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ABSTRACT Improving the accuracy of the six-axis force sensor Six-axis force sensors (hereafter col-
lectively referred to as 6a-sensors) is a systematic problem, which mainly involves the optimization
and improvement of three aspects: the design of the elastic body of the 6a-sensors, the acquisition and
processing of the weak signal, and the decoupling of the inter-dimensional data of the force and torque
of each dimension. To attain high stiffness, sensitivity, and minimal coupling, a design scheme of cross
beam elastomer based on titanium alloy material is proposed. In order to realize the acquisition and
processing of multi-channel weak differential signals with high gain, high linearity and precision, a high-
speed programmable weak signal processing circuit design scheme is proposed. To efficiently address
the interdependence issue among signal dimensions in the 6a-sensors. This paper innovatively proposes
a BP-PSO decoupling algorithm using Particle Swarm Approach (PSO) to optimise the optimiser of BP
neural network. To validate the algorithm’s effectiveness, comparative experiments are conducted with the
6a-sensors. designed and studied in this paper by sampling and self-designed calibration system. The
sensitivity of the 6a-sensor designed in this paper reaches 4mV/V. In terms of accuracy, there is an
improvement of about 1%. In terms of crosstalk, there is an improvement of about 0.2%. providing a new and
improved idea for the six-dimensional force decoupling algorithm. In order to further verify the practicability
of the algorithm, a flexible surface grinding robot based on six-axis force is developed based on Siasun robot
platform. The grinding strength control is accurate, and the running trajectory is uniform and smooth, which
can effectively meet the practical application requirements of flexible and intelligent control.

INDEX TERMS Data decoupling, elastomer design, flexible grinding, weak signal processing, 6a-sensors.

I. INTRODUCTION operation [2]. On the basis of taking into account the size

A. RESEARCH BACKGROUND

With the increasingly complex working conditions and work-
ing modes of equipment and the increasingly prominent
demand for intelligence, modern industrial equipment has
increasingly high requirements for force sensing and control.
The contact process almost runs through all links of modern
processing and manufacturing. Accurate and fast measure-
ment of force and torque represented by “‘contact load” is an
important guarantee for realizing intelligent processing and
manufacturing [1]. Itis one of the key technical challenges for
smart devices and robots to realize compliant and intelligent
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requirements, it is necessary to accurately and quickly sense
the three-dimensional space force and three-dimensional
space torque, and realize feedback control. Hence, there is
a pressing requirement to design a high-performance inte-
grated 6a-sensors, encompassing both three-axis force and
three-axis torque measurements. However, in the practical
process of developing a 6a-sensors, enhancing its accuracy
emerges as a comprehensive challenge. The static mea-
surement model of the statically indeterminate 6a-sensors
is established, which lays a theoretical and experimental
foundation for the calibration research of the statically inde-
terminate 6a-sensors. In order to effectively improve the
measurement accuracy of the 6a-sensors, it is necessary to
systematically solve the problem of the elastic body structure
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design of the 6a-sensors, the problem of weak signal acqui-
sition and processing, and the problem of inter-dimensional
data decoupling of forces and torques of each dimension.
To this end, this paper will systematically put forward a new
high-precision six-axis force design scheme, and conduct
in-depth research on the main key technologies designed to
improve the measurement accuracy of the 6a-sensors and
put forward innovative solutions. Using a low-coupling cross
beam structure design, high precision and high speed weak
signal processing circuit design and inter-dimensional decou-
pling algorithm based on particle swarm BP neural network,
a compact titanium alloy resistance strain type 6a-sensors
is designed and developed. In order to further verify the
practicability of the algorithm, a calligraphy robot based on
six-axis force is developed based on Siasun robot platform.
The writing strength control is accurate, and the handwrit-
ing is uniform and smooth, which can effectively meet the
practical application requirements of compliant and intelli-
gent control. It presents a novel idea for the evolution of a
multi-dimensional force sensor for accurate and fast measure-
ment of load in the process of surface grinding, heterosexual
welding, medical rehabilitation and other flexible and intelli-
gent operation.

B. LITERATURE REVIEW

The earliest study of 6a-sensors can be traced back to the
1970s, and the United States, Japan and other countries
have carried out the study of 6a-sensors. The application
significance of the 6a-sensors extends to specialized domains
including precision assembly, contour tracking two-handed
coordination control [3], automotive wheel force testing,
aircraft landing force detection, rocket thrust measurement,
transient space station docking, and real-time acquisition of
the center of gravity data for ejection seat systems [4]. Six-
dimensional force sensors are also widely used in robotic
work, and the force and torque data collected by the sensors
form the basis of force-controlled feedback in robots. Fu and
Song proposed a new 6a-sensors based on polyetherether-
ketone (PEEK) material. By establishing a simplified static
mathematical model, compared with the ordinary 6a-sensors,
the 6a-sensors made of PEEK material has higher sensitivity,
but the established mathematical model cannot achieve accu-
rate prediction of sensor performance [5].

The theoretical mathematical model of the sensor still
needs to be further studied [6]. Yan et al. based on the
design method of the full-shear 6a-sensors with symmet-
rical integral structure for strain measurement, used finite
element analysis to carry out static and dynamic analy-
sis of the elastic body, realized the optimal design of the
elastic body structure size and the determination of the
patch position, and obtained good performance indicator [7].
In order to improve the dynamic performance of the exist-
ing 6a-sensors, Li and Zhang proposed a new elastomer
structure of the 6a-sensors, which has good dynamic perfor-
mance and promotes the development of multi-dimensional
force sensors for high-speed robots. The structure of the
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elastic 6a-sensors is complex, and the development of the
inelastic 6a-sensors can further improve the dynamic per-
formance [8]. Wang and Yao obtained the full mapping
relationship between the generalized external force includ-
ing the action of the intermediate preloaded branch and the
axial forces of the six measured branches for a 6a-sensors
with preloaded statically overdetermined Stewart structure,
by comprehensively considering the displacement coordina-
tion relationship between the overall stiffness of the sensor
and the deformation of the branch rod [9]. The static mea-
surement model for the statically indeterminate 6a-sensors
is formulated, providing a theoretical and experimental basis
for the calibration investigation of the statically indeterminate
6a-sensors. However, the precise theoretical mathematical
model of the 6a-sensors based on Stewart structure is not
established, and the dynamic characteristics of the 6a-sensors
cannot be predicted. Niu et al. designed a set of micro-sensor
signal acquisition system based on FPGA [10], and Liu et al.
designed a set of force sensor signal acquisition and process-
ing system based on STM32, which solved the processing
and analysis of sensor signals from the perspective of hard-
ware [11]. Wang et al. developed a six-dimensional force
sensor with a circular flexible connection, which gave a new
research perspective in terms of stiffness analysis and param-
eter optimisation, respectively [12]. Ha and Kang provided
an economical and friendly wireless communication solution
for six-dimensional force sensors, which gave another new
way of connectivity and production [13]. Kebede and Ahmad
proposed a 6a-sensors based on strain gauge structure, which
adopted the least square method and error reduction tech-
nology to realize the calibration of robust decoupling matrix
and improve the sensitivity of decoupled 6a-sensors [14].
The 6a-sensors based on elastic body strain type has com-
plex decoupling and is easy to introduce coupling errors.
Chavez and Traversaro studied the dynamic performance
calibration method of the 6a-sensors used by floating robots
and its influence [15]. The field calibration method based
on mathematical model has shown good effect in improving
the measurement of the 6a-sensors. The mathematical model
is relatively simple, and the test method is complex, so it
is impossible to predict the dynamic characteristics of the
sensor before the test [16].

In this paper, a decoupling algorithm based on PSO-BP
neural network algorithm is proposed, which uses PSO
algorithm to optimize the optimizer in the neural network and
provides a new idea for decoupling algorithm.

Il. DESIGN OF SYSTEM ARCHITECTURE
The 6a-sensors primarily consists of three components: stress

sensing unit, signal processing unit and data processing unit.

The stress sensing unit mainly includes two parts: the sen-
sor elastic body and the strain measurement bridge. The strain
gauge of the strain bridge is pasting in the strain area of the
elastic body. When the elastic body is subjected to external
force, the strain area will be deformed, which will lead to the
deformation of the strain gauge, so that the resistance of each
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FIGURE 1. Six-dimensional force /torque sensor system block diagram.

arm of the measurement bridge changes, and the differential
measurement signal is generated.

The signal processing unit includes three modules: precise
amplification, high-speed acquisition and data transmission.
The precision amplifier module is responsible for amplifying
the differential measurement signal input of the stress sensing
unit to 0.5 V-4.5 V, which provides a standard voltage signal
for the subsequent AD acquisition. The high-speed acqui-
sition module is in charge of sampling and converting the
voltage signal ranging from 0.5 V to 4.5 V, which is supplied
by the precision amplifier module, into a digital signal.

The data transmission module is tasked with transferring
the AD-sampled data to the data processing unit of the host
computer through various transmission modes.

The data processing unit is responsible for decoupling, cal-
ibration, analysis and application of the data transferred from
the lower computer. The specific functions will be described
in detail in Chapter VI (see Figure 1).

1Il. DESIGN OF STRESS SENSING UNIT

A. DESIGN AND ANALYSIS OF SENSOR ELASTOMER

In the process of designing the sensor, the design of the
sensitive element, i.e., elastomer, is particularly important,
and its design directly affects the accuracy of the sensor.
Numerical analysis is used to calculate the distribution of
stress and strain in the elastomeric material. in the loading
and unloading process, in order to verify the reasonableness
of its structural design, and to determine the size that meets
the requirements, as well as the positioning for affixing the
strain gauges.

1) ELASTOMER STRUCTUREOR

To achieve the sensor with small coupling and a compact
structure, the designed 6a-sensors in this paper utilizes a
unified spoke-type crossbeam structure. It is anchored and
supported by four center-symmetric rims. The crossbeam
is segmented into four square prismatic main beams, each
connected to the rims through a floating beam. Resistive
strain gauges are pasted around the four main beams to form
a strain bridge to sense the three-axis forces Fx, Fy, Fz and
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1: Central platform, 2-5: Main beam, 6-9: Floating beam, 10-13: Flange

FIGURE 2. The elastic beam structure of small six-dimensional force
/torque sensor.

TABLE 1. Elastic beam dimension parameter.

Cross floating central flange
beam beam platform anee hole
length 15 22 20
width 8 1 20
height 8 8 24 24 24
diameter 50/68 3.2

three-axis torques Mx, My, Mz in the three-dimensional
space, and the force axis transmits the force to the elastomer
through the threaded fit with the central platform, and this
structure has the advantages of mutual decoupling of the
dimensions, no radial effect, and easy calibration [17]. The
structure is shown in Figure 2, and the sensitive force/torque
coordinate system is a right-handed coordinate system.

2) FINITE ELEMENT ANALYSIS OF ELASTOMER
Upon establishing the elastomer’s structure, a finite element
analysis is conducted using ABAQUS software. The dimen-
sional parameters of the elastomer first need to be determined
in terms of the approximate volume, i.e., the outer rim diame-
ter and thickness, based on the environment in which it will be
used. Under the condition of volume determination, the range
and sensitivity of the resistance strain gauge six-dimensional
force sensor are contradictory, which are primarily influenced
by the floating beam and main beam’s thickness and length.
Therefore, it is necessary to consider the volume, sensitivity,
overload capacity and other factors to obtain the optimal
elastomer size parameters through continuous adjustment.
As shown in Table 1, the finalized detailed size parameters
of the elastomer, the sensor fabricated in this paper and the
corresponding analysis results are based on this size. The
sensor’s elastomer is crafted from durable, fatigue-resistant
2A12-T4 hard aluminum alloy, featuring an elasticity modu-
lus E of 73.4 x 10° Pa and a Poisson’s ratio u = 0.33.
SOLIDWORKS2019 was used to establish the elastomer
model, and ABAQUS2021 was imported for finite element
selection and mesh division. C3D10 high-precision solid
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FIGURE 3. Elastomer finite element model.
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FIGURE 4. Elastic beam strain diagram after loading.

element was selected, and the generated finite element model
was shown in Figure 3.

After the elastomer finite element model is established,
it needs to be loaded and solved to analyze the strain after
the force is applied. Firstly, the constraints of the elastomer
are set. Since the elastomer is fixed to the base through four
screw holes on the rim, the XYZ degrees of freedom of the
four screw holes are set to zero.

Due to the symmetry of the sensor, the strain of the force
and torque in the X and Y directions are similar, so only
four directions, Fx, Fz, Mx, and Mz, require loading and
analysis, and the loading values are based on design specifi-
cations. In the context of the design application of this paper,
the measurement range of the sensor is Fx,y,z = =£300N,
Mx,y,z = £3N-m, and the overload capacity is Fx,y,z =
+500N, Fx,y,z = £5N-m. The results can be obtained by
solving separately for each dimension of loading as shown in
Figure 4.

To accurately determine the placement of the resistive
strain gauges, it is necessary to analyze the correspondence
between the strain on the main beam and the distance from
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FIGURE 5. Path mapping strain diagram.

the central platform. Employing the path mapping feature in
ANSYS software, a path is defined from the platform to the
floating beam on the main beam’s surface. The strain in the
main beam during force/moment is then mapped to this path.
The loading in each dimension is solved separately and the
results are depicted in Figure 5, where the horizontal axis
indicates the distance from the center of the camber and the
vertical axis indicates the magnitude of the strain at each
location on that path.

In order to ensure that the stress sustained by the elastic
beam in the limit case of applied multi-axis force is within
the permissible stress range of the material, it is necessary
to load the elastic beam with full scale force or torque in six
directions simultaneously, and the strain of the elastic beam
is shown in Figure 6.

The maximum strain on all paths is 1.752 x 1073, exE =
(1.752 x 1073)x73.4GPa ~ 106.65MPa, which is smaller
than the yield strength of 2A12-T14 hard aluminum alloy of
325MPa, which indicates that the structure complies with the
strength design specifications.

According to the results of Figure 5 can determine the
patch position of the resistance strain gage, in the interval of
4 to 13 mm from the central platform, the distance from the
platform and the size of the strain is a linear relationship, close
to the central platform at the maximum strain. To maximize
sensor sensitivity, strain gauges for measuring force values
are adhered approximately 4mm from the center tab, and the
strain gauges for measuring the moment value are pasted at
9mm from the central platform.

B. DESIGN OF HIGH-SPEED ACQUISITION CIRCUIT

The measurement bridge of the 6a-sensors adopts a
full-bridge resistance strain type four-arm measuring bridge,
with each force/torque direction corresponding to a four-
equal-arm full-bridge circuit. In light of the analysis of the
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FIGURE 6. Elastic beam strain diagram under extreme condition.

position of strain gauge patch, the final position of strain
gauge patch is shown in Figure 7. The bridge circuit, as illus-
trated in Figure 8, employs VR as the reference voltage for
optimal sensitivity in the 6a-sensors. Despite a 5V power
supply, a stable 24V reference voltage is ensured for VR using
a boosting circuit. The output signals include VX for force in
the X direction, VY for force in the Y direction, VZ for force
in the Z direction, VMX for torque in the X direction, VMY
for torque in the Y direction, and VMZ for torque in the Z
direction.

IV. DESIGN OF SIGNAL PROCESSING UNIT

A. DESIGN OF PRECISION AMPLIFIER CIRCUIT

The value of each differential voltage signal obtained by
metal strain gauge conversion is millivolt level. In order to
improve the sensitivity of the sensor, considering the perfor-
mance index of the subsequent A/D conversion circuit, the
differential voltage signal is amplified to 0.5V-4.5V by the
amplifier circuit. Based on the theoretical full-scale bridge
output calculated in Section A, Chapter II1, it can be seen that
the theoretical magnification of the six-way amplifier circuit
is 610 times in the Fx(Fy) direction, 438 times in the Fz direc-
tion, 1 451 times in the Mx(My) direction, and 1 143 times
in the Mz direction. Because of the large amplification ratio
of the system, the signal distortion will be obvious if only
single stage amplification is used, so the signal conditioning
chip JHM1101 nested DC booster amplifier circuit is used
to precisely amplify the millivolt level differential signal of
the strain bridge. Considering the nonlinear and tempera-
ture drift problems between the differential signal output of
strain bridge and the actual stress, a signal conditioning chip
JHM1101 designed for Wheatstone bridge sensor is used in
the first stage amplifier circuit. The sensor nonlinear correc-
tion algorithm of JHM1101 can correct and compensate the
nonlinear and temperature drift characteristics of the sensor
in the first or second order, so as to output the measurement
results of high linearity. When the Wheatstone bridge needs
temperature compensation, the JHM1101 also provides an
integrated high linear temperature Sensor (Temp Sensor), the
user can also choose to use the off-chip diode to measure the
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FIGURE 7. Elastic beam SMD and bridge structure diagram.
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FIGURE 8. Bridge circuit diagram.

temperature of the sensor location. In addition, the output
value of the force and torque measurement bridge in each
direction is quite different

Through the programmable conditioning function of
JHM1101, no matter how much the output value of the
bridge in each direction is, the standard voltage output of
0.5V-4.5V can be amplified through JHM1101, which brings
convenience to the subsequent amplifier circuit design and
data acquisition circuit design.

In order to enhance the sensitivity of the sensor, without
changing the structure of the elastomer and the power supply
voltage, the SX1308 boost regulator circuit is used to boost
the reference voltage provided by the JHM1101, and the
stabilized voltage after boosting is provided to the strain
bridge as the reference voltage of the bridge to enhance the
magnitude of the differential signal output from the bridge,
which in turn enhances the sampling sensitivity of the sensor.
The reference voltage provided on the JHM1101 chip is 5V,
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and it is boosted to 24V by SX1308, which correspondingly
increases the differential signal output of the bridge by about
5 times, thus achieving a five-fold increase in the sampling
sensitivity of the sensor.

B. DESIGN OF HIGH-SPEED ACQUISITION CIRCUIT

In order to meet the requirements of high-speed dynamic
performance of 6a-sensors, this system does not use the AD
conversion function of STM32F103C8T6 processor, but uses
high-speed and high-resolution AD7606. The AD7606, a
16-bit, 6-channel synchronous sampling AD chip from Ana-
log Devices (ADI), offers a parallel sampling rate of up to
200KSPS. It features integrated analog input clamp protec-
tion, a second-order anti-alias filter, track and hold amplifier,
and a 16-bit charge redistribution successive approximation
ADC core. The chip supports high-speed serial and paral-
lel interfaces. Operating on a single 5V power supply, the
AD7606 eliminates the need for a positive and negative dual
power supply. It accommodates 210V or 5V bipolar signal
inputs. All channels can be sampled at rates up to 200KSPS,
and the input clamping protection circuitry can withstand
voltages up to £16.5V. By enabling synchronous sampling
of six channels at a single rate of 200KSPS with 16-bit
resolution, the AD7606 significantly enhances the sensitivity
and accuracy of the 6a-sensors.

C. CONFIGURABLE DATA TRANSMISSION MODES

In order to meet the use of different scenarios, the sys-
tem adopts configurable data transmission modes, mainly
including RS-422 serial communication, Ethernet network
communication and LoRa wireless communication three data
transmission modes.

The default connection is RS-422 serial port, and the sensor
communication is carried out with a special multi-core cable.
the RS-422 four-wire interface does not have to control the
data direction because it uses separate transmit and receive
channels, and the maximum transmission rate is 10Mb/s,
which is very suitable for the high-speed transmission rate
requirements of the six-axis force.

Due to the popularity of the industrial Internet, 6a-sensorss
must also be adapted to the needs of the network environment,
for this system designed the Ethernet communication mode,
Ethernet communication port can be connected to both PCs
used for development and robots can be connected to collab-
orative work. At the same time, it also provides convenience
for remote control in the industrial Internet environment.

In order to meet the different application scenarios of
six-axis forces, wireless data transmission is also a neces-
sary configuration. This system uses Ra-06 LoRa module to
design the wireless data transmission function. Ra-06 LoRa
is based on Semtech SX1276/SX1278 LoRa spread spectrum
modulation technology, with ultra-high receiving sensitivity,
strong anti-interference ability. Using efficient forward error
correction coding technology, with a very low bit error rate,
and long-term stable data transmission capability.
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V. RESEARCH ON DECOUPLING ALGORITHM

In an ideal 6a-sensors, the voltage value of the output channel
in each direction depends only on the force/torque in that
direction, and is nothing to do with the force/torque acting in
the remaining five directions. However, due to the structural
design of the sensor, patch technology, strain gauge transverse
effect, etc., it is inevitable that the force/torque components
acting on the sensor in each dimension will have an effect on
the output signals of the sensor in each direction, generating
inter-dimensional coupling and thus affecting the accuracy
of the sensor. To address this problem, this paper proposes a
decoupling algorithm based on BP neural network, which is
characterized by strong operability, fast decoupling operation
speed, good nonlinear mapping ability [18], etc., so that
the sensor has a wide range of applicability, strong sensing
sensitivity and high detection accuracy.

A. DESCRIPTION OF DECOUPLING PROBLEM

In order to describe more clearly the correspondence between
the force/torque exerted by the six directions of the 6a-sensors
and the voltage signals output from the sensor in the cor-
responding directions, it is assumed that is the force/torque
exerted by the six directions of the 6a-sensors. The measured
voltage vector is U = (Uf,, Ur,, UF,, Up,, Un,, UMZ)T,
which represents the six voltage signals generated by the
sensor under the force/torque applied in six dimensions.

Set the coefficient matrix

kir ki2 kiz ks kis ke
koi koo kaz koa kas kos
K — k31 ksz k33 kas kss kse )
kar kaz ka3 kaa kas kae
ksi ksz ks3 ksa kss kse
ke kez ko3 kea kes kes

making
F =KU 2

ie.

Fy ki1 ki2 ki3 kig kis kie Ur,

Fy ka1 kx ka3 koa kas ke Ur,

Foo| _ | ka1 ka2 k3z kaa kss ke UF, 3)

My kai kay ka3 kas kas kao | | Unm,

M, ks1 kso ks3 ksa kss kse Unm,

M; ke1 ko2 ko3 kea kes kee Unm,

then we have
K =FUT 4)

The 6a-sensors in the ideal state, the signals of each circuit
do not have inter-dimensional coupling, then we have

Fy kg1 0 0 O O O Ur,
Fy 0 kp» O 0 0 O Ur,
F, _ 0 0 k33 0 0 O Ur, )
M, 0O 0 O k4 O O Uwm,
M, 0 0 O O ks5 O Uu,
M, 0 0 0 0 0 ke Uy
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The 6a-sensors in reality, due to the 6a-sensors structure
design and other reasons, it is impossible to avoid that the
signals collected by each road are affected by the other
roads, resulting in the phenomenon of inter-dimensional cou-
pling. In recent years, many scholars have made a more
in-depth study on the decoupling algorithm of multidimen-
sional force sensors, in which the static decoupling based
on linear calibration and based on least-squares linear fit-
ting can only reduce the inter-dimensional coupling by one
order of magnitude, and the decoupling result still exists
with a coupling error of 0.2% ~ 0.5%, which is not up
to the requirement of its accuracy in the process of preci-
sion manufacturing [19]. Mao et al. proposed a decoupling
algorithm based on one-dimensional linear coupling error
modeling, the decoupling accuracy is high, but if based on
the multistep coupling error, its arithmetic is large, and is not
suitable for application in practice [20]. Jiang et al. proposed
a decoupling method based on artificial BP neural network,
and decoupling experimental simulation of the five-axis fin-
gertip force/torque sensors [21], and the results show that
this algorithm has a good effect and high accuracy of the
decoupling. The algorithm is applied to the decoupling study
of the developed 6a-sensors with resistance strain gauges, and
some problems are found during the training process of the
neural network, especially the phenomena of local minima
and slow convergence, which may result in decoupling fail-
ure. Therefore, an algorithm based on improved BP neural
network is proposed. The algorithm retains the advantages of
BP neural network decoupling, and improves the traditional
BP neural network by utilizing PSO’s global optimization,
which solves the problems of oscillation, slow convergence,
and local minima that occur during the training process [22].
In addition, Wang et al. proposed a polynomial-based decou-
pling from the decoupling principle, which can effectively
improve the decoupling speed, but the decoupling accuracy
is still insufficient [23]. The experimental decoupling shows
that the improved particle swarm optimization BP neural
network algorithm is easy to implement in the decoupling
process of the six-dimensional force sensor, fast convergence
speed, good decoupling effect, and has a good engineering
application prospect in decoupling control.

B. MODELING OF DECOUPLING ALGORITHM

Inter-dimensional decoupling involves establishing a transfer
relationship between the measured voltage and the desired
voltage in each stress dimension. The use of an improved BP
neural network eliminates the need for predicting mathemat-
ical equations, as it can learn and characterize the nonlinear
mapping relationship between inputs and outputs. The BP
neural network, employing a gradient descent learning rule,
adjusts weights and thresholds through directional propa-
gation correction, minimizing the sum of squared errors.
By employing the BP neural network to simulate the mapping
relationship in the K matrix, and applying this approach
to inter-dimensional decoupling for a 6a-sensors, it effec-
tively mitigates intrinsic inter-dimensional coupling caused
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by elastomer structural factors, thereby enhancing measure-
ment accuracy.

The BP neural network structure designed for six-axis
force data decoupling is depicted in Figure 9, comprising
one input layer, three hidden layers, and one output layer.
Reflecting the inherent characteristics of the 6a-sensors,
the decoupling model transforms the six-axis strain out-
put voltage into decoupled output voltage. The input layer
receives the six-axis measurement feature vector, while the
output layer processes the six-axis feature vector. Conse-
quently, both layers consist of six neurons each, corre-
sponding to the six-axis feature vectors. Following numerous
six-axis force decoupling experiments, it has been deter-
mined that the hidden layer adopts a three-layer structure
with 36, 36, and 18 neurons in each layer, respectively.
u =[u], us, U3, ug, us, ug]T is the input vector of the network,
i.e., the voltage value corresponding to the stress before the
decoupling. wjj is the weight value between the ith unit of
the input layer and the jth unit of the hidden layer, wjx is the
weight value between the jth unit of the hidden layer and the
kth unit of the output layer. The weights between each layer
are similar and will not be repeated here.

In the forward propagation process, o7 (x) is the implicit
layer activation function, and after comparing the com-
monly used activation functions Sigmoid, Tanh, ReLU, etc.
through experiments, it is determined that the ReLLU func-
tion is the implicit layer activation function, i.e., o7 (X) =
max (0, x) .02 (x) is the output layer activation function, and
no processing is needed for the implicit to the output layer.
The Pureline function is selected as the output layer activation
function, i.e., 07 (X) = X. v =[vy, V2, V3, V4, Vs, ve]T is the
output vector of the network, i.e., the value of the stress
mapped voltage after decoupling.

In the process of calculating the loss and back propaga-
tion, for the commonly used loss functions such as mean
square error, cross entropy, log-likelihood loss, etc., but
these methods are prone to slow convergence, fall into the
local extremes and other problems, PSO has the advantages
of global optimization, fast optimization speed and high
accuracy, using the improved PSO to optimize the BP, the
training can be completed quickly to achieve the required
accuracy. Here, the PSO fitness function is used to evaluate
the output solution of BP neural network in training [6].
Specifically, the chosen PSO fitness function is the error term
between the actual output and the desired output of the neural
network.

1 n
fay=—> (- )’ ©)

where #; is the desired output of the ith neuron, n is the
number of neural network output units, and vu; is the actual
output value of the sample.

To address the limitation of the standard particle swarm
optimization algorithm, which may not consider the mutual
influence between individual particles, this paper employs an
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FIGURE 9. Structure diagram of decoupling model of particle swarm BP
neural network.

improved particle swarm optimization algorithm as follows.

41 t t t
Uyl = wuly + c1r1 (Pad — uly) + c2r2 (Gpesr — uly)

1 m
Pad = n_1 Zi:l Pbest,-d
(7

where u}d is the position of the individual in the tth iteration
denotes the position of the individual in the tt-th iteration;
o is the inertia weight; c¢; and c, are the factors affect-
ing the individual’s “‘self-cognitive” and “‘social cognitive”
abilities, respectively; r; and r, are randomized numbers
from O to 1; Gpes is the global optimal, and Ppes,, is the
individual optimum, and p,q is the average of all individual
optimums.

To enhance the global search performance of the algorithm
and expedite the escape from local optima, the inertia weight
w is configured as a random number following a specific
distribution. This approach is advantageous for fulfilling the
demands of refining the search, preventing overshooting the
optimal solution space. Moreover, it aligns with the necessi-
ties of global particle search, steering clear of local optima
and premature convergence, ultimately accelerating the con-
vergence speed of the algorithm. The formula of inertia
weight w is as follows.

® = Wpin + (Hmax — Hmin) - rand() + o - rand() ~ (8)

where [min, Mmax represent the minimum and maximum
values of the mean inertia weights, respectively, rand() is the
uniform distribution function, ensuring equal probability of
obtaining optimal, maximum, and minimum values within
the interval. the influence of the uniform distribution in the
weight w is limited by the ftmax — i, rand() is the function
of normal distribution, and o is the variance.

Typically, experimental errors follow a normal distribution.
In this context, the third term, represented by the normal
distribution function o, is utilized to assess the degree of
deviation between the weights w and their mean value. This
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term helps control the weighting error, ensuring that the
weights evolve in the direction of the mean.

t
1 = clini — (Ctini — c1fin) | 57—

Tmax

t
2 = C2ini — (C2imi — c2in) | =—

Tm ax

©))

where Ciini, Coini are the initial values of the learning factors
C1, €2, Cifin, Cofin are the final values of learning factors cy,
Co; tis the current number of iterations; Tpyax 1S the maximum
number of iterations.

C. PROCESS OF DECOUPLING ALGORITHM

The decoupling model of BP neural network optimized based
on particle swarm algorithm can be divided into three major
parts: network construction, training and learning, parameter
optimization and decoupling output, the specific steps are
described below

Step 1: Initialize the BP neural network structure. The
number of nodes in the input layer of the neural network and
the output layer of the neural network are set according to
the actual problem, load the data and carry out normalization
preprocessing, set the values of other parameters such as the
number of training samples, the number of test samples, the
maximum number of training times, the target error, etc.;
according to the experimental experience to determine the
value of the number of neurons in the implied layer, establish
the BP neural network, train and learn the sample data set.

Step 2: Initialize the dimension and size of the parti-
cle swarm, randomly initialize the position of each particle
within a certain range of values, and set the values of other
parameters of the particle swarm algorithm, such as the learn-
ing factor, the upper and lower limits of the position values,
and the maximum number of iterations.

Step 3: Calculate the fitness value of each particle, set the
position of the ith particle as the current optimal position
of the particle Ppegt,,, and compare the fitness values of all
Phpestiy Poest,y to select the optimal position of the particle in
the population and store it in Gpeg;.

Step 4: Combine (7), (8) and (9) to update the position u; of
particle i, and check whether the dimensions of position u; are
out of bounds, if it is out of bounds, then take the upper bound,
if it is out of bounds, then take the lower bound; Calculate the
fitness f (u;) of particlei, i € [1,m], f (u) is the fitness function.

Step 5: If the fitness f (u;) of particle i is better than the
fitness f (Ppest) of the individual’s own extreme value Ppeg,
replace Ppegy with the particle’s current position u;j; if the
fitness f (u;) of particle i is better than the fitness f (Gpegt)
of the global extreme value Gpeg in the current iteration,
the global extreme value Gpeg; is replaced with the current
position of the particle u;.

Step 6: If the number of running iterations reaches the
preset maximum value of the particle swarm algorithm, the
algorithm stops and outputs the global optimal solution Gpeg
and the corresponding global optimal value f (Gpest)-
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Step 7: Inverse map the global optimal particle position
vector Gpege Obtained from the whole particle swarm to the
neural network, solve and update the neural network con-
nection weights and thresholds, and repeat the training and
learning of the sample data set.

Step 8: Test the trained network with the normalized
test sample dataset, output the inverted normalized test
result value, and round its output result, the algorithm
ends.

The flowchart of the particle swarm BP neural network
decoupling algorithm is shown in Figure 10.

VI. CALIBRATION TESTS AND ERROR ANALYSIS

A. STATIC CALIBRATION TEST

This paper uses a self-made pulley calibration device for
static calibration, which can accurately apply the calibration
force/torque in all directions, is simple to operate and has
a stable force value. In the experiment, the loading method
adopts the pulley pulling force method, and the weights
used are of M1 grade accuracy. The calibration apparatus is
depicted in Figure. 11, in which weight 1 produces the cali-
bration force in the negative direction of the X-axis, weight
2 produces the calibration force in the positive direction of
the Z-axis, and weight 3 produces the calibration moment
in the negative direction of the YM, and the other directions of
the force/torque are generated in a similar way. The calibra-
tion device can generate force/torque in multiple directions at
the same time, which facilitates testing and experimentation
of combined force/torque.

Using the self-made calibration test tooling will be applied
to the system in a certain direction 5KG, 10KG, 15KG,
20KG, 25KG, 30KG, 35KG, 40KG force, force arm length
of 10 cm, under the same torque to take the average value
of 100 times, Table 1 is the x-axis direction of the different
sizes of the force applied to the direction of the torque z-axis
produced by the small voltage signals. Table 2 is the tiny volt-
age signal in Table 1 after the amplification circuit amplified
voltage signal.

As can be seen from Tables 2 and Table 3, at the same time,
the voltage output values of the other four directions also
change, especially the voltage output value of the Mz direc-
tion has a larger change, which means that the force applied
in the X direction also has an effect on the measurement of
the other four directions.

From Figure 12 and Figure 13, it can be seen that with the
increase of loaded weight, Fx, Mz is roughly linear change,
and the signal amplified by the signal amplification module,
the trend of each signal change is the same.

It can be seen that the sensitivity of the acquisition module
can reach 4mV/V, and the signal amplification module has
strong stability. Inter-dimensional coupling is a major fac-
tor affecting the measurement precision of multidimensional
force/torque sensors, and the advantages and disadvantages
of the decoupling algorithms have a direct influence on the
precision of the sensors.

VOLUME 12, 2024

Update BP neural
network by using global
optimum

Initialize the neural
network and configure
the parameters

Whether the termination
condition is met

l<
<
BP neural network
learning and training

Whether the training
number is enough

Update the individual
optimum and the global
optimum

Calculate the fitness
function
Update particle position

Configure the
individual optimum and
the global optimum

Initialize the particle
swarm

Whether the training
accuracy is enough

Output the decoupling
matrix

FIGURE 10. Flow chart of decoupling algorithm of particle swarm BP
neural network.

TABLE 2. Data obtained by applying force along the X-axis (mV).

Group F, F, F, M, M, M,
1 10.28 9.64 10.16 10.36 9.76 9.64

2 11.12 9.72 10.12 10.24 9.96 10.52
3 11.92 9.64 10.28 9.88 10.04 11.36
4 12.64 9.52 10.44 9.80 10.16 12.16
5 13.60 9.60 10.40 9.84 10.36 13.24
6 14.36 9.68 10.60 9.68 10.56 14.00
7 15.40 9.88 10.68 9.56 10.68 15.08
8 16.20 9.80 10.84 9.6 10.84 16.04
9 17.04 9.76 10.96 9.44 11.00 17.08

TABLE 3. Data obtained by applying force along the X-axis (V).

Group F, E, F, M, M, M,
1 2.56 2.40 2.52 2.58 243 2.40
2 2.78 2.42 2.53 2.55 2.48 2.65
3 2.98 2.40 2.56 2.47 2.52 2.82
4 3.19 2.39 2.61 2.44 2.57 3.07
5 3.39 2.41 2.60 2.42 2.58 3.33
6 3.62 243 2.62 2.41 2.64 3.54
7 3.88 2.45 2.66 2.35 2.68 3.78
8 4.07 2.41 2.72 2.40 2.72 4.00
9 4.25 2.46 2.75 2.32 2.77 4.23

B. DECOUPLING OF MEASUREMENT DATA

The collected data is transferred to the upper computer dis-
play panel via RS-422 communication module, which can
convert the voltage signal value to the quality measurement
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FIGURE 13. Line chart of the amplified voltage of the original signal.

value. Table 4 presents a comparison between the recorded
data and the initial data.

Since the test data is the force in the Fx direction and the
torque in the Mz direction, the crosstalk values in the Fy,
Fz, Mx and My directions are obtained by calculation, and
Table 5 shows the crosstalk value data in these four directions.

As can be seen from Table 5, only the crosstalk value
in Fy direction is lower than 5%, and the crosstalk value
in other directions is greater than 10%. In this case, the
inter-dimensional crosstalk will seriously affect the accu-
racy of the sensor. In this case, inter-dimensional coupling
emerges as the primary error source for the 6a-sensors.
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TABLE 4. Comparison between measured data and original data.

Grou
. Data type F, E, F, M, M, M,
calibratio 0.00 0.00 0.00 0.00 0.50
n value 3000 0 0 0 0 0
! measured 046 023 007 0.11 0.55
value >091 2 1 1 5 7
calibratio  10.00 0.00 0.00 0.00 0.00 1.00
n value 0 0 0 0 0 0
2 measured 9.715 0.00 093 0.15 020 093
value 6 8 3 5 5
calibratio  15.00 0.00 0.00 0.00 0.00 1.50
n value 0 0 0 0 0 0
3 measured  14.57 023 2.09 022 0.31 1.48
value 2 8 6 6 7 6
calibratio  20.00 0.00 0.00 0.00 0.00 2.00
n value 0 0 0 0 0 0
4 measured  19.19  0.23 1.86 0.27 0.33 1.98
value 3 4 9 6 1 9
calibratio  25.00 0.00 0.00 0.00 0.00 2.50
n value 0 0 0 0 0 0
3 measured 24.51 0.69 233 029 036 2.52
value 7 2 5 1 5 1
calibratio  30.00 0.00 0.00 0.00 0.00 3.00
n value 0 0 0 0 0 0
6 measured  30.52 1.15  3.26 - 0.39  3.05
value 5 4 8 0.36 8 6

TABLE 5. Crosstalk value of Fy, F;, M, and M, direction.

Group Direction Crosstalk value
1 E, 3.64%
2 E, 10.85%
3 M, 10.05%
4 M 11.70%

[<

1) DATA PREPROCESSING

Dimensional crosstalk will seriously affect the accuracy of
the sensor. In this case, inter-dimensional coupling emerges
as the primary error source for the 6a-sensors. Statistical
measurement method and the average value of the method,
according to the principle of the 3 - ¢ statistics to remove
the gross error in the measured data obtained from the effec-
tive measurement of the average value of the smoothing! In
practice, the sampling of one hundred groups as a processing
unit, respectively, after processing, because the group is now
more in the x direction, loaded with 15kg load, respectively,
in different directions, loaded with different (y15kg, z15kg),
such as the case shown in Table 6, the data for the mean square
error.

2) FEATURE SUPPLEMENT

After collecting data, in order to increase the model’s ability
to learn the features, cross features and one-heat encoding are
introduced as auxiliary features, where cross features are the
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TABLE 6. Comparison table before and after introduction of the method.

main directi Sub-directi pre-introdu  post-institut

No. on onal ction ional
1 Mx 2.352 1.252
2 Fx My 2.421 1.728
3 Mz 2.385 1.529
4 Mx 2.444 1.433
5 Fy My 2.397 1.761
6 Mz 2.321 1.239
7 Mx 2.304 1.357
8 Fz My 2.336 1.394
9 Mz 2.479 1.257

Loading force 150N, torque 1.5N-M

TABLE 7. The decoupling error comparison before and after feature
supplement.

Gro
Type E, E, F, M, M, M,

up
Without

{ feature 2.26 2,965 2.72 2.92 2.25 2.845
supplem % % % % % %
ent
With

5 feature 1.226 1.786 1.786 1.024 0.985 1.125
supplem % % % % % %
ent

difference between the collected voltage in each direction and
the zero-point voltage taken as a do-over. The one-heat encod-
ing is: if a force is applied or a force torsion is generated in a
certain direction, the acquisition feature along that direction
is 1, otherwise it is 0.

Under the premise of ensuring the same training set and
model structure, the decoupling situation before and after the
introduction of feature supplementation is compared, and the
calculation method of Type 1II error is used for calculation,
and the calculation results are detailed in Table 7.

In summary after the introduction of feature supplementa-
tion, the coupling error is improved by about 1%.

3) DATA DECOUPLING

This algorithm module uses neural network algorithm for
modeling, to establish a regression model based on deep
learning neural network, the data collected by the sensors for
collection, pre-processing, labeling, and sent to the model for
learning, training to obtain, based on the loss function of the
mean squared error (MSE) is less than 0.05, which calculates
the average of the squares of the difference between the
predicted value and the true value of the metrics are expressed
as in(10), the smaller the mean square error, the less disparity
exists between the model’s prediction and the actual value.

1
MSE = ; Z (}’pred - yture)2 (10)
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TABLE 8. Comparison between fitted data and original calibration data.

Grou Data M,/ M,/ M,/
p type F/kg FEl/kg F/kg N- N - N
M M M

1 calibrati ~ 0.00 0.00 0.00 0.00 0.00 0.00
onvalue 0 0 0 0 0 0
fitted 0.02 0.03 0.00 0.00 0.00 0.00
value 6 3 4 3 3 4

2 calibrati ~ 5.00 5.00 5.00 0.50 0.50 0.50
onvalue 0 0 0 0 0 0
fitted 5.03 5.04 5.01 0.49 0.49 0.49
value 8 1 5 8 8 8

3 calibrati ~ 10.0 10.0 10.0 1.00 1.00 1.00
onvalue 00 00 00 0 0 0
fitted 9.98 9.95 10.0 0.99 0.99 1.00
value 9 7 30 9 7 2

4 calibrati  15.0 15.0 15.0 1.50 1.50 1.50
onvalue 00 00 00 0 0 0
fitted 14.9 15.0 15.0 1.50 1.49 1.49
value 52 25 00 0 6 5

5 calibrati ~ 20.0 20.0 20.0 2.00 2.00 2.00
onvalue 00 00 00 0 0 0
fitted 19.9 20.0 20.0 2.00 2.00 2.00
value 97 47 34 1 3 0

6 calibrati ~ 25.0 25.0 25.0 2.50 2.50 2.50
on value 00 00 00 0 0 0
fitted 249 249 25.0 2.49 2.50 2.49
value 80 71 48 7 4 8

7 calibrati ~ 30.0 30.0 30.0 3.00 3.00 3.00
onvalue 00 00 00 0 0 0
fitted 29.9 30.0 29.9 3.00 3.00 3.00
value 50 49 61 5 2 4

Cross-validation is used in the data validation scheme, and
the cross-validation scheme adopts K-fold cross-validation,
in which K takes the value of 5, i.e., 80% of the data in
the dataset is used for model training, and the remaining
20% is used for cross-validation, which can comprehensively
assess the performance of the model and reduce the chance
introduced due to the division of data.

After training the model, the data is taken for validation,
in order to ensure the generalizability of the model, 8 sets
of parameters that are not fed into the model for training are
taken for error validation, and the error is calculated with
reference to (11) to get the table of calculated errors as shown
in Table 8.

|Mreal - Mﬁt |
Mr s

It can be calculated that the algorithm module, in the fitting
process, the maximum error of fitting the force sumis 0.167%
and the maximum error of fitting the torque is 0.153%.

E= (11)

C. ANALYSIS OF DECOUPLING EFFECT

The 6a-sensors is a sensor that measures the value of
force/torque, and in order to evaluate the degree of decoupling
of a sensor, there needs to be an accuracy index of the sensor’s
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measured value. We use the coupling error as follows.

bl

Couplingerror =
[yl

(12)

where y; denotes the full scale value of the force (or torque)
that can be applied in the i direction, and yj; denotes the
maximum force (or torque) value measured in the i direction
when a force (or torque) value is applied in the j direction
and no force (or torque) is applied in the other five directions.
The comparison of the accuracy when the sensor is uncoupled
and after matrix decoupling and DL decoupling is shown in
Table 9.

From Table 9, we know that compared with the pre-
decoupling, the matrix decoupling coupling error has about
5% improvement; compared with the matrix decoupling, the
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TABLE 9. Precision comparison of the sensor without decoupling and

after matrix decoupling and DL decoupling.

Method F, E, F, M, M, M,
7.759 8.735 8.186 5258 5.698 6.025
None
% % % % % %
matrix 4365 2965 3.720 2920 1.725 1.845
% % % % % %
polynom 2.231 3.054 3.172 2.101 6.214 3.271
ial % % % % % %
DL 1.226 1.786 1.786 1.024 0985 1.125
% % % % % %

DL decoupling coupling error has about 2% improvement.
Therefore, decoupling based on neural network algorithm
significantly improves the accuracy of the sensor.
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FIGURE 15. Application of 6a-sensors in grinding manipulator.

TABLE 10. Comparison between 6a-sensors based on DL algorithm and
other 6a-sensorss.

Based on Eight PSO- Static
Sensor type DL . beam FLANN dec0141p11ng

algorithm spoke type algorithm
sensitivity 0.01% 0.03% 0.01% 0.01%
accuracy 1.18% 2.6% 1.89% 2.28%
crosstalk 0.2% 0.5% 0.42% 0.32%

D. ACCURACY AND ERROR ANALYSIS

The comprehensive evaluation of a sensor should be based on
its sensitivity, accuracy, crosstalk and other aspects. Table 10
shows the data comparison between the six-dimensional force
sensor based on the DL algorithm in the paper and the
six-dimensional force sensor commonly used in scientific
research.

As can be seen from Table 10, the performance of common
6a-sensors in the scientific research field is basically the same
in terms of sensitivity, and in terms of accuracy, among the
other sensors in the scientific research field mentioned above,
PSO-FLANN 6a-sensors has the highest accuracy, and there
is an improvement of 0.71% in the 6a-sensors based on the
DL algorithm, and in terms of the degree of crosstalk, static
decoupling algorithm 6a-sensors has the lowest degree of
crosstalk, and 6a-sensors based on the DL algorithm has the
lowest degree of crosstalk, and 6a-sensors based on the DL
algorithm has a 0.12% improvement. In summary, the six-axis
force based on the DL algorithm achieves the characteristics
of high sensitivity, high accuracy and low crosstalk, and the
comprehensive performance is significantly improved.

VII. CASE APPLICATION EXPERIMENTS
To further test the usability of the 6a-sensors, in this paper the
6a-sensors was used in a sanding robot arm to measure the
interaction force between the sanding head and a workpiece
with a non-regular surface (Figure 15).

For the workpiece shown in Figure 15, the normal con-
tact force between the sanding head and the surface of the
workpiece was determined manually to be 8 N and kept
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constant in order to ensure the sanding effect and its con-
sistency. The above mentioned 6a-sensors is mounted to the
sanding robot arm to measure the interaction force between
the sanding head and the workpiece and to realize the force
feedback control of the robot arm. When the sanding head
comes into contact with the surface of the workpiece, the nor-
mal contact force increases rapidly to the maximum setting
(8 N). After the robot arm starts tracking the surface, the
6a-sensors measures the slight change in normal force and
feeds back to the robot arm control system, allowing the robot
arm to autonomously adjust to achieve constant normal force
tracking.

The actual test results show that the 6a-sensors accurately
measures both the three-dimensional contact force and torque
during the polishing process when the grinding head interacts
with the surface of the workpiece, and feeds back to the con-
trol system well to ensure that the mechanical polishing work
achieves good results. This application provides important
data for further evaluation of mechanical polishing operations
and confirms the performance and usability of the sensor.

VIil. CONCLUSION

In this design, for the three major difficulties of 6a-sensors
weak signal sensing difficulty, weak signal amplification
and acquisition difficulty and six-axis force data decoupling
difficulty, the innovative design based on the crossbeam
structural elastomer, the innovative design based on the pro-
grammable multiplexed weak signal acquisition system, and
the six-axis force decoupling algorithm based on the deep
learning are respectively put forward. Through the homemade
six-axis force test calibration tooling for the designed work of
sensitivity, accuracy and crosstalk test, the test results and lit-
erature [1], [2], [3] corresponding indicators were compared,
sensitivity indicators and other three literature data are basi-
cally the same, accuracy and crosstalk of the two indicators
have a more obvious improvement. The experimental results
show the effectiveness of the method proposed and realized
in this design. At the same time, the results achieved in this
design lay a solid foundation for the subsequent in-depth
study of 6a-sensorss.

Although the 6a sensor designed in this paper has made
great progress in the elastomer structure design, data method
and acquisition card design, data decoupling algorithm
design. However, there are still the following limitations,
the decoupling algorithm should be adjusted according to
the different structure and different materials of the elas-
tomer to be entered through the measured data; the elastomer
application process, due to the working environment and the
elastomer itself need to repeat the calibration; the method is
only applicable to static labelling, for the dynamic situation
is not applicable for the time being. Through the practice of
this design, we have accumulated a lot of experience in the
research and development of 6a sensors and found a lot of
problems that need to be further improved, and at the same
time, we are more clear about the direction of the next step of
efforts, and we will explore the dynamic characteristics and
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propose the method of dynamic labelling in the subsequent
work. And we will add the acceleration sensing in each
direction in the follow-up work, and explore the decoupling
and calibration method of 12-dimensional force sensor, which
is a very meaningful learning.
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