate identification and matching necessary in
geo-localization tasks. A central feature of their method is the
adoption of cross-view consistent attention. This technique
ensures the model prioritizes similar features in images
taken from different viewpoints (UAV and satellite), which
is crucial for aligning and accurately geo-localizing features
across diverse images. The authors streamline model training
with a single-stage approach, a departure from the con-
ventional multi-stage training methods. This simplification
reduces the computational resources required and enhances
the model’s efficiency in training and deployment. Another
key element of their methodology is the implementation of
a piecewise soft-margin triplet loss function. This function
improves the model’s capability to differentiate between
positive and negative examples within the dataset, which
enhances the accuracy of image matching. Additionally,
the methodology employs a color transfer technique to
mitigate color inconsistencies between UAV and satellite
images. By adjusting for these color differences, the model
is better able to concentrate on structural features rather
than being misled by color variations, which is essential for
accurate image comparison and matching. This methodology
enhances the accuracy and efficiency of geo-localizing
images from varied sources and perspectives, leveraging
an advanced neural network architecture and innovative
techniques in attention mechanisms, loss functions, and color
consistency.

The study reports high accuracy levels, quantified by
metrics such as Recall (R1) and Average Precision (AP).
Using Euclidean distance, the method achieves an R1 score
of 91.5% and an AP score of 93.31%. With cosine similarity,

FIGURE 10. The components of Cabrera-Ponce et al. [56] proposed
framework.

the R1 score slightly decreases to 86.60%, and the AP to
88.78%. These results underscore the method’s efficacy in
image retrieval and geo-localization tasks but unfortunately,
it does not provide error measurements in meters, focusing
instead on the precision of image retrieval and matching.
As Cao et al. [59], they used the benchmark University-
1652 dataset [61] to utilize and test the performance of their
methodology.

The diverse approaches to CNN-based methods for aerial
visual localization as detailed in this section underscore the
dynamic intersection of deep learning with UAV technology,
highlighting a robust frontier for innovation in navigating
and understanding complex environments. These methods,
ranging from leveraging pre-trained networks for urban drone
navigation to the innovative use of vision transformers for
geo-localization, collectively illustrate the depth and breadth
of current research endeavors aimed at enhancing UAV
capabilities in GPS-denied settings.

A central theme across these methodologies is the pursuit
of accuracy and computational efficiency in localization
tasks. This is evident in the efforts to integrate CNNs
with traditional computer vision techniques, as seen in
Nassar et al. framework [51], which employs semantic
segmentation and shape matching for precise geolocation.
Similarly, the development of compact CNN architectures,
such as Arturo and Martinez’s [54] GreySeqNet, highlights a
focus on optimizing performance for real-time applications,
addressing the critical need for speed and efficiency in
scenarios like autonomous drone racing.

Moreover, these studies emphasize the importance of
adaptability and robustness in UAV localization systems.
Mughal et al.’s approach [52], which uses a neighborhood
consensus technique, and Cabrera-Ponce et al.’s streamlined
CNN models [56] for drone-based geolocation, demonstrate
innovative strategies for enhancing model generalizabil-
ity and reliability across varied operational conditions
and environments. These advancements suggest a growing
recognition of the complex, often unpredictable nature of
real-world scenarios faced by UAVs, driving research toward
more versatile and resilient solutions.

However, the discussion also highlights significant chal-
lenges and areas for future research. One recurring issue is the
dependency on specific environmental features or datasets,
which may limit the applicability of certain models in diverse
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FIGURE 11. The components of Cao et al. [59] proposed framework.

or previously unmapped areas. This underscores the need for
further advancements in feature extraction, transfer learning,
and unsupervised learning techniques to broaden the scope of
CNN-based localization methods.

Additionally, the exploration of novel neural network
architectures, such as the Vision Transformer used by
Cui et al. [65], points to an ongoing evolution in the tools
and techniques available for aerial image analysis. These
developments hold promise for addressing the limitations of
current models, potentially leading to breakthroughs in how
UAVs navigate and interact with their surroundings.

In conclusion, the exploration of CNN-based methods
for aerial visual localization presents a vibrant area of
research with significant implications for UAV technology.
The aforementioned advancements not only demonstrate the
current state of the art but also pave the way for future
innovations. As these methodologies continue to evolve, they
offer the potential to transform UAV operations, enhancing
the autonomy, precision, and safety of drones across a myriad
of applications, from urban navigation and autonomous
delivery to disaster response and environmental monitoring.
The ongoing fusion of deep learning with UAV technology
heralds a future where drones can navigate and understand
the world with unprecedented accuracy and efficiency.

B. RNNs-BASED METHODS
RNNs have emerged as powerful tools for processing
time-varying inputs such as image sequences. The capability
of RNNs to capture sequential dependencies and context
information in input data makes them particularly useful
for tasks that rely on specific patterns between images in a
sequence, such as localization. RNNs have been employed in
various localization tasks, including drone navigation, object
tracking, and creating 3D models (e.g., 3D maps of the
environment). However, RNNs can be slow and challenging
to train when working with long sequences of images.
To enhance performance, researchers have developed hybrid
models that combine RNNs with CNNs or other algorithms.
In this context, Zahedi et al. [66] proposed a solution to
the problem of moving target localization and tracking using
historical information generated by UAVs. The proposed
solution combines two different types of Neural Networks
(NNs) in a two-stage processing framework. In the first
stage, a Feed-Forward Neural Network (FFNN) is utilized
to learn a mapping function from the UAV, gimbal, and
camera information to the targets’ x- and y-locations. This
network comprises two hidden layers with Rectified Linear
Unit (ReLU) activation functions, which a piecewise linear
functions that will output the input directly if it is positive,

FIGURE 12. The components of Amer et al. [63] proposed framework.

otherwise, it will output zero, and a linear output layer. The
input to this model is a vector of 11 features and the output is
the mapped x-location and y-location of a target. Generated
data from a MATLAB simulation environment were used to
train a model with 50 epochs, using MAE as a loss function.
Adam is the optimizer and has a learning rate of 0.001.
In the second stage, a sequence-to-sequence RNN is used
to predict the targets’ location while they are out of the
FOV of the UAV. The RNN model consists of two layers,
each with 200 LSTM cells, and a dense layer in between.
The input to this model includes the mapped location from
the previous phase, along with historical location data. The
output is the predicted future location of the target. The
research collected data for 400 targets over 200 seconds of
simulation time. They collected 1000 data points for each
target, as the camera sensor updates every 0.2 seconds. They
randomly selected 300 targets for training their NN models
and 100 targets for testing. A 4-folds cross-validation strategy
was used to validate their models. The result showed that the
proposed FFNN model outperformed the traditional Kalman
filter for location mapping in terms of both accuracy and
stability. Furthermore, the RNN model maintained relatively
stable performance across different time steps for location
prediction. At the same time, the error of the baselines
continued to increase as the number of future locations to
predict increased.

In the previous study Cabrera-Ponce et al. [56] mentioned
before. The authors used an RNN, specifically a Long
Short-Term Memory (LSTM) model, in combination with
PoseNet, a CNN architecture. This combination was used as
a benchmark to compare against their proposed CompactPN
models. PoseNet is a CNN architecture that was originally
designed to estimate the 3D position and orientation of the
camera in a scene from a single image. The LSTMmodel was
used to account for temporal dependencies in the sequences
of images, with the idea being that the estimated pose for a
given image is likely to be similar to the estimated pose for
the previous image in the sequence. Despite the theoretical
advantage of using an LSTM to account for temporal depen-
dencies, Cabrera-Ponce et al. found that their CompactPN
models, which are simplified versions of PoseNet and do not
use any form of RNN, were able to perform similarly in terms
of accuracy while providing significantly faster inference
speeds. In particular, their CompactPN-2 model achieved
the best balance between accuracy and speed among their
proposed models. In summary, while the PoseNet + LSTM
model might slightly improve accuracy, the CompactPN
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FIGURE 13. The components of Luo et al. [64] proposed framework.

models are much faster and thus more suitable for real-
time applications. The study demonstrated that a simpler,
more compact architecture could still deliver comparable
results, which is beneficial when considering computational
constraints in real-world applications such as UAVs.

C. SNNs-BASED METHODS
A Siamese Neural Network (SNN) is a unique class of
neural network architectures that comprises two or more
identical sub-networks. The term ‘‘identical’’ signifies that
they share the same configuration, parameters, and weights.
Updates to these parameters are reflected across all sub-
networks [67]. SNNs function by comparing feature vectors
to identify similarities between inputs. Notably, Siamese
networks require only a few images to make accurate
predictions. This ability to learn from minimal data has
increased popularity recently.

Seongha Ahn and colleagues [68] introduced a system
that employs an SNN combined with contrastive learning,
targeting two primary functions: gauging image similarity for
retrieval purposes and image matching to ascertain central
coordinates. Their approach uses a triplet loss function,
aiming to reduce the gap between the anchor and positive
samples while increasing the one between the anchor and
negative samples. For the training phase, they begin by
selecting image pairs with overlapping regions as positive
samples and those with minimal overlaps as negative
samples. This method instructs the CNN and the image
retrieval component to discern basic features and image
similarity criteria, in that order. After training the CNN and
FC layers dedicated to image retrieval, they then focus on the
FC layers associated with the image-matching segment. This
is achieved using a supervised technique that determines the
central pixel in each segment, ensuring other weights remain
unchanged. The image retrieval segment’s role is to forecast
potential patches with significant overlaps, while the image
matching part identifies the central pixel connecting aerial
and satellite imagery’s candidate segment. The global UAV
position is then inferred from the satellite image’s related
coordinate, which carries geolocation data. Their dataset
includes 1.3k images, each with a 720 × 720 resolution,
capturing a terrestrial area of 200m x 200m. For every
coordinate, six images are captured to produce both positive
and negative samples with overlapping regions. However, due
to the areas’ overlaps, the dataset’s scope is limited. The
authors advocate for additional studies to enhance learning

FIGURE 14. The components of Cui et al. [65] proposed framework.

technique representations and to evaluate performance in
broader settings. The efficacy of the suggested system is
gauged using the RMSE measure, yielding an RMSE of
36.4 meters.

SNNs are particularly effective at learning to differentiate
between similar and dissimilar pairs of inputs, which is useful
in this case for distinguishing between positive and negative
samples (i.e., image pairs with large vs. small mutual areas).
The use of contrastive learning in the SNN enables the
model to effectively learn low-level features from the images,
which are important for accurately identifying mutual areas
and predicting center coordinates. The separation of the
learning process into two stages can help the model to more
effectively specialize in the two distinct tasks. However,
there are also some disadvantages or challenges associated
with using an SNN in this work such as the limited dataset
used in this study which is relatively small and contains
a lot of overlap between images, which could potentially
limit the diversity of features that the SNN can learn
from. This might impact the generalizability of the model
to new, unseen areas. Also, while the SNN is effective
for learning image similarity metrics, the image matching
module requires supervised learning to predict the center
pixel in each patch. This means that the model’s performance
is dependent on the availability and quality of labeled training
data. The model’s performance on the other hand might
be affected by the presence or absence of mutual areas
in the images. If an image lacks sufficient mutual areas,
it might be harder for the model to accurately predict the
center coordinates. The authors suggest the need for further
research for efficient representation of learning methods and
performance evaluation in general environments, indicating
that the current model’s performance might not be fully
understood or optimized.

D. GANs-BASED METHODS
A Generative Adversarial Network (GAN) is a deep learning
model that generates new synthetic data, similar to a given
dataset, by simultaneously training two neural networks,
a generator, and a discriminator, in an adversarial manner.
The generator produces synthetic data that is intended to
be similar to the training data, while the discriminator
distinguishes between the real and generated data. Through
this iterative process, the generator learns to produce data that
is increasingly similar to real data. GANs have been used for
a wide range of applications, including image synthesis, text-
to-image generation, and video prediction [69].
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In the study by Scheiss [70], a visual localization technique
was introduced that leverages a camera along with Open
Street Maps (OSM) information as an alternative to GNSS.
This approach is versatile and capable of adapting to various
environments and incorporating different kinds of landmarks,
such as structures and roadways. The system produces loca-
tion estimations at a higher rate and with increased reliability,
making it suitable for elevations common in commercial
drone operations. The localization system is broken down
into three key phases: capturing a photo, converting this photo
into a map-based format via a conditional GAN (cGAN),
and aligning the altered image with a pre-existing map of
the targeted area. The cGAN excels in tasks involving image
segmentation, as its discriminator is trained to optimize
a loss function that takes into account overall structural
consistency, rather than just pixel-level accuracy. To position
the segmented image within the mission-area map, it’s
assumed that the vehicle’s altimeter and compass provide the
necessary scale and rotational information. The segmented
image is then systematically shifted over the reference map,
and a mathematical operation–the sum of the normalized
squared disparities between pixel intensities–is performed
at each potential position. The position that minimizes this
sum is deemed the best match, which then allows for an
accurate estimation of the vehicle’s current location. For
the purpose of training the image segmentation component,
a comprehensive dataset composed of aerial photos and
corresponding OSM data was used. The training and test
datasets featured images from Bonn and the surrounding
regions. OSM annotations for roadways and building outlines
served as labels. After training for 100 epochs, the system
achieved an Intersection over Union (IoU) score of 69% for
building outlines and 58% for roads in the validation dataset.

In an experiment focusing on localization, data was
gathered from a plane journey over a region located to Bonn’s
south. Initially, the localization efficiency was assessed using
a segment of the data before presenting findings for the
complete dataset. The median discrepancy for this segment
of the flight route was recorded at 22.7m, while it stood
at roughly 40m for the entire dataset. When juxtaposed
against the precision of standard GNSS receivers used by
consumers – usually falling between 5 and 10m in optimal
settings – the results were viewed positively.

Prior research has spotlighted the potential benefits
of GANs in heightening the precision of aerial visual
localization. This is achieved by crafting synthetic data,
thus enhancing the caliber of datasets used for training.
Nonetheless, a deeper dive intoGANs’ potential in this sphere
warrants further investigation.

E. REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a type of machine learning
paradigm that enables an agent to learn how to behave
in an environment by performing actions and experiencing
the results of these actions. It operates on the principle of
reward and punishment: actions that lead to positive outcomes

are reinforced, encouraging the agent to repeat them in the
future, while actions that result in negative outcomes are
discouraged. This learning process is iterative, with the agent
continuously refining its strategy to maximize cumulative
rewards over time [71], [72].

Incorporating Reinforcement Learning (RL) into naviga-
tion systems, especially for autonomous vehicles such as
Unmanned Aerial Vehicles (UAVs), presents a paradigm shift
in how machines adapt and respond to their environment.
Unlike conventional navigation systems that rely heavily on
pre-programmed instructions and external signals such as
GPS, RL enables these systems to learn optimal navigation
paths through trial and error, making decisions based on
real-time feedback from their surroundings.

Bodi et al. [73] introduced an innovative approach for
UAV formation control in GPS Denied environments. Their
method leverages a Lidar-based localization system paired
with a sophisticated reinforcement learning algorithm, specif-
ically the Deep Deterministic Policy Gradient (DDPG) [72],
to manage UAV formations with unprecedented precision and
adaptability. This technique is particularly crucial in dense
urban areas or heavily obstructed natural environments where
GPS signals are weak or non-existent, posing significant
challenges for traditional navigation systems.

The utilization of Lidar technology for localization enables
UAVs to accurately determine their relative positions within
a formation without the need for GPS. This not only ensures
reliable navigation and positioning but also opens new
avenues for UAV applications in complex environments. The
integration of Lidar technology provides a robust solution for
autonomous UAV navigation in overcoming the limitations
posed by GPS-denied areas.

The DDPG algorithm plays a central role in this
methodology, enhancing the UAVs’ formation maintenance
capabilities through dynamic adjustments in response to
environmental feedback. What sets DDPG apart is its ability
to learn and adapt from experience, optimized further by a
dynamically prioritized experience replay mechanism. This
mechanism focuses on significant learning episodes, improv-
ing the learning process’s efficiency and the effectiveness
of the formation control process. By prioritizing critical
learning instances, the DDPG algorithm ensures a more
focused and effective adaptation to changing environmental
conditions, thereby maintaining optimal formation integrity
and navigational accuracy without relying on GPS signals.

This comprehensive approach, combining Lidar-based
localization with the DDPG algorithm, represents a signifi-
cant contribution to the field of UAV navigation. It not only
addresses the critical challenge of operating in GPS-denied
environments but also enhances the reliability, efficiency, and
adaptability of UAV formations, paving the way for broader
applications and innovations in UAV technology.

Experimental results showcased in the paper highlight the
system’s robustness and accuracy. The UAVs were able to
maintain precise formations, adapt to dynamic obstacles, and
reconfigure based on the changing environment, all without
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the aid of GPS. This outcome not only demonstrates the
feasibility of the proposed method but also its superiority
over traditional GPS-dependent control systems in certain
contexts. The results indicate a significant reduction in
formation errors and an improvement in the adaptability and
responsiveness of the UAVs to unforeseen changes in their
operating environment.

However, the reliance on Lidar and sophisticated com-
putational algorithms brings forth considerations regarding
the practical deployment of this technology. The hardware
requirements for Lidar and the computational demands for
processing the reinforcement learning algorithm may pose
challenges, particularly in terms of power consumption and
the computational capacity of smaller UAVs.

In conclusion, this paper makes a significant contribution
to the field of UAV navigation and control. It provides a
viable solution for UAV formation control in GPS-denied
environments, paving the way for broader applications of
UAV technology in complex and challenging scenarios.
Despite its advantages, the practical implementation of
this system will require addressing the limitations related
to hardware and computational resources, ensuring the
technology’s adaptability to a wide range of UAV platforms.

IV. DISCUSSION
This section delves into the insights derived from the
reviewed deep learning-based aerial visual localization
approaches, summarized in the comparison table 1. The
methodologies predominantly harness the power of CNNs
due to their exceptional ability in feature extraction. The
emergence of hybrid models, which integrate CNNs with
RNNs and FFNNs, marks a significant advancement toward
addressing the complex challenges in aerial visual local-
ization. These models have shown promise in enhancing
performance, particularly in environments where GPS signals
are compromised or absent, and in transforming aerial
images into actionable map-like representations for real-time
localization.

The diversity in datasets, ranging from high-definition
aerial images to meticulously crafted simulations, high-
lights the versatility of these approaches. Tools such as
MATLAB/Simulink and Google Earth™ play a pivotal role in
generating simulated environments that closely mirror real-
world scenarios, providing a robust foundation for model
training and validation. Reference imagery, primarily sourced
from Google Earth™ and Open Street Maps, serves as a
cornerstone for these studies, offering a ground truth that is
essential for the calibration and verification of localization
models.

Despite these advancements in technology, challenges
persist. The quest for comprehensive datasets that cover
a wider range of environmental conditions continues to
be a crucial focus for future research. Moreover, enhanc-
ing model Understanding and minimizing computational
demands are critical considerations for the deployment of

these technologies in UAV systems, which often struggle with
limited resources.

The validation environments detailed in Table 2 underscore
the varied scales and operational altitudes across different
studies. This variability is crucial for assessing the appli-
cability and effectiveness of each UAV localization method
under diverse conditions. The need for extensive and varied
datasets is evident, as is the importance of model adaptability
to different landscapes and operational scenarios.

The performance metrics summarized in the subsequent
tables provide valuable insights into the accuracy and relia-
bility of different UAV localization methods. Metrics such as
Euclidean distance, Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) offer a quantifiable measure of
each approach’s efficacy. These results not only showcase the
potential of neural network-based approaches in surpassing
traditional methods like Kalman filters in accuracy and
stability but also highlight the importance of innovative
model architectures and learning strategies in pushing the
boundaries of UAV localization technology.

The reviewed studies collectively contribute to the evolv-
ing landscape of UAV localization research. The integration
of advanced neural network architectures, along with the
strategic use of diverse datasets and reference imagery, lays
the way for significant improvements in localization accuracy
and efficiency. As the field continues to advance, addressing
the outlined challenges will be paramount in realizing the full
potential of UAV localization technologies for a wide array of
applications in complex and dynamic environments.

V. CHALLENGES OF DEEP LEARNING APPROACHES
Integrating cutting-edge deep learning techniques into the
realm of aerial visual localization holds enormous promise,
presenting unprecedented potential for reshaping several
industries and applications (e.g., aerial mapping, surveying,
inspection, delivery applications, environment monitoring,
and precision agriculture) profoundly. Nonetheless, this
domain suffers from intricate challenges:

• Evaluating and comparing different methods perfor-
mance: Though the research on aerial visual localization
using deep learning approaches has grown rapidly,
comparing existing works in this domain can be
challenging due to several factors, ranging from the
absence of a standardizedmethodology and variations in
data collection to differences in evaluation metrics and
missing details of implementations. Remarkably, there
is no standardized approach for conducting experiments
on aerial visual localization using deep learning. This
manifests in terms of the data collection process,
sensor utilization, and image annotation methods.
Unlike other domains (e.g., computer vision), up to our
knowledge, a publicly available benchmark dataset for
evaluating and comparing deep learning-based aerial
visual localization methods remains elusive. To address
this problem, researchers opt to collect data under
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TABLE 1. Comprehensive comparison of the reviewed methods for aerial visual localization.
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TABLE 1. (Continued.) Comprehensive comparison of the reviewed methods for aerial visual localization.
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TABLE 2. Validation environments.
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TABLE 2. (Continued.) Validation environments.

different environmental and weather conditions, which
often is kept private. The scarcity of publicly available
benchmark datasets impedes the robust comparison
of different methods. In the pursuit of assessing
diverse methods, evaluation metrics are of paramount
importance. In this context, the mean absolute error
and root mean square errors are widely used. However,
different studies may use different evaluation metrics.
The disparate adoption of different metrics across
different studies hampers the seamless comparison of
performance. As such, a comprehensive and holistic
assessment of methods necessitates adopting a widely
acknowledged set of metrics. Such an approach would
enable a holistic and fair appraisal of methods. Besides
the aforementioned hurdles, a majority of existing
studies lack details about critical model configurations
and hyper-parameters (e.g., number of layers and
number of neurons), which hinders the fair comparison
of various methods’ performance. The scarcity of shared
source codes further amplifies the problem and makes it
even harder to compare results.

• Ethical, privacy, regulatory, and safety implications:
Despite their enticing potential and expected benefits
for real-world applications, aerial visual localization
methods bring forth a new array of ethical, privacy,
and safety concerns. These concerns stem from the
inherent reliance on high-resolution images acquired
through onboard cameras and come into sharp focus,
particularly when UAVs navigate over private properties
or sensitive areas. Therefore, it becomes an imperative
priority to design and implement stringent protocols to
both preserve privacy rights and responsibly manage
the troves of data gathered during localization pro-
cesses. Another key aspect to consider is compliance
with relevant national and international regulations.
Aviation authorities and governing bodies outline
and impose regulations and restrictions on UAVs’
operations. Deep learning-based visual localization
techniques must adhere to these mandates, encom-
passing airspace restrictions, requisite flight permits,
and privacy-preserving guidelines, among others. Fur-
thermore, as deep learning-based techniques integrate

into navigation and localization, worries arise about
system reliability and trustworthiness. This is especially
critical in civilian areas, where any failure could lead to
accidents or property damage, endangering human lives
and infrastructure. To mitigate these concerns, a robust
system design becomes a must, proactively preventing
damage and hazards stemming from potential failures
of such techniques. Having that said, using deep
learning-based visual localization technology ethically
and responsibly is of utmost importance. This entails
ensuring that the technology is used for legitimate
purposes and by legal and ethical standards. Trans-
parency in data usage, obtaining informed consent, and
maintaining accountability are critical factors that must
be considered. By addressing these implications, the
integration of visual localization in UAVs can be done
responsibly and beneficially while preserving privacy,
ensuring safety, and complying with regulations and
ethical standards.

VI. FUTURE RESEARCH DIRECTIONS
Potential future directions may consider several avenues.

• Learning and training paradigms:
– Researchers may investigate the possibility of using

different learning and training methods such as
online, transfer, and compact learning techniques.
Online learning methods, allow models to learn and
adapt to changes on-the-fly during operation. This
also has been suggested by Cabrera-Ponce et al. [56].
Another interesting research path is investigating the
use of transfer learning to overcome the perennial
issue of training datasets scarcity. This involves inves-
tigating how models trained in one sort of environ-
ment perform when used in a different environment.
This not only helps to alleviate the problem of data
scarcity but also sheds light on the adaptability and
generalizability of deep learning. In addition, active
learning strategies become essential in scenarios
where data collection is expensive. An active learning
model autonomously selects the most valuable data
for acquisition and learning. Given the pivotal role of
data quality and quantity in the effectiveness of deep
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learning methods, active learning strategies require
further exploration in the context of localization.

– Future work could involve deploying the proposed
algorithm by Amer et al. [63] on a real drone. Addi-
tionally, Generative Adversarial Networks (GANs)
could be used to apply style transfer between
synthetic and real training images to improve system
performance and reduce the size of the training
dataset. Investigating the incorporation of a Siamese
network into the current model for UAV geolocaliza-
tion is another direction.

– Future research could investigate using other visual
bandwidths, such as thermal imagery, and creating
ad-hoc reference points using multiple coopera-
tive UAVs. Solutions to improve detection and
mapping under low-light conditions could also be
explored [55].

• Advancingmodel architectures and ensemble techniques:
– The evolution of DNN architectures remains a focal
point of research. As such, researchers may examine
the impact of deeper models on localization accuracy.
This would involve designing new deep neural net-
work architectures or customizing/modifying existing
ones such as PoseNet and CompactPN. Aligned with
this direction, combining different types of neural
networks (e.g., CNNs, RNNs, LSTMs, etc.) or using
ensemble learning could improve the localization
performance. Investigating the impact of compact
models might be another research direction as they
can offer significant speed advantages. More research
could be done to investigate how to make these
models even faster without losing accuracy.

– Future work could experiment with larger datasets
covering multiple cities and improve the semantic
segmentation pipeline by exploiting additional UAV
videos. The dataset should help in developing an
end-to-end deep learning algorithm that replaces tra-
ditional computer vision methods. Efficient semantic
segmentation methods such as ESPNet and Shuffle-
Seg could also be investigated. Additionally, the SSM
component can be improved by replacing the demand-
ing dictionary search and heuristics with a CNN
inspired by existing models. Pose estimation and
image-to-image registration could be experimented
with for calibration and sequential frame registration
components [51].

• Enhancing model interpretability and trustworthiness:
– The trustworthiness of deep learning models can be
substantially bolstered by focusing on interpretability.
The development of models capable of producing
more interpretable and explainable results is a note-
worthy direction. This helps in understanding these
models’ underlying decision-making processes and
enhances their acceptance and adoption in critical
real-world scenarios.

• Exploring data fusion for enhanced context:
– Since the effectiveness of deep learning methods

greatly relies on the quality and quantity of training
data, future research could explore data fusion of
multimodal sources, such as altimeter data, IMU,
or even LIDAR. This could offer additional context
and potentially enhance accuracy.

• Real-World assessment of model robustness:
– While controlled settings have been used in most

contemporary studies, the practicality and resilience
of thesemodels must be extensively examined beyond
the laboratory setting. Such research will shed light
on the models’ ability to adapt to the complexities
and uncertainties seen in real-world localization
applications.

– Future work could involve experimenting with larger
datasets, improving the efficiency of semantic seg-
mentation methods, and replacing heuristic search
methods with CNN-based approaches. Investigating
pose estimation and image-to-image registration for
calibration and sequential frame registration compo-
nents is also suggested [52].

– Future work could focus on adding more efficiency
to the method to achieve faster operation frequencies
than those obtained in the current work. Another
direction is exploring the use of two or more
cameras [54].

VII. CONCLUSION
GNSS is a cornerstone for the safe and efficient opera-
tions of UAVs. However, GNSS signals are susceptible to
blockage, reflection, and spoofing, resulting in navigation
loss and potentially UAV loss. To address these challenges,
researchers have turned to visual navigation methods as
alternative solutions to conventional navigation methods.
This paper provides insights into the potential of UAV
visual localization and the challenges associated with its
implementation, focusing on deep Learning-based visual
navigation systems. In Figure 3, a classification of visual
localization methods is presented. We have systemically
examined state-of-the-art deep learning-basedmethodologies
against eight criteria: ML-model, data, reference imagery,
environment, altitude, metrics, and results, as summarized in
Tables 1- 2.

Aerial visual localization using deep learning techniques
holds immense potential for various industries and appli-
cations. Nevertheless, it faces several challenges including
evaluating and comparing different methods, assessing
performance, addressing ethical, privacy, regulatory, and
safety implications, and complying with relevant regula-
tions. Existing studies often lack details on critical model
configurations and hyper-parameters, making it difficult to
compare results. Furthermore, ensuring the reliability and
trustworthiness of these systems is crucial, particularly in
the civil context. Integrating deep learning-based visual
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TABLE 3. Key terminologies in UAV localization and their descriptions.
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TABLE 3. (Continued.) Key terminologies in UAV localization and their descriptions.

localization technology ethically and responsibly is essential,
involving transparency, informed consent, and accountability.

Future directionsmay explore various learning and training
methods, including online, transfer, and compact learning
techniques. Investigating the impact of deeper models on
localization accuracy is another avenue, with new deep
neural network architectures or customizing existing ones.
Combining different neural networks or ensemble learning
could further enhance localization performance. Compact
models offer speed advantages, but further research is needed
to optimize their speed without compromising accuracy.
Active learning strategies are essential in scenarios where
data collection is expensive. Future studies could incorporate
data from multiple sources, such as altimeter data, IMU,
or LIDAR, to improve accuracy. Testing these models in
diverse real-world conditions is crucial for understanding
their robustness and practical applicability.

APPENDIX
See Table 3.
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