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Cross-Attention-Based Saliency Inference for
Predicting Cancer Metastasis on Whole

Slide Images
Ziyu Su , Mostafa Rezapour , Usama Sajjad, Shuo Niu , Metin Nafi Gurcan ,
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Abstract—Although multiple instance learning (MIL)
methods are widely used for automatic tumor detection
on whole slide images (WSI), they suffer from the ex-
treme class imbalance WSIs containing small tumors where
the tumor may include only a few isolated cells. For
early detection, it is important that MIL algorithms can
identify small tumors. Existing studies have attempted
to address this issue using attention-based architectures
and instance selection-based methodologies but have not
produced significant improvements. This paper proposes
cross-attention-based salient instance inference MIL (CASi-
iMIL), which involves a novel saliency-informed attention
mechanism to identify small tumors (e.g., breast cancer
lymph node micro-metastasis) on WSIs without needing
any annotations. In addition to this new attention mecha-
nism, we introduce a negative representation learning al-
gorithm to facilitate the learning of saliency-informed atten-
tion weights for improved sensitivity on tumor WSIs. The
proposed model outperforms the state-of-the-art MIL meth-
ods on two popular tumor metastasis detection datasets.
The proposed approach demonstrates great cross-center
generalizability, high accuracy in classifying WSIs with
small tumor lesions, and excellent interpretability attributed
to the saliency-informed attention weights. We expect that
the proposed method will pave the way for training algo-
rithms for early tumor detection on large datasets where
acquiring fine-grained annotations is is not practical.

Index Terms—Multiple instance learning, attention
mechanism, whole slide images, digital pathology, breast
cancer metastasis.
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I. INTRODUCTION

D IGITAL pathology is playing an increasingly important
role in cancer diagnosis and transforming how patholo-

gists provide diagnostic information to patients and clinicians
[1]. By digitizing cancer specimens as whole slide images
(WSIs) with high resolution, pathologists can now view, share,
and analyze them more easily and efficiently. One of the benefits
of digital pathology is that it enables pathologists to seek a
second opinion from other experts more quickly by sharing
images. Moreover, it provides opportunities to develop machine
learning-based computer-aided diagnosis technologies [1], [2].

In recent years, deep learning has become the preferred ma-
chine learning method for analyzing WSIs due to its remarkable
learning capabilities [3]. However, two major challenges exist
when using deep learning models to analyze WSIs. Firstly, WSIs
are often extremely large (giga-pixel size) and stored in a multi-
resolution format to imitate the light microscope, making them
even larger. Secondly, accurate ground truth labels describing
and annotating regions of interest (e.g., lesions) are often scarce.
Pathologists usually prefer to provide overall diagnostic labels
(e.g., cancer or normal) rather than to annotate lesions on WSIs
or to draw their boundaries.

Unfortunately, MIL methods employed in detecting breast
cancer micro-metastasis to the lymph nodes have not yielded sat-
isfactory results. Identifying breast cancer metastasis to lymph
nodes holds significant importance as it assists oncologists in
determining the stage of breast cancer and devising treatment
plans [4]. The presence of tumor cells in the lymph nodes
indicates the spread of cancer beyond the breast tissue and
can imply a higher stage of the disease. The size of the tumor
involvement in a lymph node and the number of lymph nodes that
are involved by the tumor are both essential in cancer staging [5],
which directly affects the treatment plan and the disease prog-
nosis. Moreover, an early diagnosis of lymph node metastasis
in breast cancer is vital for improving treatment outcomes and
overall prognosis [6], [7]. Hence, we aim to develop a reliable
and accurate diagnostic tool for detecting tumors, including
challenging-to-identify micro-metastases.

When dealing with WSIs with small tumor lesions, such
as micro-metastasis to the lymph nodes, the tumor size may
comprise only a few isolated cells. For this reason, an MIL bag
may contain a large number of normal instances and only a few
tumor instances. This leads to a severe class imbalance during
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model development [8]. Some previous studies have tackled this
issue by performing instance-level classification and predicting
WSIs with a few high-confidence instances in the bag [2], [9].
Others have used attention-based MIL models to enable the
model to focus on potential tumor instances [8], [10], [11],
[12], [13]. However, in the case of early diagnosis, the tumor
lesions typically occupy a very small portion (usually less than
5%) of the WSIs, resulting in only a few tumor instances in
the corresponding tumor bags. Meanwhile, the current attention
mechanism tries to learn proper attention weights solely based
on each instance without guidance from tumor-related infor-
mation. Therefore, the aforementioned MIL algorithms fail to
pay attention to or classify the positive instances, leading to
unsatisfactory sensitivity in predicting WSIs with small tumor
lesions [14]. To address this problem, several MIL studies have
explored the selection of highly salient instances within MIL
bags. For instance, in our previous work [14], we achieved
high accuracy by pre-training an instance-level tumor detection
model and using the salient instances (i.e., possible tumor in-
stances with high-confidence) in the bags for MIL prediction.
However, this approach assumes that there are some large-tumor
WSIs in the dataset. Other studies combined their tumor instance
detection model with gradient flow to feed salient instances to
the MIL model in a learnable manner [2], [9], but detecting tumor
instances solely based on slide-level label is a radical approach.
As a result, these methods either achieved moderate sensitivity
or required large-scale training sets.

To address the above issues, we propose a novel MIL method-
ology, named Cross-Attention-based Salient instance inference-
MIL (CASiiMIL), that can infer possible tumor instances and mit-
igate the class imbalance between normal and tumor instances in
an end-to-end neural network. Inspired by Transformer [15] and
open-set learning methods [16], [17], [18], we propose CASii
network that can automatically correlate the input instances with
the representative normal instances in a more discriminative
feature space (for tumor identification) and infer the salient
instances dynamically by learning saliency-informed attention
weights to highlight them. The contributions of this work are as
follows:

� To mitigate the class-imbalance issue of small tumor WSIs
encountered by existing MIL models, we propose a novel
attention mechanism, named cross-attention-based salient
instance inference (CASii), to learn saliency-informed
attention weights for improved tumor WSI identification
performance.

� We present a negative representation learning method that
can learn representative normal instances to support salient
instance inference.

� We introduce two instance-level loss functions to further
improve the sparsity and saliency of the learned attention
weights for our MIL model.

II. RELATED WORKS

A. MIL for WSI Analysis

MIL is one of the most extensively used deep learning meth-
ods for WSI analysis given its weakly supervised property. It

assigns labels to groups of instances, known as “bags,” instead
of individual instances [19]. MIL is commonly used to determine
whether a bag contain at least one positive instance, making it
perfect fit for analyzing WSIs.

In 2018, Courtiol et al. [9] introduced MIL to identify tumor
metastasis WSIs for the first time. They cropped each WSI
into 224 × 224 patches, so a WSI can be considered as a bag
containing more than 10,000 instances. To save GPU usage,
they embedded patches into feature embeddings before applying
MIL. In their MIL method, they predict confidence score for
each instance, and then select top-K instances’ scores as the
final representation of a bag.

Following this work, several MIL models are proposed to
aggregate the instances and learn bag representations effec-
tively. These models can be typically divided into two cate-
gories: top-K instance based models [2], [9], [14], [20] and
attention-based models [8], [11], [12], [21]. The top-K instance
based models usually require training instance-level classifier
based on the corresponding slide-level labels [2], [14]. How-
ever, the training of this classifier needs either large-scale WSI
dataset or WSIs with macro-tumor lesions, which are not readily
available.

Attention-based models are currently the most popular type
of MIL model. It employs an attention or self-attention [15]
module to learn appropriate attention weights and aggregate
the instances within the WSIs. Nevertheless, the learning of
attention weight is based on slide-level labels only, making
it difficult to identify tumor instances to achieve moderate
slide-level sensitivity. To overcome this challenge, Zhang et al.
[22] propose to use GradCAM [23] mechanism to learn the
positive probability of instances to pre-select a set of possible
tumor instances for the MIL model. Tang et al., [24] propose
to highlight the “hard-to-classify” instances by using a hard
example mining mechanism. Given these improvements, exist-
ing attention-based MIL models still suffer from undesirable
sensitivities, especially for the micro-tumor lesion cases. This
has been shown in a previous study [25] where they show several
MIL models have only 11-46% accuracy in identifying tumor
WSIs in the micro-metastasis cases (tumors no larger than 2 mm
on a slide). Therefore, in this paper, we propose providing
additional guidance to the MIL model’s attention module to
improve the highlighting of salient instances.

B. Open-Set Learning

In open-set learning, the task is to classify the categories that
has been seen during the training, and identify the data from
unseen categories in the meantime [17]. Typically, this is accom-
plished by comparing input data to example seen data [17], [18],
[26]. Specifically, a previous work proposes an attention-based
architecture to correlate the local regions of an input image with
the local regions from a support image set [16]. Hence, their
model can highlight the local image regions from the unseen
categories. Inspired by open-set learning methods, the proposed
method first learns a set of representative normal instances, and
then utilizes a novel cross-attention mechanism to infer possible
tumor instances.
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C. Cross-Attention for Medical Image Analysis

Cross-attention is a type of attention mechanism that allows
neural networks to incorporate external information into learned
features. Various cross-attention networks have been applied
to numerous medical image analysis tasks. In some studies,
cross-attention is used to combine multimodal data, such as
medical images and clinical reports. Typical applications include
image generation [27], visual question answering [28], PET-CT
fusion [29]. Other research involves performing cross-attention
between a query feature map and a support feature map rep-
resenting lesion features to create a more lesion-focused query
feature map [30], [31], [32], [33]. However, most of these studies
focus on relatively small-sized medical images, such as radiol-
ogy and fundus images. In this study, we propose integrating a
novel cross-attention module into the MIL model to highlight
the lesions from the giga-pixel size WSIs. We anticipate this new
MIL design will help the model identify tumors and differentiate
tumor WSIs from normal WSIs, even when the tumors are
extremely small.

III. METHOD

A. Datasets

Our study is based on three publicly available WSI datasets.
The first two datasets, named Camelyon16 and Camelyon17
[34], [35] are well-known deep-learning benchmarks for the
automated detection of breast cancer lymph node metastasis
(BCLNM) in hematoxylin and eosin (H&E) stained WSIs of
lymph node biopsies.

Camelyon16 contains a training set with 270 WSIs and a
hold-out testing set with 129 WSIs that are divided into two
categories: normal and tumor. Tumor WSIs consist of both
macro- and micro-metastasis WSIs, with the latter containing
tumor lesions no larger than 2 mm and more challenging to
detect. In our MIL study, we perform binary classification to
identify normal and tumor WSIs using only slide-level labels.

The Camelyon17 dataset contains a training set with 500
WSIs and a testing set with 500 WSIs divided into normal and
tumor categories. The latter is more challenging as it includes
WSIs collected from five hospitals. We utilize this dataset to
assess our method’s generalizability to WSIs from unseen hos-
pitals during training. To this end, we conduct a cross-center
cross-validation study based on the 500 WSIs from the Came-
lyon17 training set, where the source hospitals are labeled.

We also included TCGA-NSCLC dataset as a subtyping
benchmark for our MIL model. TCGA-NSCLC comprises WSIs
from two non-small cell lung cancer subtypes: lung adenocar-
cinoma (LUAD) and lung squamous cell carcinoma (LUSC).
Among the 1023 WSIs in this dataset, 526 are LUAD WSIs
and 497 are LUSC WSIs. Our model is trained to classify the
subtypes of these WSIs, demonstrating its versatility in handling
different histopathological tasks.

B. Revisiting MIL for WSI Classification

In the MIL paradigm, a WSI is first cropped into small image
patches, and then, via the feature extraction module, all patches

are transformed into feature embeddings. Throughout this paper,
we refer to a WSI and a patch as a bag and an instance,
respectively. For the sake of representation, we also assumed
that Xi = {xi1, xi2, . . . , xini

} denotes the set of all instances
within the ith bag, where xij is the jth instance of the ith bag.
If an instance comes from a tumor region, then a positive label
(encoded by 1) will be assigned to the instance, and otherwise,
iis called positive if and only if at least one positive instance
exists in the bag. If all instances within a bag are negative, then
a negative label will be assigned to the bag. Therefore, the true
bag-level label, Y , can be defined by:

Y =

{
0, iff

∑
j yj = 0,

1, otherwise.
(1)

where yj ∈ {0, 1}, for j = 1, . . . , ni, denotes the jth instance
of the bag [36]. To make a bag-level decision (bag-level label
prediction) for the ith bag, Xi, all instances within a bag,
{xi1, xi2, . . . , xini

}, are first transformed into instance-level
embeddings. Then all instance-level embeddings are aggregated
into a bag-level embedding. Finally, a classifier is employed
that takes the bag-level embedding as an input and produces
a bag-level label prediction as an output. The process can be
formulated as:

Ỹ = g (σ (f (xi1) , . . . , f (xini
))) (2)

where Ỹ is a predicted bag-level label, f(·) is an instance-level
embedding transformation function, σ(·) is an aggregation func-
tion, and g(·) is a bag-level prediction classifier.

Currently, the common practice for the aggregation function
in multiple instance learning (MIL) models is attention-based
weighted summation, where the attention weights are learned for
each instance by a neural network. The essential idea is to enable
the MIL model to highlight potential tumor instances within
a bag, thereby differentiating tumor WSIs from normal WSIs.
While these models have achieved significant success, they often
exhibit low sensitivity on WSIs with micro-metastasis [25],
where the majority of regions in the WSIs are non-tumorous.

This limitation arises because the MIL model struggles to
adequately focus on the minority tumor instances when it can
only leverage bag-level labels (i.e., tumor or normal WSI) for
differentiation during training. Without instance-level annota-
tions, the model may not pay enough attention to the few but
crucial tumor regions within a largely normal WSI.

Our objective is to address this issue by providing additional
guidance to the MIL model, enabling it to better differentiate
between tumor and normal WSIs without relying on instance-
level annotations. We aim to achieve this by:

1) Learning representative negative instances, which helps
the model understand and ignore normal tissue regions
more effectively.

2) Employing our novel cross-attention-based salient in-
stance inference architecture, which enhances the model’s
ability to identify and focus on potential tumor regions
within a bag.

By implementing these strategies, we aim to improve the
sensitivity and overall performance of MIL models, particularly
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Fig. 1. Overview of CASiiMIL. (a) Negative Representation Learning (NRL): We extract negative keys from training normal WSIs using a CUR-
based method to identify the top representative patch embeddings from each normal WSI. These embeddings form a negative key set for the
subsequent CASiiMIL step. (b) CASiiMIL for Bag-Level Classification: Our cross-attention-based model correlates the input instances with the
negative keys in the C matrix and then learns saliency-informed attention scores through the saliency layer FCs. Using the learned attention
weights, we aggregate all instances to make the final slide-level prediction. To enhance model performance, we incorporate a regular cross-entropy
loss along with two instance-level loss functions, Lbot and Ltop, to encourage attention sparsity.

in challenging cases involving micro-metastasis, ultimately con-
tributing to more accurate and reliable diagnostic tools in clinical
practice.

C. The Proposed CASiiMIL

The proposed method is composed of three main steps: (i)
forming a bag by cropping an input WSI into patches and
embedding the patches into feature embeddings using pretrained
model (see Section III-E and III-F for details); (ii) learning neg-
ative keys (i.e., representative negative instances) from normal
WSIs in the training set using the proposed negative repre-
sentation learning (NRL) module; (iii) bag-level classification
using CASiiMIL based on an input bag and negative keys. The
overview of our method is shown in Fig. 1.

1) Negative Representation Learning: Redundancy in
histopathology images refers to the presence of repetitive and
overlapping visual information, commonly observed in both
pathological and normal histology. In normal histology, the
structured nature of tissue architecture and the consistency
of cellular patterns across different sections contribute to this
redundancy. While such redundancy can enhance the robustness
of image analysis by providing consistent references, it also
necessitates more sophisticated algorithms to discern subtle
pathological changes amidst the repetitive normal patterns.
Effectively addressing redundancy is crucial for improving
the accuracy and efficiency of computational pathology and
enhancing diagnostic precision. Since pathological slides often

contain normal histology and we lack precise tumor locations,
we decided to learn the normal histology representation in a
succinct manner from normal WSI. We approached this normal
histology learning as a redundancy minimization problem
through NRL.

The Negative Representation Learning (NRL) module is a
key component of our methodology, designed to enhance the
specificity and accuracy of tumor instance detection in WSIs
by focusing on learning discriminative features from normal
(non-tumor) instances. The NRL module operates by identifying
and representing the most informative normal patches from
WSIs, which serve as a baseline for distinguishing subtle tumor
features.

Given a training set that contains P negative bags (normal
WSIs) denoted by X = {X1, X2, . . . , XP }, where Xm is the
mth negative bag that contains nm negative instances (nor-
mal patches), Xm = {xm1, xm2, . . . , xmnm

}, we first apply
a feature extraction neural network f(·) on xmq ∈ Xm, for
q = 1, 2, . . . , nm and m = 1, 2, . . . , P , to construct feature
embeddings hmq ∈ RD. For m = 1, 2, . . . , P , we then con-
struct Am = [hm1, hm2, . . . , hmnm

] ∈ RD×nm , apply CUR
decomposition [37] on Am to identify the most representative
normal instances. The CUR decomposition technique specifi-
cally targets the selection of columns from Am that best capture
the inherent variability and statistical significance of the features
within the data, without a significant loss of information.

This selection is based on the statistical importance of each
column, assessed through measures such as leverage scores.
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Algorithm 1: Pseudo-Code for Negative Representation
Learning (NRL).
Input: The set of embedded normal WSIs,

A = {A1, A2, . . . , AP }.
Step 1: for m = 1, 2, . . . , P do
� Step 1.1: Compute the rank of Am, and set
k = rank(Am).

� Step 1.2: Construct matrix V whose rows are the
eigenvector of AT

mAm.
� Step 1.3: Compute the importance score of the jth

column of Am by sj =
1
k

∑k
h=1 V

2
hj , where Vhj is the

element in the hth row and jth column of V , for
j = 1, 2, . . . , nm.

� Step 1.4: Sort columns of Abm based on the scores sj’s.
� Step 1.5: Construct Ãbm ∈ RD×ti whose columns are

the first tm columns of sorted Abm in Step 1.4.
End (for).

Output: Construct a key matrix K by concatenating all
Ãbm , for m = 1, 2, . . . , P, K =
Ãb1 ⊕ Ãb2 . . .⊕ ÃbP = [k1, . . . , kτ ] ∈ RD× τ

These scores reflect how much each column contributes to the
overall variance and structure of the data, thereby allowing us
to maintain the most informative features. The columns selected
through this process are then used to form a submatrix Ãbm ∈
RD×tm . This submatrix contains columns that are a subset ofAm

and represent the high statistical leverage of the mth negative
bag’s feature embeddings. These columns will capture the key
characteristics of normal tissue architecture and provide a robust
baseline for distinguishing tumor features.

Finally, we construct a key matrix K of representative nega-
tive instances by concatenating Ãbm for all m = 1, 2, . . . , P ,

K = Ãb1 ⊕ Ãb2 . . .⊕ ÃbP = [k1, . . . , kτ ] ∈ RD× τ (3)

where ⊕ denotes the concatenation operation and τ =∑P
m=1 tm. This process is depicted in Algorithm 1.
2) Cross-Attention-Based Salient Instance Inference MIL:

In this section, we introduce a new cross-attention-based salient
instance inference MIL (CASiiMIL) model that can efficiently
highlight salient instances of positive bags. Unlike existing
attention-based MIL methods [2], [8], [11], [12], which learn at-
tention weights solely from input instances, our cross-attention-
based architecture can automatically correlate the input in-
stances and negative keys, enabling the learning of high attention
weights for instances that have low semantic relevance to normal
tissues.

Suppose a fixed key matrix K = [k1, k2, . . . , kτ ] ∈ RD×τ

is constructed from all negative bags (see Section III-C-1),
and a random input bag (WSI) containing n instances, Q =
[q1, q2, . . . , qn] ∈ RD×n, is given. The keys k1, k2, . . . , kτ ,
and the queries q1, q2, . . . , qn are first transformed into three
latent feature spaces: key, query and value spaces, via three
different fully connection layers:

k̃j = FCk (kj) = tanh
(
WT

k kj + bk
) ∈ RDh , (4)

q̃i = FCq (qi) = tanh
(
WT

q qi + bq
) ∈ RDh , (5)

ṽi = FCv (qi) = ReLU
(
WT

v qi + bv
) ∈ RDh , (6)

where Wk, Wq, Wv ∈ RD×Dh , and bk, bq, bv ∈ RDh are
learnable parameters. We then construct a cross-attention matrix
C,

C = [cij ] = Q̃T K̃ ∈ Rn×τ , (7)

where K̃ = [ k̃1

||k̃1|| ,
k̃2

||k̃2|| , . . . ,
k̃τ

||k̃τ || ] ∈ RDh×τ and Q̃ =

[ q̃1
||q̃1|| ,

q̃2
||q̃2|| , . . . ,

q̃n
||q̃n|| ] ∈ RDh×n. In matrix C, each row

is a correlation vector between a query, qi, to all the keys,
k1, k2, . . . , kτ .

Then, we construct a saliency layer, FCs, whose inputs are
rows of cross-attention matrix, Ci ∈ Rτ , and outputs are the
saliency logits, si ∈ R, for the queries:

si = FCs (Ci) = WT
s Ci + bs ∈ R. (8)

Here, Ws ∈ Rτ×1 and bs ∈ R are learnable parameters. The
functionality of this saliency layer is to assign low attention
scores to instances highly correlated with negative keys (likely
normal) and high scores to those with low correlation (likely
tumorous). By visualizing the attention map (see Fig. 4) in
the Results section, we show that the saliency layer learns this
reverse logic after training.

Finally, we compute a bag-level embedding for the input bag
by aggregating the latent queries in value space as follows:

z =
n∑
i

aiṽi, (9)

where:

ai =
exp (si)∑n
i exp (si)

, (10)

where ai are the saliency informed attention weights. Finally,
we feed the bag-level embedding z into a fully connected layer
to classify the bag-level label (i.e., normal or tumor WSI) of
the input bag in a supervised manner. The overall CASiiMIL
architecture is depicted in Fig. 1(b).

D. Model Training

The proposed model is primarily trained with a binary cross-
entropy loss function:

LCE = −Y log (Pbag)− (1− Y ) log (1− Pbag) , (11)

where Y ∈ {0, 1} is bag-level (slide-level) label of a WSI,
and Pbag ∈ [0, 1] is the bag-level probability of being positive
predicted by CASiiMIL.

Moreover, we introduce two instance-level loss functions for
the instances with bottom-r and top-r attention weights within
each WSI. We propose these two instance-level loss functions
to encourage the sparsity of the attention weights and guide
CASiiMIL model to learn appropriate attention weights for each
WSIs. The loss functions are as follows:

Lbot = − (1− Y0) log
(
1− Pn−r, ..., n

s

)
, (12)
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Ltop = − Y1 log
(
P 1, ..., r
s

)
, (13)

where:

Ps = σ (s) , (14)

where Y0 = 0 and Y1 = 1 are the pseudo-labels assigned to the
bottom- and top-r instances, s is the saliency logit (see (8)) of
one of the bottom or top-r instances, and σ(·) is the sigmoid
activation function. In practice, Lbot is applied for all training
WSIs and Ltop is applied only for positive training WSIs. We
train the model solely via LCE for 5 epochs to allow the model
to warm-up. Each loss is averaged across the bottom- or top-r
instances before optimization.

As a result, the proposed model is trained via:

L = LCE + λ1Lbot + λ2Ltop, (15)

where λ1 and λ2 are constant coefficients for the instance-level
losses.

E. Histopathology Specific Feature Extractor

In this study, we apply two different pretrained CNN feature
extractors (i.e., f(·)), namely ResNet50 [38] and CTransPath
[39], for patch feature extraction. ResNet50 (truncated at the
third residue block) is the most common feature extractor for
MIL-based WSI analysis studies and pretrained on the Ima-
geNet dataset [40]. The dataset contains more than one million
natural images divided into 1000 categories, and this model
has an output dimension of D = 1024. Despite its widespread
use and successful applications [8], [12], [41], [42], the do-
main shift issue between natural images and histopathology
images remains. Thus, we propose to use CTransPath, which
is a transformer-based histopathology specific feature extrac-
tion model [39]. CTransPath is pretrained in a self-supervised
learning manner using around 15 million histopathology image
patches collected from the cancer genome atlas (TCGA) and
pathology AI platform (PAIP) datasets. Its output dimension is
D = 768.

F. Implementation Details

For preprocessing, all WSIs were cropped into patches in the
size of 224× 224 under 20×magnification (same as the settings
of some recent studies [8], [11]). Patches from foreground tissue
regions were extracted using color thresholding.

Our model was optimized by Adam optimizer [43] with
0.0002 learning rate and 0.00001 weight decay. The training
was carried out with 10 epochs warm-up steps and halted if
the validation AUC didn’t improve for over 10 epochs. For the
instance-level loss functions (14) and (15), we empirically chose
instances with bottom and top-5 attention weights since some
WSIs have small tissue regions or micro-metastasis. Our code
is available at https://github.com/cialab/CASiiMIL.

G. Experimental Design

To evaluate the performance of the proposed model, we run
our model five times where we randomly split the training set of
Camelyon16 into training and validation sets in a ratio of 9:1.

TABLE I
SLIDE-LEVEL CLASSIFICATION RESULTS ON CAMELYON16 BASED ON

CTRANSPATH FEATURE EXTRACTOR. 95% CI REPORTED IN []

Then, we selected the model with the best validation AUC from
the five models and tested the model on the official testing set
of Camelyon16.

To evaluate the cross-center generalizability of the proposed
model, we also conducted five-fold cross-center cross-validation
on the Camelyon17 dataset. Namely, in each fold, we employed
WSIs from one center as the testing set, and combined the WSIs
from the rest four centers and the Camelyon16 training WSIs
as the training set. The training set was also randomly split into
training and validation set in a ratio of 9:1. For comparison, we
conducted the same experiments on the state-of-the-arts MIL
methods [8], [11], [12], [22], [24], [44]. These two methods
represent two different types of MIL frameworks: attention-
based and self-attention-based methods. Both these methods
have been reported to outperform other MIL frameworks. The
experimental results are reported in Section IV.

IV. RESULTS

A. BCLNM Identification

Tables I, II, and Fig. 2 report the slide-level classification
results on the Camelyon16 dataset based on two different feature
extractors. In comparison with state-of-the-art MIL models,
CASiiMIL achieves the best overall performance. Although
some methods achieve better precision than CASiiMIL, the
proposed method achieves the best recall while maintaining
an outstanding precision. As a result, CASiiMIL maintains
a good balance between precision and recall. Fig. 2 reports
the slide-level classification accuracies on the WSIs grouped
in normal, macro-metastasis, and micro-metastasis. Moreover,
Fig. 3(a) reports the averaged ROC curve of the five runs based
on the Camelyon16 dataset.

Table III reports the cross-center slide-level classification
results on the Camelyon17 dataset based on CTransPath fea-
ture extractor. In comparison with state-of-the-art MIL models,
CASiiMIL exhibits better cross-center generalizability.

https://github.com/cialab/CASiiMIL


7212 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 12, DECEMBER 2024

TABLE II
SLIDE-LEVEL CLASSIFICATION RESULTS ON CAMELYON16 BASED ON

RESNET FEATURE EXTRACTOR. 95% CI REPORTED IN []

Fig. 2. Slide-level classification accuracies with 95% CIs on Came-
lyon16 dataset that grouped in normal, macro-metastasis, and micro-
metastasis. (a) Results based on CTransPath feature extractor. (b) Re-
sults based on ResNet50 feature extractor.

Fig. 3. (a) Averaged ROC curve of the five runnings on Came-
lyon16 dataset. (b) Averaged ROC curve of five-fold cross-center cross-
validation on Camelyon17 dataset. All results are based on CTransPath
feature extractor.

B. Lung Cancer Subtyping

We also adapted CASiiMIL for cancer subtyping in NSCLC
(non-small cell lung cancer) to demonstrate its versatility. We
trained and evaluated our model on the TCGA-NSCLC dataset,
which includes WSIs categorized as LUAD (lung adenocar-
cinoma) and LUSC (lung squamous cell carcinoma). Cancer
subtyping is different from traditional MIL formulation that we
discussed in Section III-B. Instead of predicting the presence of
tumor instance in a bag, we need to comprehensively analyze
whether the instances are from one tumor type or another tumor
type. Thus, we perform NRL on two subtypes separately to

extract LUAD keys and LUSC keys. Then, we will employ two
cross-attention branches to predict LUAD and LUSC. The logits
predicted from the two branches are then normalized by softmax
function for final prediction.

Since the TCGA-NSCLC dataset lacks an official testing set,
we conducted a four-fold cross-validation as per Tang et al. [24].
Table IV reports our classification results, where CASiiMIL
outperforms state-of-the-art MIL models.

C. Ablation Studies and Computation Analysis

To demonstrate the effect of different loss functions, we
conduct an ablation study on different combination of our loss
function terms. The results are summarized in Table V. We find
that combining LCE , Lbot, and Ltop lead to the best overall
performance. Besides, both Lbot and Ltop were helpful individ-
ually, indicating that encouraging the sparsity of the attention
weights using instance-level loss functions leads to improved
classification performance.

To investigate the effect of the number of keys extracted
using NRL, we varied the number of keys extracted from each
WSI (tm). We set tm to 20, 50, 100, 200, and 300, naming
the resulting key matrices as: (1) NRL-20, (2) NRL-50, (3)
NRL-100, (4) NRL-200, and (5) NRL-300. Additionally, we
also applied a random selection strategy to select 50 keys per
WSI, resulting in a key matrix labeled as Rand-50. This key
matrix was used to compare with our NRL method to verify
its effectiveness. We applied these key matrices separately in
our CASiiMIL model and reported the resulting testing AUCs
and F1-scores in Table VI. The results indicate that the per-
formance of CASiiMIL is influenced by the number of keys
extracted. The highest AUC and F1-scores were achieved with
NRL-50, suggesting that an optimal number of keys exist for
maximizing model performance. When the number of keys is
set too high (NRL-200 and NRL-300), there is a notable drop
in both AUC and F1-scores, indicating potential overfitting or
noise introduced by an excessive number of keys. Furthermore,
CASiiMIL’s performance based on NRL-selected keys is no-
ticeably better than its performance based on randomly selected
keys, highlighting the representativeness and effectiveness of
our NRL-selected keys.

We also report the FLOPs and model size (Params) in the
Table VII. The computation is based on an input bag with shape
(1, 120, 1024) under the evaluation mode following the strategy
of DTFD-MIL’s [22]. This analysis demonstrates that CASiiMIL
has comparable complexity to other MIL models, except for
TransMIL [12], which has a significantly larger size due to its
use of multiple transformer blocks.

D. Interpretability

To demonstrate the interpretability of the proposed model,
we visualize the attention outputs (see (10)) of CASiiMIL
overlaid on the original WSIs in Fig. 4. Specifically, in the
top row, we highlight the patches that receive the largest 10%
attention weights and dim the remaining regions. In the bottom
row, we visualize the overall attentions in a heatmap format.
The visualization results demonstrate CASiiMIL’s sensitivity
on tumor lesions in different sizes. Additionally, we invited a
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TABLE III
CROSS-CENTER SLIDE-LEVEL CLASSIFICATION RESULTS ON CAMELYON17 DATASET BASED ON CTRANSPATH FEATURE EXTRACTOR. 95% CI

REPORTED IN []

Fig. 4. Attention visualization of example tumor WSIs. In the top row, the bright areas correspond to the highest 10% attention weights and the
dark areas correspond to regions receiving low attention weights. Tumor regions are annotated in green color. From left to right, we visualize the
example WSIs with different tumor sizes ranges from large to small. In the bottom row, we visualize the attention heatmaps of the corresponding
WSIs. The results demonstrate the sensitivity of CASiiMIL on tumor lesions of different sizes.

TABLE IV
SLIDE-LEVEL CLASSIFICATION RESULTS ON TCGA-NSCLC BASED ON

CTRANSPATH FEATURE EXTRACTOR. 95% CI REPORTED IN []

TABLE V
ABLATION STUDY ON LOSS FUNCTIONS. RESULTS ARE AVERAGED TESTING

RESULTS ON CAMELYON16 DATASET

pathologist to interpret the false positive patches that received the
largest 10% attention weights but were not from the annotated
tumor regions, according to Camelyon16’s official annotation.
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TABLE VI
ABLATION STUDY ON KEY SET SIZE. RESULTS ARE AVERAGED TESTING

RESULTS ON CAMELYON16 DATASET

TABLE VII
COMPUTATION ANALYSIS OF DIFFERENT MIL MODELS. THE COMPUTATION IS

BASED ON AN INPUT BAG WITH SHAPE (1, 120, 1024) UNDER THE
EVALUATION MODE

Fig. 5. Interpretation of patches with high attention weights. Here, we
show example patches that receive the largest 10% attentions weights
within their corresponding WSIs. (a) True positive patches that are from
annotated tumor regions. (b) False positive patches that are not from
annotated tumor regions.

We find that most false positive patches are normal cells such as
histiocytes (tissue macrophages) and high endothelia cells that
shared similar morphology with tumor cells, such as large cell
size, large but less blue nucleus, profound nucleolus, etc. Some
example patches are shown in Fig. 5.

V. DISCUSSIONS AND CONCLUSION

This manuscript makes a significant contribution to the field
of pathology image analysis by proposing a novel method for
automatically computing a saliency score for each patch in an
image, which can be used to arrive at a slide-level decision.
The motivation behind this study is to develop a reliable and

accurate diagnostic tool for the detection of tumors, including
challenging-to-identify micro-metastases. Accurate diagnosis
and treatment planning are crucial in clinical practice, and
current methods often struggle with balancing recall and pre-
cision. Our objective is to address this challenge by leveraging
CASiiMIL’s capabilities. CASiiMIL is designed to enhance
the sensitivity of multiple instance learning (MIL) to tumor
instances, ensuring high recall rates. High recall is essential
to minimize the risk of under-diagnosis by reducing missed
tumor instances. Additionally, CASiiMIL aims to maintain ex-
cellent precision to minimize false positives, which can lead
to unnecessary medical interventions. By achieving this bal-
ance, CASiiMIL aims to improve the accuracy and reliability
of histopathological diagnoses, ultimately contributing to bet-
ter patient outcomes and advancing the standards of clinical
practice.

CASiiMIL has several advantages over existing approaches,
including the ability to produce more reliable and interpretable
attention maps, as well as the ability to correctly identify cases
with extremely small lesions that may be missed by other meth-
ods. By computing a saliency score for each patch, our method is
able to identify regions of interest within an image that are most
likely to contain pathological features. This allows us to focus
our analysis on these regions and improve the accuracy of our
predictions. Additionally, by combining these scores across all
patches in an image, we are able to arrive at a slide-level decision
that takes into account all available information. One of the key
advantages of our method is its ability to identify cases with
extremely small lesions accurately. This is particularly important
in pathology image analysis, where small lesions can be easily
missed or overlooked by human observers. By automatically
computing saliency scores for each patch, our method is able to
detect even very small lesions and incorporate this information
into the slide-level decision. Overall, our method represents a
significant advance in the field of pathology image analysis
and has the potential to improve the accuracy and reliability
of diagnostic and prognostic predictions.

We innovatively developed a cross-attention architecture to
integrate a salient instance inference module into the gradient-
flow of MIL classification. There are two main advantages
associated with our model. First, it transforms the key and
queries to a latent space to correlate query instances with the
negative keys automatically. Second, it enables the learning
of saliency informed attention weights to highlight the possi-
ble positive instances in the bags. In Section IV-A, we show
that the proposed CASiiMIL achieves outstanding slide-level
classification performance on Camelyon16 dataset with both
natural image pretrained and histopathology-specific feature
extractors (see Tables I and II). It is noted that some comparison
methods achieve better precision than CASiiMIL when utilizing
the ResNet encoder. We attribute this to our cross-attention
module, designed to enhance the MIL’s sensitivity to tumor
instances, potentially leading to some overcalls. Despite this,
the proposed CASiiMIL maintains the best recall rate while
also achieving excellent precision. Consequently, our overall
performance surpasses that of all comparison methods. This
finding highlights CASiiMIL’s superior capability to accurately
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identify tumor slides without compromising precision, a crucial
aspect for diagnostic tools used in clinical practice.

Clinically, this means that CASiiMIL can reliably detect
the presence of tumors, including difficult-to-identify micro-
metastases, which are critical for accurate diagnosis and treat-
ment planning. High recall ensures that fewer tumor instances
are missed, reducing the risk of under-diagnosis, while maintain-
ing excellent precision minimizes false positives, which can lead
to unnecessary interventions. Therefore, CASiiMIL represents
a valuable tool in improving the accuracy and reliability of
histopathological diagnoses, ultimately contributing to better
patient outcomes.

In Fig. 2, we compare different MIL models’ slide-level
classification accuracies on the WSIs grouped in normal, macro-
metastasis, and micro-metastasis. The proposed CASiiMIL
achieves the best accuracies on the micro-metastasis WSIs com-
pared with all other MIL models. This result demonstrates that
our cross-attention architecture and saliency-informed attention
weights are helpful in identifying tumor WSIs, even when the
tumor lesions are small.

In Table III, we report the cross-center slide-level classifi-
cation results of CASiiMIL compared with other MIL meth-
ods based on Camelyon17 dataset. The results reveal that the
proposed model can greatly generalize to WSIs from unseen
hospitals during training. We noticed that MIL models generally
achieved lower performance on the Camelyon17 dataset than
Camelyon16. The primary reason lies in the differences in data
collection and validation methodologies. Unlike Camleyon16,
whose training and testing slides were collected from the same
hospitals, Camelyon17 presents a more challenging scenario as
the slides were collected from five different hospitals, introduc-
ing significant variability in the appearance, scanning parame-
ters, and staining of the histopathology slides. This variability
can affect the model’s ability to generalize across different
centers. Moreover, for Camelyon17, we performed cross-center
cross-validation, ensuring that the training and testing sets are
from different hospitals. This approach is more reflective of
real-world scenarios where models must generalize to data from
various sources. However, it also increases the task’s difficulty,
leading to lower ROC/AUC performance than Camelyon16.

In Table IV, we report the cross-validation results of CASi-
iMIL and comparison methods on the TCGA-NSCLC dataset.
We found that CASiiMIL outperforms state-of-the-art MIL
models on this subtyping benchmark. Cancer subtyping is a
common yet unique MIL task that varies from the traditional pos-
itive/negative MIL setting. Our results exhibit CASiiMIL’s ver-
satility and robustness across different histopathological tasks,
indicating its potential for broader clinical applications.

In the visualizations of attention heatmaps (see Fig. 4), we
further show that our model is able to identify tumor lesions
and predict high attention weights on the tumor instances. This
outcome demonstrates the outstanding sensitivity and inter-
pretability of the proposed saliency informed attention layer
regardless of the size of tumor lesions. Besides tumor lesions,
this model is also identifying several groups of benign cells
(except for lymphocytes) that are normal components of lymph
nodes. These cell groups are mostly high endothelial venules

and histiocytes (tissue macrophages). They may share some
similar morphological features with tumor cells in comparison
to background lymphocytes, such as larger cell size, larger nu-
cleus with profound nucleoli, and abundant cytoplasm. Notably,
the model also identified a few isolated cells that were highly
suspicious for tumor cells, based on the morphology comparing
to the confirmed main tumor lesion in the same lymph node (see
Fig. 5).

A limitation of the proposed method is that CASiiMIL is
computationally expensive due to feeding the entire key set into
the model during the training. Approximately, our model has
1.57 M learnable parameters and 6M non-learnable parameters
(i.e., the entire negative key set). This manner requires key sets of
limited size given certain computational memories. To this end,
a more robust negative representation learning method is needed
to extract a more representative and less redundant negative key
set.

In summary, we propose a novel MIL model called CASi-
iMIL, which achieved excellent accuracy on the tumor WSI
classification task. We innovatively developed cross-attention-
based architecture that enables the learning of saliency informed
attention weights for MIL aggregation. The proposed CASiiMIL
is of great sensitivity and interpretability in classifying tumor
WSIs regardless the how small the tumor regions are, which
makes it a reliable automatic diagnostic tool.
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