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Abstract—Synthetic aperture radar (SAR) and optical sensing
are two important means of Earth observation. SAR-to-optical
image translation (S2OIT) can integrate the advantages of both
and assist SAR image interpretation under all-day and all-weather
conditions. The existing S2OIT methods generally follow the gener-
ative adversarial networks paradigm, and encounter the problem
of mode collapse, making them difficult to train. SAR and opti-
cal images have heterogeneous characteristics and large spectral
differences, most of the existing methods do not focus on the
color correlation between these two image domains, which leads
to spectral distortion and detail errors in translation results. To
address these issues, we propose a novel diffusion model capable
of memorizing color and directly mapping between the SAR and
optical image domains for S2OIT called CM-Diffusion. The color
attention Brownian bridge diffusion structure is designed to learn
the color correlation and translation between the SAR and optical
image domains directly through the bidirectional diffusion process
and color attention mechanism, avoiding the conditional informa-
tion leverage. The color feature extraction module is constructed
to provide color and semantic information for the diffusion model.
Extensive experiments conducted on three benchmark datasets
SEN1-2, QXS-SAROPT, and SEN12MS demonstrate that the pro-
posed CM-Diffusion outperforms the state-of-the-art methods on
both subjective and objective evaluation metrics.

Index Terms—Brownian bridge diffusion structure, color
memory, diffusion models, synthetic aperture radar (SAR)-to-
optical image translation (S2OIT).

I. INTRODUCTION

W ITH the continuous development of space remote sens-
ing detection technology, synthetic aperture radar (SAR)

and optical sensing images have a wide range of application
needs in land planning, environmental monitoring, resource
prospection, military reconnaissance, and other fields [1], [2].
SAR is a kind of active remote sensing, which can be used under
all-day and all-weather conditions., but SAR images suffer from
geometric distortion and speckle noise, which seriously affect
the visual effect of SAR imaging [3]. Without prior knowledge,
it is difficult for nonexperts to visually identify land cover types
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from SAR images. In contrast, the optical images contain high
spectral resolution, where the visible light range is more in
line with human visual perception, and the susceptibility of
optical images to severe weather effects such as clouds and fog
can be compensated by SAR images [4]. Therefore, combining
the advantages of these two images and translate SAR images
into corresponding optical images can improve the visual effect
of SAR images, and also reduce the cost of interpreting SAR
images [5]. In addition, even for researchers familiar with pro-
cessing SAR images, SAR-to-optical image translation (S2OIT)
is still helpful in providing auxiliary information (translated
optical images) to assist researchers in certain SAR processing
tasks such as cloud removal [6] and change detection [7]. Due
to the rapid development of natural image-to-image translation
(I2IT) based on deep learning [8], [9], researchers have begun
to pay attention to S2OIT [10]. In recent years, many S2OIT
methods based on generative adversarial networks (GANs) [11]
have been proposed. As an excellent deep generative model,
generative adversarial learning uses generator and discriminator
to learn the internal distribution characteristics of data. Some
improved methods of GANs, such as conditional generative
adversarial nets (CGAN) [12], Pix2pix [13], and Pix2pixHD
[14], have been used for I2IT task. However, the above methods
are designed by improving the network model and loss function
from the perspective of natural images, without considering the
color correlation between SAR and optical images, the color
information in their S2OIT results is scarce. Moreover, GANs
also encounter the problem of mode collapse, making them
difficult to train [15].

Diffusion models [16] have recently become a mainstream
generative modeling approach that outperforms the current
GAN-based generative models for image synthesis [17]. The
diffusion model is parameterized by Markov chains and con-
sists of two processes: the forward process, also known as the
diffusion process, and the reverse process. The diffusion process
corrupts the original distribution by gradually adding Gaussian
noise to the data. The reverse process, on the other hand, syn-
thesizes the data from pure noise by iteratively denoising it until
clean samples are generated. Diffusion models are trained by
optimizing the variational lower bound of negative logarithmic
likelihood, thus avoiding the mode collapse often occurs in
GANs. Diffusion models have been used for various I2IT tasks,
such as superresolution [18], semantic scene synthesis [19], and
colorization [20]. Recently, Bai et al. [15] proposed a conditional
diffusion model for S2OIT, which incorporates SAR images
as conditions into the training and inference process of the
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diffusion models, and generates the optical images with clearer
boundaries.

However, SAR and optical images have heterogeneous char-
acteristics and large spectral differences [21], most of the exist-
ing S2OIT methods do not focus on the correlation between the
color information of optical images and the spatial features of
SAR images, which lead to spectral distortion and detail errors
in translation results for complex terrain scenes. In addition,
as the most competitive I2IT generative approach currently, the
potential of diffusion models for S2OIT tasks remains to be
explored.

Inspired by the remarkable performance of the diffusion mod-
els, in this article, we propose a novel S2OIT framework called
CM-Diffusion considering the color correlation and directly
mapping between the SAR and optical image domains, which
has the promising originality of color memory and distinct
domains adaptability. In order to effectively memorize the color
information of optical images, we design the color feature ex-
traction (CFE) module, which constructs the correspondence be-
tween the spatial features of SAR images and the color features
of optical images, providing color and semantic information for
the diffusion model. Moreover, inspired by the Brownian bridge
diffusion model (BBDM) [20], we propose the color attention
Brownian bridge diffusion structure (CA-BBDS), learns the
translation between the SAR and optical image domains directly
through the bidirectional diffusion process, and further adds
a color attention mechanism in the reverse denoising process
to better integrate the color correlation between the two image
domains. A series of experiments over three challenging datasets
are conducted to assess the effectiveness and rationality of our
CM-Diffusion for S2OIT.

Overall, our main contributions can be summarized as fol-
lows.

1) We propose a color memory diffusion model (CM-
Diffusion) for S2OIT to address color memory for differ-
ent scenes, which considers the color correlation and direct
mapping between the SAR and optical image domains,
facilitating the generation of optical images with higher
color detail and better domain adaptation and thus aiding
in the more efficient interpretation of SAR images with
complex terrain scenes.

2) We propose the CA-BBDS, which directly learns the
translation between the SAR and optical image domains
through the bidirectional diffusion process, avoids the
conditional information leverage, and further adds a color
attention mechanism in the reverse denoising process to
better integrate the color correlation between the two
image domains.

3) We propose CFE module to construct the correspon-
dence between the spatial features of SAR images
and the color features of optical images, provid-
ing color and semantic information for the diffusion
model.

4) Extensive experimental evaluations on three bench-
mark datasets SEN1-2 [22], QXS-SAROPT [23],
and SEN12MS [24] show that the proposed method
outperforms the state-of-the-art on both subjective and

objective evaluation metrics, such as peak signal-to-noise
ratio (PSNR) [25], structural similarity index metric
(SSIM) [26], and learned perceptual image patch simi-
larity (LPIPS) [27].

The rest of this article is organized as follows. Section II
briefly introduces the basic knowledge of diffusion models,
natural I2IT and S2OIT. The proposed CM-Diffusion model
is presented in detail in Section III. Section IV portrays the
experiments conducted over three public challenging datasets.
Section V discusses the experimental results and our future
work. Finally, the conclusion is provided in Section VI.

II. RELATED WORK

A. Diffusion Models

Diffusion models are recently proposed advanced genera-
tive models, which have shown competitive performance in
many computer vision tasks compared with GANs. In 2020,
Ho et al. [28] proposed denoising diffusion probabilistic model
(DDPM) based on the diffusion models, which introduced the
diffusion models into the field of image generation. In recent
years, diffusion models have developed rapidly as a powerful
family of generative models, and methods to accelerate model
training have also emerged. Rombach et al. [19] proposed latent
diffusion model (LDM), which combines the diffusion models
with transformer, and demonstrates the potential of diffusion
models in various fields such as text generation image, image
editing, image restoration, etc. The impressive stable diffusion is
implemented based on LDM. Li et al. [20] presented the BBDM
that directly builds the mapping between the input and the output
domains through a Brownian bridge stochastic process, rather
than a conditional generation process. Compared with GANs,
diffusion models have the advantages of diversity, training sta-
bility, and scalability, and perform better in high-resolution,
large-scale image-to-image translation.

B. Natural Image-to-Image Translation

In 2017, Isola et al. [13] proposed Pix2pix based on CGAN,
which serves as a general I2IT framework and provides a broad
reference for subsequent I2IT work. Meanwhile, Zhu et al. [29]
proposed CycleGAN, which consists of two generators and
discriminators, and can use unpaired images for I2IT task. Re-
cently, Shaham et al. [30] introduced spatially adaptive pixelwise
networks (ASAP-Net) for fast image translation. Jung et al. [31]
introduced contrast learning based on CGAN to improve the
effectiveness of translated images. Guo et al. [32] proposed
structural consistency constraints to mitigate semantic distor-
tions in unpaired image translation. Hu et al. [33] proposed a new
semantic relation consistency regularization, and by introducing
decoupled contrast learning, image translation achieved better
performance. With the advent of the DDPM [28] and LDM [19]
methods, diffusion models have been used for various I2IT tasks.
Sasaki et al. proposed UNIT-DDPM [34], which uses DDPM
without requiring adversarial training. Ruiz et al. [35] presented
a method for fine-tuning images using textual cues based on
LDM. Zhang et al. [36] proposed the SINE method to try to solve



14456 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Overall framework of CM-diffusion model. ISAR means the SAR image, and IOPT _gen means the generated optical image. opt0 and optT represents
the start and the end of the diffusion process, respectively.

the editing problem of a single image. Wang et al. [37] replaced
the discrete coded latent space with a binary-valued latent space
for diffusion, which accomplished the image translation task
excellently.

I2IT approaches are oriented to multidomain and object
recognition [38]. However, most of the above I2IT methods only
focus on the conversion between natural images or the mutual
conversion between natural images and sketches.

C. SAR-to-Optical Image Translation

Based on the development of natural I2IT, the work on
S2OIT using deep learning techniques started gradually. In
2018, Merkle et al. [7] achieved image alignment for the first
time for generated images of remote sensing images, and also
attempted to translate SAR images to optical images, showing
the great potential of deep learning in the field of remote sens-
ing I2IT. Later, Tan et al. [39] proposed a feature-preserving
heterogeneous remote sensing image transformation model se-
rial GANs. Darbaghshahi et al. [6] removed the clouds using
two GANs by translating SAR to optical images and proposed
dilated residual inception blocks in the generator. Li et al. [40]
presented a wavelet feature learning network combined with
the CycleGAN framework, which can learn features more effi-
ciently. Wang et al. [41] designed an image translation network
with two subnetworks, which learns richer optical features of
the input image through the optical reconstruction subnetwork.
Yang et al. [42] designed more complex generator and dis-
criminator combined with normalization groups to enable the

network to learn richer features in the image, which improves the
effect of S2OIT. Du et al. [43] combined two classical methods
Pix2pix and CycleGAN and applied them to SAR images to
design a semisupervised image translation framework for image
matching. Recently, Bai et al. [15] applied the diffusion model
to the S2OIT task, and proposed a conditional diffusion model
that incorporates SAR images as conditions into the training and
inference process of the diffusion model.

The existing S2OIT studies are either the direct application
of the methods for natural I2IT or the design of the network
structure only from the view of natural I2IT. SAR and optical
images have heterogeneous characteristics and large spectral
differences, which lead to spectral distortion in the generated
optical results in urban and rural scenes with complex terrain.

III. PROPOSED METHOD

We propose CM-Diffusion model to cope with the S2OIT
task, which can memorize the colors of different scenes, and
has a strong distinct domains adaptability, thus learning more
reliable translation between two image domains and generating
high color details and high-quality optical images. The overall
framework of the model is shown in Fig. 1. The SAR image
ISAR is fed into the vector quantized generative adversarial
networks (VQ-GAN) [44] encoder, which maps the ISAR from
pixel space to the latent layer space to obtain the latent feature
vector sar. The sar is further input into the constructed CA-
BBDS. The CA-BBDS employs the Brownian bridge diffusion
method in the diffusion process, which learns the translation
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between the SAR and optical image domains directly through
the bidirectional diffusion process. In the backward denoising
process of CA-BBDS, the color attention U-Net network is
designed, which combines the CFE module to establish the
correspondence between the spatial features of the SAR image
and the color features of the optical image. This integration of
color correlation results in the translation of the latent space
vectors of the optical image, denoted as opt. Finally, the opt
is mapped back to the pixel space by the VQ-GAN decoder to
obtain the final generated optical image IOPT _gen.

A. Color Feature Extraction

Since the imaging mechanism of SAR images is different
from that of optical images, targets with different colors may
have the same grayscale values on SAR images, which will
result in targets with different original colors having the same
color after translation. To address this issue, we design the
CFE module with color memory capability, which can construct
the correspondence between spatial features and color features
among the SAR and optical image domains, and give the color
feature guidance according to the spatial features of the input
SAR image, so that the network gives more realistic color
generation results.

Specifically, we use paired SAR and optical images dataset to
learn the color correlation. We take the pooling layer information
of the SAR images after conv 3_2 through the ResNet18 network
pretrained on ImageNet. As the pooling operation preserves the
structural information of the image, the obtained pooling layer
information can be used as the spatial feature S_sar of the SAR
image. For the color features, we use colorthief [45] to extract
the Top-30 color values (RGB values) of the corresponding
optical image in the training set to obtain a color vector. After
normalizing this color vector, we get the color feature C_opt
with a size of 3× 30. The color correlation F_color of each
paired SAR and optical image can be described as

F_color = (S_sar1, C_opt1), (S_sar2, C_opt2), ...,

(S_sarm, C_optm) (1)

where m represents the capacity of the CFE module, which is
the same as the number of the training set.

During the training step, the pooling layer information of the
input SAR image after the conv 3_2 of the pretrained ResNet18
network is then output as the spatial feature, which is used to
calculate the cosine similarity with all the spatial features saved
in the CFE module. The KNN method is used to match the
color features that correspond to the spatial features with the
closest cosine distance. These color features are then input into
the color attention U-Net network of the CA-BBDS through
the cross-attention, which guide the network to generate more
realistic colors.

B. Color Attention Brownian Bridge Diffusion Structure

Most of the conditional diffusion models suffer from poor
model generalization, and can only be adapted to some specific
applications where the conditional inputs and outputs are highly

similar, while they are not suitable for image translation task
between two different domains such as the S2OIT. Furthermore,
existing diffusion models based image translation methods do
not focus on the correlation between the color information of
optical image and the spatial features of SAR image, which
leads to spectral distortion and detail errors in translation results
for complex terrain scenes.

To solve the above problems, inspired by Li et al. [20], we de-
sign CA-BBDS utilizing the Brownian bridge diffusion method
in the forward diffusion process, which learns the translation
between the SAR and optical image domains directly through
the bidirectional diffusion process rather than a conditional
generation process. The color attention mechanism is added to
the backward denoising process to better incorporate the color
correlation extracted by the CFE module.

Different from the existing DDPM methods, our CA-BBDS
is not based solely on Gaussian noise as the ending point,
but rather on the SAR domain image as the ending point and
the optical domain image as the starting point. Let (opt, sar)
denote the paired latent feature vectors from optical domain and
SAR domain by adopting VQ-GAN [44] to map the image to
the latent space, the forward diffusion process of our CA-BBDS
can be defined as

pCA (optt|opt0, sar) = N
(
optt;

(
1− t

T

)
opt0

+
t

T
sar, δtI

)
(2)

opt0 = opt (3)

where opt0 represents the starting point of the diffusion process,
optt denotes the diffusion result after t steps, T represents the
total number of diffusion steps, and δt represents the variance.
In the diffusion process, the optical domain image is mapped
to the SAR domain, while in the denoising process, the SAR
domain image is mapped to the optical domain.

The variance δt can be calculated as

δt = α

(
1−

((
1−

(
t

T

))2

+

(
t

T

)2
))

= 2α

(
t

T
−
(

t

T

)2
)

(4)

where α denotes the scaling factor, which is used to adjust the
variance in the diffusion process.

The forward diffusion process of our CA-BBDS has the ability
to establish a direct mapping relationship between the source
and target domains, enabling more effective utilization of paired
SAR and optical images for better translation results.

We propose a color attention U-Net that utilizes the attention
mechanism to predict images for the denoising process. The
structure of the color attention U-Net is illustrated in Fig. 2.

Our color attention U-Net network comprises encode Res-
blocks, decode Resblocks, downsampling layers, upsampling
layers, and attention block. The attention block includes a
self-attention network layer and a cross-attention network layer.
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Fig. 2. Color attention U-Net network structure.

The skip connection is able to fuse the shallow detailed fea-
tures of the encoder with the deeper semantic features of the
decoder through splicing operations, allowing the network to
better utilize contextual information. For a latent space vector
with an input size of 64× 64, image features of different sizes
are extracted alternately through the encode Resblock and the
downsampling layer. Then, the features are extracted through the
intermediate layer, and the color features obtained by the CFE
module are fused using the attention block. Finally, the image
is recovered alternately through the decode Resblock and the
upsampling layer, and the prediction results are obtained. The
color attention U-Net network fuses the color features of the
image during the prediction process. This guides the network
to generate optical images with more realistic colors and higher
quality.

C. Training Process for the CM-Diffusion Model

1) Forward Diffusion Process: To interfere with and train
the proposed CM-Diffusion model, it is necessary to deduce the
forward transition probability pCA(optt|optt−1, sar). Com-
bined with the marginal distribution at step t of the diffusion
process given in (2), the discrete form of optt and optt−1 can
be computed by giving an initial state opt0 and a target state
sar as follows:

optt =

(
1− t

T

)
opt0 +

t

T
sar +

√
δtϕt (5)

optt−1 =

(
1− t− 1

T

)
opt0 +

t

T
sar +

√
δt−1ϕt−1 (6)

where ϕt−1,ϕt ∈ N (0, I).
The transition probability pCA(optt|optt−1, sar) can be

calculated by combining (5) and (6) as follows:

pCA (optt|optt−1, sar) = N
(
optt;

(1− t
T )

(1− t−1
T )

optt−1

+

(
t

T
− (1− t

T )

(1− t−1
T )

t− 1

T
sar, δt|t−1I

))
(7)

where δt|t−1 can be calculated by δt, shown as

δt|t−1 = δt − δt−1

(1− t
T )

2

(1− t−1
T )2

. (8)

This forward diffusion process allows to fix the mapping be-
tween the optical domain and SAR domain.

2) Backward Denoising Process: The backward denoising
process aims to predict optt−1 based on optt. The formula is
shown as follows:

qφ(optt|optt−1, sar) = N (optt−1;μφ(optt, t), δ̃tI) (9)

where μφ(optt, t) denotes the mean value of the noise obtained
by predicting the noise using a neural network with the parameter
φ, and δ̃t denotes the variance of the noise at each step. In
our CM-Diffusion model, we design CA-BBDS by using the
color attention U-Net to better incorporate the color correlation
extracted by the CFE module. Therefore, the color attention
U-Net is used as the denoising neural network here to predict
the noise.

3) Training Objective: The training process of our CM-
Diffusion model is performed as an optimization problem that
combines the evidence lower bound [28] and a reparametrization
method [20], which can be formulated as

CM = Eopt0,sar,ϕ

[
cϕt|| t

T
(sar − opt0)

+
√
δtϕ− ϕφ(optt, t)||2

]
(10)

cϕt =

(
1− t− 1

T

)
δt|t−1

δt
(11)

where ϕφ(optt, t) represents the predicted noise and cϕt de-
notes a quantity related to the number of steps using the repa-
rameterization technique.

In this article, we use the color attention U-Net as the denois-
ing neural network ϕφ to learn the noise, and the loss function
used for the color attention U-Net is the L1 loss function.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: To validate the effectiveness of our proposed
method, we conduct comprehensive comparison experiments
with state-of-the-art methods on three public challenging
datasets SEN1-2 [22], QXS-SAROPT [23], and SEN12MS [24].

SEN1-2 dataset: The SEN1-2 dataset includes 282 384 pairs
of corresponding images, SAR images (VV polarization chan-
nel) collected by Sentinel-1 satellite and optical images collected
by Sentinel-2 satellite, each with a size of 256× 256, which
originated from all over the world and four seasons. The SEN1-2
dataset is usually used to train SAR image colorization, SAR
image matching, and other tasks.

QXS-SAROPT dataset: The QXS-SAROPT dataset consists
of 20 000 pairs of SAR and optical images. The SAR images are
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TABLE I
NUMBER OF SCENE DATA PER CATEGORY OF THE SEN1-2 DATASET

TABLE II
NUMBER OF SCENE DATA PER CATEGORY OF THE SEN12MS DATASET

from Gaofen-3 satellite, and the corresponding optical images
are from Google Earth, covering three port cities: San Diego,
Shanghai, and Qingdao. The image size is 256× 256.

SEN12MS dataset: The SEN12MS dataset contains 180 662
patch triplets of corresponding Sentinel-1 dual-pol SAR data
(both VV and VH polarization channels), Sentinel-2 multi-
spectral images, and MODIS-derived land cover maps. The
patches are distributed across the land masses of the Earth and
spread over all four meteorological seasons. The image size is
256× 256.

For the SEN1-2 dataset, we randomly select 12 300 pairs of
SAR and optical images as the training set, and 400 SAR images
as the test set. The selection is based on the complexity of the
dataset and the impact of data training time on experimental
efficiency. For each scene, the training and test sets are selected
uniformly with no crossover. Moreover, the distributions of the
training and test data are similar but do not overlap. In addition,
we divide these training and test images into urban, mountain,
rural, grassland, farmland, and other scenes as shown in Table I.

For the QXS-SAROPT dataset, we also randomly select 3600
SAR images and 3600 optical images for paired training and
selected 400 SAR images for testing. The QXS-SAROPT dataset
contains mainly urban scene and some mountain scene, thus we
extract the training and test sets according to the proportion of
scenes in the entire dataset.

For the SEN12MS dataset, we use the SAR images with VV
polarization channel and paired optical images with Band 2
to Band 4 (visible blue, green, and red) from the Sentinel-2
multispectral channels. We randomly select 12 294 pairs of SAR
and optical images as the training set, and 1366 SAR images
as the test set. Following a similar approach to the SEN1-2
dataset, we categorize these training and test images into urban,
mountain, rural, grassland, farmland, plain, and other scenes as
shown in Table II.

We also preprocess and randomly enhance the data before
inputting into the network. We first resize the image from 256×
256 to 286× 286 by double triple interpolation method, and
then randomly flip it left and right, and finally randomly crop

the image to the same 256× 256 size as the final input image.
The random enhancement of the data can prevent the overfitting
phenomenon to a certain extent.

2) Implementation Details: In the experiments, we use the
PyTorch framework and a single NVIDIA RTX4090 with 24 GB
GPU memory for development, and the server system version
is Ubuntu 20.04. The method in this article consists of two
parts: the pretrained VQ-GAN and the CM-Diffusion model.
The VQ-GAN uses the same pretrained model as the LDM [19].
For the training of the CM-Diffusion model, we set the same
training parameters for three different datasets. Specifically, 200
rounds of training are conducted for all data, with a total of 500
diffusion steps and 200 sampling steps. The variance control
factor is set to α = 0.1, and the optimizer uses a learning rate
of 0.0001 with Adam optimization. The basis for the selection
of training parameters will be analyzed in detail in the ablation
study section.

3) Evaluation Metrics: We conduct evaluations using three
different mainstream evaluation metrics, which are PSNR [25],
SSIM [26], and LPIPS [27]. PSNR and SSIM are applied as
objective evaluation metrics for image quality, whereas LPIPS
as subjective evaluation metric.

Let x denotes the generated image, and y represents the real
image, PSNR is defined as follows:

PSNR(x, y) = 10log10

(
MAX2

MSE

)
(12)

where MAX denotes the maximum gray value of x, and MSE
denotes the mean squared error betweenx andy. PSNR evaluates
the image quality by estimating the ratio of the useful signal to
the background noise, with a larger PSNR representing better
image quality.

SSIM is defined as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(13)

where μx, σ2
x, μy , σ2

y denote the mean and variance of the
features of x and y, respectively. σxy is the covariance between
x and y. c1 and c2 are two constants used to ensure that the
denominator is not zero. SSIM reflects the image structure
similarity between the generated and the real image, with a larger
SSIM representing higher similarity.

LPIPS calculates the distance between two images after ex-
tracting the network through perceptual features, which can
better measure the subjective perception distance between x
and y. A lower value of LPIPS represents a better quality of
the generated image.

B. Experimental Results

We validate the effectiveness of our CM-Diffusion for
S2OIT task in terms of both subjective and objective eval-
uation. We chose seven image translation comparison meth-
ods, Pix2pix [13], Pix2pixHD [14], Serial GANs [39],
Darbaghshahi’s (abbreviated as Dar) [6], ASAP-Net [30],
LDM [19], and BBDM [20]. Among the above comparison
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TABLE III
EVALUATION INDEX RESULTS ON DIFFERENT DATASETS

methods, Pix2pix and Pix2pixHD are baselines of the I2IT, Se-
rial GANs, Dar and ASAP-Net are all S2OIT methods based on
CGANs, while LDM conducts image translation by conditional
diffusion models. BBDM is the first work of Brownian bridge
diffusion process proposed for I2IT. All the above comparison
methods use the code and parameter settings publicly available
in the original paper.

1) Metrics Comparison: The comparison results under three
datasets, with three evaluation metrics are shown in Table III,
with bold indicating the best. It can be seen that our proposed
CM-Diffusion performs better than the other comparative meth-
ods in PSNR metric, indicating that the translation result of
our method is closer to the real optical color image in pixel
distance. Our CM-Diffusion is also better than other methods
in SSIM metric, indicating that the overall structure of the
generated image obtained by our method is more similar to that
of the real optical image. On the perceptual distance metric of
LPIPS, the result of CM-Diffusion is higher than that of other
methods, which reflects that CM-Diffusion has the best effect on
human subjective visual perception, and provides convenience
for subsequent image information interpretation.

2) Visualization Comparison: Figs. 3–7 show the optical im-
ages generated by different methods on three datasets SEN1-2,
QXS-SAROPT, and SEN12MS, respectively. In order to intu-
itively visualize the error distribution of the generated optical
images by different methods and real optical images, we also
give the residual results of different methods. The blue color
indicates the residuals are close to zero, while the yellow color
means the residuals are largest, and the color axis from blue to
yellow indicates that the residuals vary from small to large. To
compare the adaptability of different methods to SAR image
scenes, the example images we selected contain a rich variety of
scene categories. Figs. 3 and 4 contain images from the SEN1-2
dataset in five scenes: urban, mountain, rural, grassland, and
farmland. The QXS-SAROPT dataset is dominated by urban
scene and also contains some mountains, so Fig. 5 contains
both urban and mountain scenes. Figs. 6 and 7 contain images
from the SEN12MS dataset in six scenes: urban, mountain, rural,
grassland, farmland, and plain.

By comparison, we find that the Pix2pix is not suitable for
the S2OIT task due to its relatively simple network structure,
the color and terrain details of the translation results are far from
reality, and the color difference between the generated image and
the real optical image is still relatively obvious, as the residual

results show. Pix2pixHD, Dar, and Serial GAN are all based
on the CGAN network. However, the overall results of these
three methods are not sensitive sufficiently to image details, and
the translation results are not realistic enough for urban scenes
with dense buildings and roads. In addition, there are some color
mottling phenomena and regional color errors in the generated
images. As a result, the residual results of these three methods
also demonstrate a large error distribution with respect to real
optical images. ASAP-Net is also based on CGAN, which uses a
lightweight structure to reduce image translation time. However,
it produces artifacts in the S2OIT task and the translation results
are not accurate enough in terms of both color and details.
LDM is based on conditional diffusion models, and suffers from
conditional information leverage during the diffusion process.
Thus, when there exists a large difference between the spectral
distributions of the same terrain shown in the ninth row of
Fig. 3, the fifth row of Fig. 4, the third row of Fig. 5, the
fifth row of Fig. 6, and the ninth row of Fig. 7, LDM cannot
generate satisfactory results due to the mechanism of integrating
conditional input into the diffusion model, as the residual results
show. BBDM avoids the conditional information leverage, and
is more sensitive to details but there is a certain gap with our
CM-Diffusion in terms of color accuracy and saturation for the
urban residential area and farmland scenes (e.g., the ninth row
of Fig. 4, and the first row of Fig. 6). In addition, the residual
results between the generated image and the real optical image
tend to be more pronounced in the yellow color range compared
to our CM-Diffusion.

To further compare the ability of different methods to memo-
rize colors of different scenes, the zoom-in images of the trans-
lation results are given in Fig. 8. From the results in Figs. 3–7,
it can be seen that the overall color of the images generated
by the Pix2pix, Dar, serial GAN, and LDM methods has a
large discrepancy with the real image, so the zoom-in images
of the above four methods are not shown in Fig. 8. As can be
seen from Fig. 8, images produced by other methods lack detail
and color accuracy, and often group dense clusters of buildings.
Meanwhile, the generated results are affected by blurring, espe-
cially for the urban scene that contains more complex semantic
information (the fourth row of Fig. 8). In certain cases, incorrect
terrain is generated directly, such as mistranslating buildings
as land (the first and second rows of Fig. 8). Even in cases
of farmland and mountain scenes, other methods also exhibit
localized mistranslations in capturing the edge details of terraces
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Fig. 3. Visualization results of different methods for S2OIT under different scenes on the SEN1-2 dataset. (a) Original SAR image. (b) Real optical image. (c)–(j)
represent the result of Pix2pix, Pix2pixHD, Dar, Serial GAN, ASAP-Net, LDM, BBDM, and our CM-diffusion, respectively. The residual results are under the
generated optical images of each method. The scenes are urban, urban, mountain, mountain and rural, from top to bottom.

and mountains (the last two rows of Fig. 8). These issues pose
challenges for future image interpretation.

From the overall visual effect, our CM-Diffusion gives the
best optical translation results for SAR images of various
scenes in all three datasets in terms of color accuracy, color
saturation, and texture detail, indicating that our CM-Diffusion
has the most outstanding ability to memorize colors. In addition,
the CA-BBDS in our method is able to learn the translation

between the SAR and optical image domains directly through
the bidirectional diffusion process instead of a conditional gener-
ation process, avoiding the conditional information leverage and
providing better detail sensitivity. The CFE module and color
attention U-Net in our CM-Diffusion model can construct the
correspondence between the spatial features of SAR images and
the color features of optical images, provide color and semantic
information for the diffusion model and generate more accurate
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Fig. 4. Visualization results of different methods for S2OIT under different scenes on the SEN1-2 dataset (continued). (a) Original SAR image, (b) the real
optical image, (c)–(j) represent the result of Pix2pix, Pix2pixHD, Dar, Serial GAN, ASAP-Net, LDM, BBDM, and our CM-diffusion, respectively. The residual
results are under the generated optical images of each method. The scenes are rural, mountain, mountain, grassland, and farmland, from top to bottom.

optical images with higher detail and color accuracy, particularly
in building-intensive and color-rich scenes (the urban scene
examples in Fig. 8). As shown by the visual comparison results,
the optical images generated by our CM-Diffusion have more
details, more accurate colors, and have better performance
overall.

3) Ablation Study. Validation of Module Effectiveness: We
evaluate each component in the proposed CM-Diffusion, i.e.,

CFE and CA-BBDS. Table IV gives the comparison results of the
three evaluation metrics on the three datasets, based on baseline
(DDPM) with the addition of each module and the combination
of both modules. “+ CFE” and “+ CA-BBDS” denote adding
the two modules in baseline, respectively, and “+ all” represents
CM-Diffusion after all combinations. Among them, “+ CFE”
indicates that directly use the color features as a condition for
model generation. All the parameter settings are the same in
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Fig. 5. Visualization results of different methods for S2OIT under different scenes on the QXS-SAROPT dataset. (a) Original SAR image, (b) the real optical
image, (c)–(j) represent the result of Pix2pix, Pix2pixHD, Dar, Serial GAN, ASAP-Net, LDM, BBDM, and our CM-diffusion, respectively. The residual results
are under the generated optical images of each method. The scenes are urban, urban, urban, mountain, urban and urban, from top to bottom.
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Fig. 6. Visualization results of different methods for S2OIT under different scenes on the SEN12MS dataset. (a) Original SAR image, (b) the real optical image,
(c)–(j) represent the result of Pix2pix, Pix2pixHD, Dar, Serial GAN, ASAP-Net, LDM, BBDM, and our CM-diffusion, respectively. The residual results are under
the generated optical images of each method. The scenes are farmland, urban, farmland, grassland, and mountain, from top to bottom.

the experiment except for the different modules. As can be seen
from Table IV, each of our proposed modules combined with the
baseline significantly improves the PSNR, SSIM, and LPIPS of
the generated images. This suggests that each of our proposed
modules can improve the model’s learning ability, and the optical
image generated by each module combined with the baseline
is more consistent with the real optical color image overall.

The optical images generated by combining both of these two
modules (“+ all”) are optimal in all metrics.

Training Parameters Selection: We discuss two important
training parameters in the diffusion model: the number of
sampling steps and the variance control factor α. The num-
ber of sampling steps affects the quality of the generated im-
age, while the variance control factor α affects the stability
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Fig. 7. Visualization results of different methods for S2OIT under different scenes on the SEN12MS dataset (continued). (a) Original SAR image, (b) the real
optical image, (c)–(j) represent the result of Pix2pix, Pix2pixHD, Dar, Serial GAN, ASAP-Net, LDM, BBDM, and our CM-Diffusion, respectively. The residual
results are under the generated optical images of each method. The scenes are rural, farmland, farmland, mountain, and plain, from top to bottom.

of the conversion between the two domains. Experiments are
conducted on the SEN1-2 dataset, with all other parameters
held constant. Corresponding results are presented in Tables V
and VI. Bolding indicates optimal, underlining indicates sub-
optimal. The quality of the generated image is affected by
the number of sampling steps. The results show that when
the number of sampling steps is less than 200, the quality of

the optical image generated by CM-Diffusion improves with
an increase in the number of sampling steps. This is because
more sampling steps refine the image details, resulting in more
stable network outputs. However, once the number of sampling
steps exceeds 200, the evaluation metrics, except for the PSNR,
which rises slightly, both SSIM and LPIPS decrease. Therefore,
increasing the number of sampling steps does not improve the
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Fig. 8. Zoom-in results of different methods for S2OIT on the SEN1-2, QXS-SAROPT, and SEN12MS datasets. (a) Real optical image, (b)–(e) represent the
result of Pix2pixHD, ASAP-Net, BBDM, and our CM-diffusion, respectively. The regions of interest are marked with red boxes, the first five rows of images are
from the SEN1-2 dataset, images in the sixth to eighth rows are from the QXS-SAROPT dataset and the others from the SEN12MS dataset.
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Fig. 9. Visualization results of different α for S2OIT on the SEN1-2 dataset. (a) Original SAR image, (b) the real optical image, (c)–(g) represent the results
when the values of α are 2, 1, 0.5, 0.05, and 0.1, respectively. The residual results are under the corresponding generated optical images.
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TABLE IV
DIFFERENT COMPONENTS IN THE PROPOSED METHOD ON DIFFERENT DATASETS

TABLE V
COMPARISON RESULTS OF DIFFERENT SAMPLING STEPS

TABLE VI
COMPARISON RESULTS OF DIFFERENT VARIANCE CONTROL FACTOR α

composite metrics much, but rather has a negative impact. As a
result, we select 200 sampling steps based on the results of three
metrics.

The variance control factor’s values determine the maximum
variance difference in the image diffusion process. In the gen-
eration task, controlling the maximum variance of the diffusion
model can control the image’s diversity. However, in the image
translation task, the output must be as similar as possible to
the target image. Therefore, this article aims to reduce the
diversity of the generated image to ensure a stable result from the
network. Table VI shows the evaluation results for each image
evaluation metric at various variance control factors α, and
Fig. 9 shows the visualization results of different α for S2OIT
on the SEN1-2 dataset. The results show that the evaluation
metrics increase as α decreases when α > 0.1. However, after
α < 0.1, the evaluation metrics no longer consistently increase
and instead fluctuate across different metrics. This indicates that
a variance control factor that is too small can lead to network
instability. The visualization results are consistent with metric
results, the residual is minimized when α = 0.1, indicating that
the generated optical image when α = 0.1 is closest to the real
optical image. Based on the results of various evaluation metrics,
we finally select α = 0.1.

V. DISCUSSION

Due to the designed CFE and CA-BBDS modules, our pro-
posed CM-Diffusion has the ability to learn color correlation and
direct mapping between the SAR and optical image domains,
which cannot only memorize the color information of complex
scenarios, but also distinguish the color details with small differ-
ences, and thus aiding in the more efficient interpretation of SAR
images with complex terrain scenes, particularly in building-
intensive and color-rich scenes. Three evaluation metrics also
show that our proposed CM-Diffusion performs significantly
better than the other comparative methods. However, since dif-
fusion models require significant computational resources and
time for training and sampling, although accelerated sampling
methods are also used, they are still not fast enough compared
to one-step generation models such as GANs. Therefore, an
attempt can be made to further increase the sampling rate while
maintaining the quality of images generated by the diffusion
models to make the network more efficient. In addition, future
research can also utilize more frequency band information in the
remote sensing data, as well as using the multispectral data to
increase the amount of information, which will be beneficial to
the network to extract richer features and further assist in SAR
image interpretation.

VI. CONCLUSION

In this article, we propose a S2OIT framework based on the
diffusion models called CM-Diffusion, which has the promising
originality of color memory and distinct domain adaptability.
Our CM-Diffusion has innovatively designed CA-BBDS and
CFE modules for color correlation and direct mapping between
SAR and optical image domains. The CA-BBDS learns the
translation between the SAR and optical image domains directly
through the bidirectional diffusion process. The color attention
mechanism fused with CFE module is added to the backward
denoising process to improve the fusion of color correlation
between the two domains. Comprehensive experiments demon-
strate the effectiveness of our proposed CM-Diffusion, thus our
CM-Diffusion can provide a new general solution framework
based on diffusion models for the S2OIT task.
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