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Abstract—Visual segmentation seeks to partition images, video
frames, or point clouds into multiple segments or groups. This tech-
nique has numerous real-world applications, such as autonomous
driving, image editing, robot sensing, and medical analysis. Over
the past decade, deep learning-based methods have made remark-
able strides in this area. Recently, transformers, a type of neural
network based on self-attention originally designed for natural
language processing, have considerably surpassed previous convo-
lutional or recurrent approaches in various vision processing tasks.
Specifically, vision transformers offer robust, unified, and even
simpler solutions for various segmentation tasks. This survey pro-
vides a thorough overview of transformer-based visual segmenta-
tion, summarizing recent advancements. We first review the back-
ground, encompassing problem definitions, datasets, and prior
convolutional methods. Next, we summarize a meta-architecture
that unifies all recent transformer-based approaches. Based on
this meta-architecture, we examine various method designs, in-
cluding modifications to the meta-architecture and associated ap-
plications. We also present several specific subfields, including
3D point cloud segmentation, foundation model tuning, domain-
aware segmentation, efficient segmentation, and medical segmen-
tation. Additionally, we compile and re-evaluate the reviewed
methods on several well-established datasets. Finally, we identify
open challenges in this field and propose directions for future
research.

Index Terms—Vision transformer review, dense prediction,
image segmentation, video segmentation, scene understanding.
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I. INTRODUCTION

V ISUAL segmentation aims to group pixels of the given
image or video into a set of semantic regions. It is a

fundamental problem in computer vision and involves numerous
real-world applications, such as robotics, automated surveil-
lance, image/video editing, social media, autonomous driving,
etc. Starting from the hand-crafted features [1], [2] and classical
machine learning models [3], [4], [5], segmentation problems
have been involved with a lot of research efforts. During the last
ten years, deep neural networks, Convolution Neural Networks
(CNNs) [6], [7], [8], such as Fully Convolutional Networks
(FCNs) [9], [10], [11], [12] have achieved remarkable successes
for different segmentation tasks and led to much better results.
Compared to traditional segmentation approaches, CNNs based
approaches have better generalization ability. Because of their
exceptional performance, CNNs and FCN architecture have
been the basic components in the segmentation research works.

Recently, with the success of natural language processing
(NLP), transformer [13] is introduced as a replacement for
recurrent neural networks [14]. Transformer contains a novel
self-attention design and can process various tokens in parallel.
Then, based on transformer design, BERT [15] and GPT-3 [16]
scale the model parameters up and pre-train with huge unlabeled
text information. They achieve strong performance on many
NLP tasks, accelerating the development of transformers into
the vision community. Recently, researchers applied transform-
ers to computer vision (CV) tasks. Early methods [17], [18]
combine the self-attention layers to augment CNNs. Meanwhile,
several works [19], [20] used pure self-attention layers to replace
convolution layers. After that, two remarkable methods boost
the CV tasks. One is vision transformer (ViT) [21], which is
a pure transformer that directly takes the sequences of image
patches to classify the full image. It achieves state-of-the-art
performance on multiple image recognition datasets. Another is
detection transformer (DETR) [22], which introduces the con-
cept of object query. Each object query represents one instance.
The object query replaces the complex anchor design in the
previous detection framework, which simplifies the pipeline of
detection and segmentation. Then, the following works adopt
improved designs on various vision tasks, including representa-
tion learning [23], [24], object detection [25], segmentation [26],
low-level image processing [27], video understanding [28], 3D
scene understanding [29], and image/video generation [30].

As for visual segmentation, recent state-of-the-art methods
are all based on transformer architecture. Compared with CNN
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Fig. 1. A diagram that summarizes this survey. Different colors represent specific sections. Best viewed in color.

approaches, most transformer-based approaches have simpler
pipelines but stronger performance. Because of a rapid upsurge
in transformer-based vision models, there are several surveys
on vision transformer [31], [32], [33]. However, most of them
mainly focus on general transformer design and its application
on several specific vision tasks [34], [35], [36]. Meanwhile,
there are previous surveys on the deep-learning-based segmen-
tation [37], [38], [39]. However, to the best of our knowledge,
there are no surveys focusing on using vision transformers for
visual segmentation or query-based object detection. We believe
it would be beneficial for the community to summarize these
works and keep tracking this evolving field.
• Contribution: In this survey, we systematically introduce

recent advances in transformer-based visual segmentation meth-
ods. We start by defining the task, datasets, and CNN-based
approaches and then move on to transformer-based approaches,
covering existing methods and future work directions. Our sur-
vey groups existing representative works from a more technical
perspective of the method details. In particular, for the main
review part, we first summarize the core framework of existing
approaches into a meta-architecture in Section III-A, which is
an extension of DETR [22]. By changing the components of
the meta-architecture, we divide existing approaches into six
categories in Section III-B, including Representation Learning,
Interaction Design in Decoder, Optimizing Object Query, Using
Query For Association, and Conditional Query Generation.

Moreover, we also survey closely related specific subfields,
including point cloud segmentation, tuning foundation models,
domain-aware segmentation, data/model efficient segmentation,
class agnostic segmentation and tracking, and medical segmen-
tation. We also evaluate the performance of influential works
published in top-tier conferences and journals on several widely
used segmentation benchmarks. Additionally, we provide an
overview of previous CNN-based models and relevant literature
in other areas, such as object detection, object tracking, and
referring segmentation in the background section.

• Scope: This survey will cover several mainstream segmen-
tation tasks, including semantic segmentation, instance seg-
mentation, panoptic segmentation, and their variants, such as
video and point cloud segmentation. Additionally, we cover
related subfields in Section IV. We focus on transformer-based
approaches and only review a few closely related CNN-based
approaches for reference. Although there are many preprints or
published works, we only include the most representative works.
• Organization: The rest of the survey is organized as fol-

lows. Overall, Fig. 1 shows the pipeline of our survey. We first
introduce the background knowledge on problem definition,
datasets, and CNN-based approaches in Section II. Then, we
review representative papers on transformer-based segmentation
methods in Sections III and IV. We compare the experiment
results in Section V. Finally, we raise the future directions in
Section VI and conclude the survey in Section VII. We provide
more benchmarks and details in the appendix, available online.

II. BACKGROUND

In this section, we first present a unified problem definition
of different segmentation tasks. Then, we detail the common
datasets and evaluation metrics. Next, we present a summary of
previous approaches before the transformer. Finally, we present
a review of basic concepts in transformers. To facilitate under-
standing of this survey, we list the brief notations in Table I for
reference.

A. Problem Definition

• Image Segmentation: Given an input image I ∈ RH×W×3,
the goal of image segmentation is to output a group of masks
{yi}Gi=1 = {(mi, ci)}Gi=1 where ci denotes the ground truth
class label of the binary mask mi and G is the number of
masks, H ×W are the spatial size. According to the scope
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TABLE I
NOTATION AND ABBREVIATIONS USED IN THIS SURVEY

Fig. 2. Illustration of different segmentation tasks. The examples are sampled
from the VIP-Seg dataset [40]. For (V)SS, the same color indicates the same
class. For (V)IS and (V)PS, different instances are represented by different
colors.

of class labels and masks, image segmentation can be divided
into three different tasks, including semantic segmentation (SS),
instance segmentation (IS), and panoptic segmentation (PS),
as shown in Fig. 2(a). For SS, the classes may be foreground
objects (thing) or background (stuff), and each class only has
one binary mask that indicates the pixels belonging to this
class. Each SS mask does not overlap with other masks. For
IS, each class may have more than one binary mask, and all
the classes are foreground objects. Some IS masks may overlap
with others. For PS, depending on the class definition, each
class may have a different number of masks. For the countable
thing class, each class may have multiple masks for different
instances. For the uncountable stuff class, each class only has
one mask. Each PS mask does not overlap with other masks.
One can understand image segmentation from the pixel view.
Given an input I ∈ RH×W×3, the output of image segmentation
is a two-channel dense segmentation map S = {kj , cj}H×W

j=1 . In
particular, k indicates the identity of the pixel j, and c means the
class label of pixel j. For SS, the identities of all pixels are zero.
For IS, each instance has a unique identity. For PS, the pixels
belonging to the thing classes have a unique identity. The pixel
identities of the stuff class are zero. From both two perspectives,
the PS unifies both SS and IS. We present the visual examples
in Fig. 2.

• Video Segmentation: Given a video clip input as V ∈
RT×H×W×3, where T represents the frame number, the goal
of video segmentation is to obtain a mask tube {yi}Ni=1 =
{(mi, ci)}Ni=1 , where N is the number of the tube masks
mi ∈ {0, 1}T×H×W , and ci denotes the class label of the tube
mi. Video panoptic segmentation (VPS) requires temporally
consistent segmentation and tracking results for each pixel.
Each tube mask can be classified into countable thing classes
and countless stuff classes. Each thing tube mask also has a
unique ID for evaluating tracking performance. For stuff masks,
the tracking is zero by default. When N = C and the task
only contains stuff classes, and all thing classes have no IDs,
VPS turns into video semantic segmentation (VSS). If {yi}Ni=1

overlap andC only contains the thing classes and all stuff classes
are ignored, VPS turns into video instance segmentation (VIS).
We present the visual examples that summarize the difference
among VPS, VIS, and VSS with T = 2 in Fig. 2(b).
• Related Problems: Object detection and instance-wise seg-

mentation (IS/VIS/VPS) are closely related tasks. Object detec-
tion involves predicting object bounding boxes, which can be
considered a coarse form of IS. After introducing the DETR
model, many works have treated object detection and IS as
the same task, as IS can be achieved by adding a simple mask
prediction head to object detection. Similarly, video object de-
tection (VOD) aims to detect objects in every video frame. In our
survey, we also examine query-based object detectors for both
object detection and VOD. Point cloud segmentation is another
segmentation task, where the goal is to segment each point in a
point cloud into pre-defined categories. We can apply the same
definitions of semantic segmentation, instance segmentation,
and panoptic segmentation to this task, resulting in point cloud
semantic segmentation (PCSS), point cloud instance segmen-
tation (PCIS), and point cloud panoptic segmentation (PCPS).
Referring segmentation is a task that aims to segment objects
described in natural language text input. There are two subtasks
in referring segmentation: referring image segmentation (RIS),
which performs language-driven segmentation, and referring
video object segmentation (RVOS), which segments and tracks
a specific object in a video based on required text inputs. Finally,
video object segmentation (VOS) involves tracking an object in
a video by predicting pixel-wise masks in every frame, given a
mask of the object in the first frame.

B. Datasets and Metrics

• Commonly Used Datasets: For image segmentation, the
most commonly used datasets are COCO [43], ADE20k [44]
and Cityscapes [45]. For video segmentation, the most used
datasets are VSPW [49] and Youtube-VIS [50]. We will compare
several dataset results in Section V. More datasets are listed in
the Table II.
• Common Metric: For SS and VSS, the commonly used

metric is mean intersection over union (mIoU), which calculates
the pixel-wised Union of Interest between output image and
video masks and ground truth masks. For IS, the metric is mask
mean average precision (mAP), which is extended from the
object detection via replacing box IoU with mask IoU. For VIS,
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TABLE II
COMMONLY USED DATASETS AND METRIC FOR TRANSFORMER-BASED SEGMENTATION

the metric is 3D mAP, which extends mask mAP in a spatial-
temporal manner. For PS, the metric is the panoptic quality
(PQ), which unifies both thing and stuff prediction by setting
a fixed threshold 0.5. For VPS, the commonly used metrics
are video panoptic quality (VPQ) and segmentation tracking
quality (STQ). The former extends PQ into temporal window
calculation, while the latter decouples the segmentation and
tracking in a per-pixel-wised manner. Note that there are other
metrics, including pixel accuracy and temporal consistency.
For simplicity, we only report the primary metrics used in the
literature. We present the detailed formulation of these metrics
in the supplementary material.

C. Segmentation Approaches Before Transformer

• Semantic Segmentation: Prior to the emergence of ViT and
DETR. SS was typically approached as a dense pixel classifica-
tion problem, as initially proposed by FCN. Then, the following
works are all based on the FCN framework. These methods can
be divided into the following aspects, including better encoder-
decoder frameworks [58], [59], larger kernels [60], [61], mul-
tiscale pooling [11], [62], multiscale feature fusion [12], [63],
[64], [65], non-local modeling [18], [66], [67], efficient model-
ing [68], [69], [70], and better boundary delineation [71], [72],
[73], [74]. After the transformer was proposed, with the goal of
global context modeling, several works design variants of self-
attention operators to replace the CNN prediction heads [66],
[75].
• Instance Segmentation: IS aims to detect and segment each

object, which goes beyond object detection. Most IS approaches
focus on how to represent instance masks beyond object de-
tection, which can be divided into two categories: top-down
approaches [76], [77] and bottom-up approaches [78], [79]. The
former extends the object detector with an extra mask head. The
designs of mask heads are various, including FCN heads [76],
[80], diverse mask encodings [81], and dynamic kernels [77],
[82]. The latter performs instance clustering from semantic
segmentation maps to form instance masks. The performance
of top-down approaches is closely related to the choice of
detector [83], while bottom-up approaches depend on both

semantic segmentation results and clustering methods [84]. Be-
sides, there are also several approaches [85], [86] using gird
representation to learn instance masks directly. The ideas using
kernels and different mask encodings are also extended into
several transformer-based approaches, which will be detailed
in Section III.
•Panoptic Segmentation: Previous works for PS mainly focus

on how to fuse the results of both SS and IS, which treats
PS as two independent tasks. Based on IS subtask, the previ-
ous works can also be divided into two categories: top-down
approaches [87], [88] and bottom-up approaches [84], [89],
according to the way to generate instance masks. Several works
use a shared backbone with multitask heads to jointly learn IS
and SS, focusing on mutual task association. Meanwhile, several
bottom-up approaches [84], [89] use the sequential pipeline
by performing instance clustering from semantic segmentation
results and then fusing both. In summary, most PS methods
include complex pipelines and are highly engineered.
• Video Segmentation: The research for VSS mainly focuses

on better spatial-temporal fusion [90] or acceleration using extra
cues [91], [92] in the video. VIS requires segmenting and track-
ing each instance. Most VIS approaches [52], [93], [94], [95]
focus on learning instance-wised spatial, temporal relation, and
feature fusion. Several works learn the 3D temporal embeddings.
Like PS, VPS [52] can also be top-down [52] and bottom-up
approaches [96]. The top-down approaches learn to link the
temporal features and then perform instance association online.
In contrast, the bottom-up approaches predict the center map of
the near frame and perform instance association in a separate
stage. Most of these approaches are highly engineering. For
example, MaskPro [93] adopts state-of-the-art IS segmentation
models [80], deformable CNN [97], and offline mask propaga-
tion in one system. There are also several video segmentation
tasks, including video object segmentation (VOS) [56], [98],
referring video segmentation [57], multi-Object tracking, and
segmentation (MOTS) [99].

• Point Cloud Segmentation: This task aims to group
point clouds into semantic or instance categories, similar
to image and video segmentation. Depending on the in-
put scene, it is typically categorized as either indoor or
outdoor scenes. Indoor scene segmentation mainly includes
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point cloud semantic segmentation (PSS) and point cloud in-
stance segmentation (PIS). PSS is commonly achieved using the
Point-Net [100], [101], while PIS can be achieved through two
approaches: top-down approaches [102], [103] and bottom-up
approaches [104], [105]. The former extracts 3D bounding boxes
and uses a mask learning branch to predict masks, while the
latter predicts semantic labels and utilizes point embedding to
group points into different instances. For outdoor scenes, point
cloud segmentation can be divided into point-based [100], [106]
and voxel-based [107], [108] approaches. Point-based meth-
ods focus on processing individual points, while voxel-based
methods divide the point cloud into 3D grids and apply 3D
convolution. Like panoptic segmentation, most 3D panoptic
segmentation methods [109], [110], [111], [112], [113] first
predict semantic segmentation results, separate instances based
on these predictions and fuse the two results to obtain the final
results.

D. Transformer Basics

• Vanilla Transformer [13] is a seminal model in the
transformer-based research field. It is an encoder-decoder struc-
ture that takes tokenized inputs and consists of stacked trans-
former blocks. Each block has two sub-layers: a multi-head self-
attention (MHSA) layer and a position-wise fully-connected
feed-forward network (FFN). The MHSA layer allows the model
to attend to different parts of the input sequence while the FFN
processes the output of the MHSA layer. Both sub-layers use
residual connections and layer normalization for better optimiza-
tion.

In the vanilla transformer, the encoder and decoder both use
the same architecture. However, the decoder is modified to
include a mask that prevents it from attending to future tokens
during training. Additionally, the decoder uses sine and cosine
functions to produce positional embeddings, which allow the
model to understand the order of the input sequence. Subsequent
models such as BERT and GPT-2 have built upon its architecture
and achieved state-of-the-art results on a wide range of natural
language processing tasks.
• Self-Attention: The core operator of the vanilla transformer

is the self-attention (SA) operation. Suppose the input data is
a set of tokens X = [x1, x2, . . ., xN ] ∈ RN×c. N is the token
number and c is token dimension. The positional encoding
P may be added into I = X + P . The input embedding I
goes through three linear projection layers (W q ∈ Rc×d,W k ∈
Rc×d,W v ∈ Rc×d) to generate Query (Q), Key (K), and Value
(V):

Q = IW q,K = IW k, V = IW v, (1)

where d is the hidden dimension. The Query and Key are usually
used to generate the attention map in SA. Then the SA is
performed as follows:

O = SA(Q,K, V ) = Softmax(QKᵀ)V. (2)

According to (2), given an input X , self-attention allows each
tokenxi to attend to all the other tokens. Thus, it has the ability of
global perception compared with local CNN operator. Motivated

Fig. 3. Illustration of (a) meta-architecture and (b) common operations in the
decoder.

by this, several works [18], [114] treat it as a fully-connected
graph or a non-local module for visual recognition task.
• Multi-Head Self-Attention: In practice, multi-head self-

attention (MHSA) is more commonly used. The idea of MHSA
is to stack multiple SA sub-layer in parallel, and the concatenated
outputs are fused by a projection matrix W fuse ∈ Rd×c

O = MHSA(Q,K, V ) = concat([SAi, ..SAH])W
fuse, (3)

where SAi = SA(Qi,Ki, Vi) and H is the number of the head.
Different heads have individual parameters. Thus, MHSA can
be viewed as an ensemble of SA.
• Feed-Forward Network: The goal of feed-forward network

(FFN) is to enhance the non-linearity of attention layer outputs.
It is also called multi-layer perceptron (MLP) since it consists
of two successive linear layers with non-linear activation layers.

III. METHODS: A SURVEY

In this section, based on DETR-like meta-architecture, we
review the key techniques of transformer-based segmentation.
As shown in Fig. 3, the meta-architecture contains a feature ex-
tractor, object query, and a transformer decoder. Then, according
to the meta-architecture, we survey existing methods by con-
sidering the modification or improvements to each component
of the meta-architecture in Sections III-B1, III-B2 and III-B3.
Finally, based on such meta-architecture, we present several
detailed applications in Sections III-B4 and III-B5.

A. Meta-Architecture

• Backbone: Before ViTs, CNNs were the standard ap-
proach for feature extraction in computer vision tasks. To en-
sure a fair comparison, many research works [22], [76], [115]
used the same CNN models, such as ResNet50 [7]. Some re-
searchers [18], [89] also explored the combination of CNNs
with self-attention layers to model long-range dependencies.
ViT, on the other hand, utilizes a standard transformer encoder
for feature extraction. It has a specific input pipeline for images,
where the input image is split into fixed-size patches, such as 16
× 16 patches. These patches are then processed through a linear
embedding layer. Then, the positional embeddings are added to
each patch. Afterward, a standard transformer encoder encodes
all patches. It contains multiple multi-head self-attention and
feed-forward layers. For instance, given an image I ∈ RH×W×3,
ViT first reshapes it into a sequence of flattened 2D patches:
Ip ∈ RN×P 2×3, where N is the number of patches and P is
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the patch size. With patch embedding operations, the final input
is Iin ∈ RN×P 2×C , where C is the embedding channel. To per-
form classification, an extra learnable embedding “classification
token” (CLS) is added to the sequence of embedded patches.
After the standard transformer for all patches, Iout ∈ RN×P 2×C

is obtained. For segmentation tasks, ViT is used as a feature
extractor, meaning that Iout is resized back to a dense map
F ∈ RH×W×C .

• Neck: Feature pyramid network (FPN) has been shown
effective in object detection and instance segmentation [116],
[117], [118] for scale variation modeling. FPN maps the features
from different stages into the same channel dimension C for the
decoder. Several works [83], [119] design stronger FPNs via
cross-scale modeling using dilation or deformable convolution.
For example, Deformable DETR [25] proposes a deformable
FPN to model cross-scale fusion using deformable attention.
Lite-DETR [120] further refines the deformable cross-scale
attention design by efficiently sampling high-level features and
low-level features in an interleaved manner. The output features
are used for decoding the boxes and masks. The role of FPN is the
same as previous detection-based or FCN-based segmentation
methods. The FPN generates multi-scale features to handle
and balance both small and large objects in the scene. For the
transformer-based method, FPN architecture is often used to
refine object queries from different scales, which can lead to
stronger results than single-scale refinement.
•Object Query: Object query is first introduced in DETR [22].

It plays as the dynamic anchors that are used in detectors [76],
[115]. In practice, it is a learnable embedding Qobj ∈ RNins×d.
Nins represents the maximum instance number. The query
dimension d is usually the same as feature channel c. Object
query is refined by the cross-attention layers. Each object query
represents one instance of the image. During the training, each
ground truth is assigned with one corresponding query for
learning. During the inference, the queries with high scores are
selected as output. Thus, object query simplifies the design of
detection and segmentation models by eliminating the need for
hand-crafted components such as non-maximum suppression
(NMS). The flexible design of object query has led to many
research works exploring its usage in different contexts, which
will be discussed in more detail in Section III-B.
• Transformer Decoder: Transformer decoder is a crucial

architecture component in transformer-based segmentation and
detection models. Its main operation is cross-attention, which
takes in the object query Qobj and the image/video feature
F . It outputs a refined object query, denoted as Qout. The
cross-attention operation is derived from the vanilla transformer
architecture, whereQobj serves as the query, andF is used as the
key and value in the self-attention mechanism. After obtaining
the refined object query Qout, it is passed through a prediction
FFN, which typically consists of a 3-layer perceptron with a
ReLU activation layer and a linear projection layer. The FFN
outputs the final prediction, which depends on the specific task.
For example, for classification, the refined query is mapped
directly to class prediction via a linear layer. For detection,
the FFN predicts the normalized center coordinates, height,
and width of the object bounding box. For segmentation, the

output embedding is used to perform dot product with featureF ,
which results in the binary mask logits. The transformer decoder
iteratively repeats cross-attention and FFN operations to refine
the object query and obtain the final prediction. The intermediate
predictions are used for auxiliary losses during training and
discarded during inference. The outputs from the last stage of the
decoder are taken as the final detection or segmentation results.
We show the detailed process in Fig. 3(b).
• Mask Prediction Representation: Transformer-based seg-

mentation approaches adopt two formats to represent the mask
prediction: pixel-wise prediction as FCNs and per-mask-wise
prediction as DETR. The former is used in semantic-aware
segmentation tasks, including SS, VSS, VOS, and etc. The latter
is used in instance-aware segmentation tasks, including IS, VIS,
and VPS, where each query represents each instance.
• Bipartite Matching and Loss Function: Object query is

usually combined with bipartite matching [121] during training,
uniquely assigning predictions with ground truth. This means
each object query builds the one-to-one matching during train-
ing. Such matching is based on the matching cost between
ground truth and predictions. The matching cost is defined as the
distance between prediction and ground truth, including labels,
boxes, and masks. By minimizing the cost with the Hungarian
algorithm [121], each object query is assigned by its corre-
sponding ground truth. For object detection, each object query
is trained with classification and box regression loss [115]. For
instance-aware segmentation, each object query is trained via
both mask classification loss and segmentation loss. The output
masks are obtained via the inner product between object query
and decoder features. The segmentation loss usually contains
binary cross-entropy loss and dice loss [122].

• Discussion on Scope of Meta-Architecture: We admit our
meta-architecture may not cover all transformer-based segmen-
tation methods. In semantic segmentation, methods such as
Segformer [123] and SETR [124] employ a fully connected
layer and predict each pixel as previous FCN-based methods [9],
[62], [125]. These methods concentrate on enhanced feature
representation. We argue that this represents a basic form of our
meta-architecture, wherein each query corresponds to a class
category. The cascaded cross-attention layers are omitted, and
bipartite matching is removed. Thus, the object query plays
the same role as a fully connected layer. In addition, meta-
architecture represents the latest design philosophy. Nearly all
recent state-of-the-art methods [126], [127], [128], [129] adopt
this meta-architecture. In particular, different methods may add
more components to adapt their tasks and requirements. Thus,
we review recent works by modifying each component based on
this meta-architecture.

B. Method Categorization

In this section, we review five aspects of transformer-based
segmentation methods. Rather than classifying the literature by
the task settings, our goal is to extract the essential and common
techniques used in the literature. We summarize the meth-
ods, techniques, related tasks, and corresponding references in
Table III. Most approaches are based on the meta-architecture
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TABLE III
TRANSFORMER-BASED SEGMENTATION METHOD CATEGORIZATION

described in Section III-A. We list the comparison of represen-
tative works in Table IV.

1) Strong Representations: Learning a strong feature repre-
sentation always leads to better segmentation results. Taking the
SS task as an example, SETR [124] is the first to replace CNN
backbone with the ViT backbone. It achieves state-of-the-art
results on the ADE20 k dataset without bells and whistles. After
ViTs, researchers start to design better vision transformers. We
categorize the related works into three aspects: better vision
transformer design, hybrid CNNs/transformers/MLPs, and self-
supervised learning.
• Better ViTs Design: Rather than introducing local bias,

these works follow the original ViTs design and process fea-
ture using the original MHSA for token mixing. DeiT [130]
proposes knowledge distillation and provides strong data aug-
mentation to train ViT efficiently. Starting from DeiT, nearly
all ViTs adopt the stronger training procedure. MViT-V1 [131]
introduces the multiscale feature representation and pooling
strategies to reduce the computation cost in MHSA. MViT-
V2 [132] further incorporates decomposed relative positional
embeddings and residual pooling design in MViT-V1, which
leads to better representation. Motivated by MViT, from the
architecture level, MPViT [133] introduces multiscale patch em-
bedding and multi-path structure to explore tokens of different
scales jointly. Meanwhile, from the operator level, XCiT [134]
operates across feature channels rather than token inputs and
proposes cross-covariance attention, which has linear complex-
ity in the number of tokens. This design makes it easy to adapt to
segmentation tasks, which always have high-resolution inputs.
Pyramid ViT [135] is the first work to build multiscale features
for detection and segmentation tasks. There are also several
works [136], [137], [138] exploring cross-scale modeling via
MHSA, which exchange long-range information on different
feature pyramids.
• Hybrid CNNs/Transformers/MLPs: Rather than modifying

the ViTs, many works focus on introducing local bias into ViT or
using CNNs with large kernels directly. To build a multi-stage
pipeline, Swin [23], [210] adopts shift-window attention in a
CNN style. They also scale up the models to large sizes and
achieve significant improvements on many vision tasks. From
an efficient perspective, Segformer [123] designs a light-weight

transformer encoder. It contains a sequence reduction during
MHSA and a light-weight MLP decoder. Segformer achieves
better speed and accuracy trade-off for SS. Meanwhile, several
works [139], [140], [141], [142] directly add CNN layers to a
transformer to explore the local context. Several works [211],
[212] explore the pure MLPs design to replace the transformer.
With specific designs such as shifting and fusion [211], MLP
models can also achieve comparable results with ViTs. Later,
several works [143], [144] point out that CNNs can achieve
stronger results than ViTs if using the same data augmenta-
tion pipeline. In particular, DWNet [144] re-visits the training
pipeline of ViTs and proposes dynamic depth-wise convolution.
Then, ConvNeXt [143] uses the larger kernel depth-wise convo-
lution and a stronger data training pipeline. It achieves stronger
results than Swin [23]. Motivated by ConvNeXt, SegNext [145]
designs a CNN-like backbone with linear self-attention and
performs strongly on multiple SS benchmarks. Meanwhile,
Meta-Former [146] shows that the meta-architecture of ViT is
the key to achieving stronger results. Such meta-architecture
contains a token mixer, a MLP, and residual connections. The
token mixer is a simple MHSA layer. Meta-Former shows that
the token mixer is not as important as meta-architecture. Using
simple pooling as a token mixer can achieve stronger results.
Following the Meta-Former, recent work [147] re-benchmarks
several previous works using a unified architecture to eliminate
unfair engineering techniques. However, under stronger settings,
the authors find the spatial token mixer design still matters.
Meanwhile, several works [214] explore the MLP-like archi-
tecture for dense prediction.
• Self-Supervised Learning (SSL): SSL has achieved huge

progress in recent years [148], [149], [215]. Compared with su-
pervised learning, SSL exploits unlabeled data via specially de-
signed pseudo tasks and can be easily scaled up. MoCo-v3 [150]
is the first study that trains ViTs in SSL. It freezes the patch
projection layer to stabilize the training process. Motivated by
BERT, BEiT [151] proposes the BERT-like per-training (Mask
Image Modeling, MIM) of vision transformers. After BEiT,
MAE [24] shows that ViTs can be trained with the simplest
MIM style. By masking a portion of input tokens and recon-
structing the RGB images, MAE achieves better results than su-
pervised training. As a concurrent work, MaskFeat [152] mainly
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TABLE IV
REPRESENTATIVE WORKS SUMMARIZATION AND COMPARISON IN SECTION III

studies reconstructing targets of the MIM framework, such as the
histogram of oriented gradient (HOG) features. The following
works focus on improving the MIM framework [153], [154] or
replacing the backbone of ViTs with CNN architecture [155],
[216]. **********DINO series [216] find the self-supervised
learned feature itself has grouping effects, which is always
used in unsupervised learning contexts. (Section IV-D) Recently,
several works [156], [217] on VLM also adopt SSL by utilizing
easily obtained text-image pairs. Recent work [157] demon-
strates the effectiveness of VLM in downstream tasks, including
IS and SS. Moreover, several recent works [218] adopt multi-
modal SSL pre-training and design a unified model for many
vision tasks. For video representation learning, most current

works [219], [220], [221] verify such representation learning on
action or motion learning, such as action recognition. Several
works [202], [222] adopt a video backbone for video segmenta-
tion. However, for video segmentation, from the method design
perspective, most works focus on matching and association of
entities or pixels, which is discussed in Sections III-B2 and
III-B4.

2) Cross-Attention Design in Decoder: In this section, we
review the new transformer decoder designs. We categorize
the decoder design into two groups: one for improved cross-
attention design in image segmentation and the other for spatial-
temporal cross-attention design in video segmentation. The
former focuses on designing a better decoder to refine the
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original decoder in the original DETR. The latter extends the
query-based object detector and segmenter into the video do-
main for VOD, VIS, and VPS, focusing on modeling temporal
consistency and association.
• Improved Cross-Attention Design: Cross-attention is the

core operation of meta-architecture for segmentation and detec-
tion. Current solutions for improved cross-attention mainly fo-
cus on designing new or enhanced cross-attention operators and
improved decoder architectures. Following DETR, Deformable
DETR [25] proposes deformable attention to efficiently sample
point features and perform cross-attention with object query
jointly. Meanwhile, several works bring object queries into pre-
vious RCNN frameworks. Sparse-RCNN [158] uses RoI pooled
features to refine the object query for object detection. They
also propose a new dynamic convolution and self-attention to
enhance object query without extra cross-attention. In partic-
ular, the pooled query features reweight the object query, and
then self-attention is applied to the object query to obtain the
global view. After that, several works [159], [160] add the
extra mask heads for IS. QueryInst [159] adds mask heads
and refines mask query with dynamic convolution. Meanwhile,
several works [161], [223] extend Deformable DETR by directly
applying MLP on the shared query. Inspired by MEInst [81],
SOLQ [161] utilizes mask encodings on object query via MLP.
By applying the strong Deformable DETR detector and Swin
transformer [23] backbone, it achieves remarkable results on
IS. However, these works still need extra box supervision,
which makes the system complex. Moreover, most RoI-based
approaches for IS have low mask quality issues since the mask
resolution is limited within the boxes [71].

To fix the issues of extra box heads, several works remove the
box prediction and adopt pure mask-based approaches. Earlier
work, OCRNet [66] characterizes a pixel by exploiting the
representation of the corresponding object class that forms a
category query. Then, Segmenter [224] adopts a strong ViT
backbone with the class query to directly decode class-wise
masks. Pure mask-based approaches directly generate segmen-
tation masks from high-resolution features and naturally have
better mask quality. Max-Deeplab [26] is the first to remove the
box head and design a pure-mask-based segmenter for PS. It also
achieves stronger performance than box-based PS method [83].
It combines a CNN-transformer hybrid encoder [89] and a
transformer decoder as an extra path. Max-Deeplab still needs
extra auxiliary loss functions, such as semantic segmentation
loss, and instance discriminative loss. K-Net [163] uses mask
pooling to group the mask features and designs a gated dynamic
convolution to update the corresponding query. By viewing the
segmentation tasks as convolution with different kernels, K-Net
is the first to unify all three image segmentation tasks, including
SS, IS, and PS. Meanwhile, MaskFormer [164] extends the
original DETR by removing the box head and transferring the
object query into the mask query via MLPs. It proves simple
mask classification can work well enough for all three seg-
mentation tasks. Compared to MaskFormer, K-Net is good at
training data efficiency. This is because K-Net adopts mask
pooling to localize object features and then update object queries
accordingly. Motivated by this, Mask2Former [225] proposes

Fig. 4. Illustration of object query in video segmentation.

masked cross-attention and replaces the cross-attention in Mask-
Former. Masked cross-attention makes object query only attend
to the object area, guided by the mask outputs from previous
stages. Mask2Former also adopts a stronger Deformable FPN
backbone [25], stronger data augmentation [226], and multiscale
mask decoding. The above works only consider updating object
queries. To handle this, CMT-Deeplab [227] proposes an alter-
nating procedure for object query and decoder features. It jointly
updates object queries and pixel features. After that, inspired
by the k-means clustering algorithm, kMaX-DeepLab [228]
proposes k-means cross-attention by introducing cluster-wise
argmax operation in the cross-attention operation. Meanwhile,
PanopticSegformer [165] proposes a decoupling query strategy
and deeply supervised mask decoder to speed up the training
process. For real-time segmentation setting, SparseInst [229]
proposes a sparse set of instance activation maps highlighting
informative regions for each foreground object.

Besides segmentation tasks, several works speed up the con-
vergence of DETR by introducing new decoder designs, and
most approaches can be extended into IS. Several works bring
such semantic priors in the DETR decoder. SAM-DETR [230]
projects object queries into semantic space and searches salient
points with the most discriminative features. SMAC [231] con-
ducts location-aware co-attention by sampling features of high
near estimated bounding box locations. Several works adopt
dynamic feature re-weights. From the multiscale feature per-
spective, AdaMixer [232] samples feature over space and scales
using the estimated offsets. It dynamically decodes sampled
features with an MLP, which builds a fast-converging query-
based detector. ACT-DETR [233] clusters the query features
adaptively using a locality-sensitive hashing and replaces the
query-key interaction with the prototype-key interaction to re-
duce cross-attention cost. From the feature re-weighting view,
Dynamic-DETR [234] introduces dynamic attention to both the
encoder and decoder parts of DETR using RoI-wise dynamic
convolution. Motivated by the sparsity of the decoder feature,
Sparse-DETR [235] selectively updates the referenced tokens
from the decoder and proposes an auxiliary detection loss on the
selected tokens in the encoder to keep the sparsity. In summary,
dynamically assigning features into query learning speeds up
the convergence of DETR.
• Spatial-Temporal Cross-Attention Design: After extending

the object query in the video domain, each object query repre-
sents a tracked object across different frames, which is shown
in Fig. 4. The simplest extension is proposed by VisTR [166]
for VIS. VisTR extends the cross-attention in DETR into
multiple frames by stacking all clip features into flattened
spatial-temporal features. The spatial-temporal features also
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involve temporal embeddings. During inference, one object
query can directly output spatial-temporal masks without extra
tracking. Meanwhile, TransVOD [167] proposes to link object
query and corresponding features across the temporal domain.
It splits the clips into sub-clips and performs clip-wise object
detection. TransVOD utilizes the local temporal information and
achieves better speed and accuracy trade-off. IFC [170] adopts
message tokens to exchange temporal context among different
frames. The message tokens are similar to learnable queries,
which perform cross-attention with features in each frame
and self-attention among the tokens. After that, TeViT [168]
proposes a novel messenger shift mechanism for temporal fusion
and a shared spatial-temporal query interaction mechanism to
utilize both frame-level and instance-level temporal context
information. Seqformer [171] combines Deformable-DETR
and VisTR in one framework. It also proposes to use
image datasets to augment video segmentation training.
Mask2Former-VIS [169] extends masked cross-attention in
Mask2Former [225] into temporal masked cross-attention.
Following VisTR, it also directly outputs spatial-temporal
masks.

In addition to VIS, several works [163], [165], [225] have
shown that query-based methods can naturally unify different
segmentation tasks. Following this pipeline, there are also sev-
eral works [172], [173] solving multiple video segmentation
tasks in one framework. In particular, based on K-Net [163],
Video K-Net [172] proposes to unify VPS/VIS/VSS via tracking
and linking kernels and works in an online manner. Meanwhile,
TubeFormer [173] extends Max-Deeplab [26] into the temporal
domain by obtaining the mask tubes. Cross-attention is car-
ried out in a clip-wise manner. During inference, the instance
association is performed by mask-based matching. Moreover,
several works [236] propose the local temporal window to
refine the global spatial-temporal cross-attention. For example,
VITA [236] aggregates the local temporal query on top of an
off-the-shelf transformer-based image instance segmentation
model [225]. Recently, several works [239], [240] have explored
the cross-clip association for video segmentation. In particular,
Tube-Link [240] designs a universal video segmentation frame-
work via learning cross-tube relations. It performs better than
task-specific methods in VSS, VIS, and VPS.

3) Optimizing Object Query: Compared with Faster-
RCNN [115], DETR [22] needs a much longer schedule
for convergence. Due to the critical role of object query,
several approaches have launched studies on speeding up
training schedules and improving performance. According
to the methods for the object query, we divide the following
literature into two aspects: adding position information and
adopting extra supervision. The position information provides
the cues to sample the query feature for faster training. The
extra supervision focuses on designing specific loss functions
in addition to default ones in DETR.
• Adding Position Information into Query: Conditional

DETR [174] finds cross-attention in DETR relies highly on
the content embeddings for localizing the four extremities.
The authors introduce conditional spatial query to explore
the extremity regions explicitly. Conditional DETR V2 [175]

introduces the box queries from the image content to improve
detection results. The box queries are directly learned from
image content, which is dynamic with various image inputs.
The image-dependent box query helps locate the object and
improve the performance. Motivated by previous anchor
designs in object detectors, several works bring anchor priors
in DETR. The Efficient DETR [241] adopts hybrid designs by
including query-based and dense anchor-based predictions in
one framework. Anchor DETR [176] proposes to use anchor
points to replace the learnable query and also designs an efficient
self-attention head for faster training. Each object query predicts
multiple objects at one position. DAB-DETR [177] finds the
localization issues of the learnable query and proposes dynamic
anchor boxes to replace the learnable query. Dynamic anchor
boxes make the query learning more explainable and explicitly
decouple the localization and content part, further improving
the detection performance.
• Adding Extra Supervision into Query: DN-DETR [178]

finds that the instability of bipartite graph matching causes the
slow convergence of DETR and proposes a denoising loss to sta-
bilize query learning. In particular, the authors feed GT bounding
boxes with noises into the transformer decoder and train the
model to reconstruct the original boxes. Motivated by DN-
DETR, based on Mask2Former, MP-Former [242] finds incon-
sistent predictions between consecutive layers. It further adds
class embeddings of both ground truth class labels and masks
to reconstruct the masks and labels. Meanwhile, DINO [179]
improves DN-DETR via a contrastive way of denoising training
and a mixed query selection for better query initialization. Mask
DINO [180] extends DINO by adding an extra query decoding
head for mask prediction. Mask DINO [180] proposes a unified
architecture and joint training process for both object detection
and instance segmentation. By sharing the training data, Mask
DINO can scale up and fully utilize the detection annotations
to improve IS results. Meanwhile, motivated by contrastive
learning, IUQ [181] introduces two extra supervisions, including
cross-image contrastive query loss via extra memory blocks
and equivalent loss against geometric transformations. Both
losses can be naturally adapted into query-based detectors.
Meanwhile, there are also several works [182], [183], [184],
[243] exploring query supervision from the target assignment
perspective. In particular, since DETR lacks the capability of
exploiting multiple positive object queries, DE-DETR [243]
first introduces one-to-many label assignment in query-based
instance perception framework, to provide richer supervision
for model training. Group DETR [183] proposes group-wise
one-to-many assignments during training. H-DETR [182] adds
auxiliary queries that use one-to-many matching loss during
training. Rather than adding more queries, Co-DETR [184]
proposes a collaborative hybrid training scheme using parallel
auxiliary heads supervised by one-to-many label assignments.
All these approaches drop the extra supervision heads during in-
ference. These extra supervision designs can be easily extended
to query-based segmentation methods [163], [225].

4) Using Query for Association: Benefiting from the sim-
plicity of query representation, several recent works have
adopted it as an association tool to solve downstream tasks.
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There are mainly two usages: one for instance-level association
and the other for task-level association. The former adopts
the idea of instance discrimination, for instance-wise matching
problems in video, such as joint segmentation and tracking. The
latter adopts queries to link features for multitask learning.
• Using Query for Instance Association: The research in this

area can be divided into two aspects: one for designing extra
tracking queries and the other for using object queries directly.
TrackFormer [185] is the first to treat multi-object tracking
as a set prediction problem by performing joint detection and
tracking-by-attention. TransTrack [186] uses the object query
from the last frame as a new track query and outputs tracking
boxes from the shared decoder. MOTR [187] introduces the
extra track query to model the tracked instances of the entire
video. In particular, MOTR proposes a new tracklet-awared
label assignment to train track queries and a temporal aggre-
gation module to fuse temporal features. There are also several
works [57], [172], [188], [189], [240] adopting object query
solely for tracking. In particular, MiniVIS [188] directly uses
object query for matching without extra tracking head modeling
for VIS, where it adopts image instance segmentation training.
Both Video K-Net [172] and IDOL [189] learn the association
embeddings directly from the object query using a temporal con-
trastive loss. During inference, the learned association embed-
dings are used to match instances across frames. These methods
are usually verified in VIS and VPS tasks. All methods pre-train
their image baseline on image datasets, including COCO and
Cityscapes, and fine-tune their video architecture in the video
datasets.
• Using Query for Linking Multi-Tasks: Several works [128],

[190], [244], [245] use object query to link features across differ-
ent tasks to achieve mutual benefits. Rather than directly fusing
multitask features, using object query fusion not only selects the
most discriminative parts to fuse but also is more efficient than
dense feature fusion. In particular, Panoptic-PartFormer [190]
links part and panoptic features via different object queries into
an end-to-end framework, where joint learning leads to better
part segmentation results. Several works [128], [191] combine
segmentation features, and depth features using the MHSA layer
on corresponding depth query and segmentation query, which
unify the depth prediction and panoptic segmentation prediction
via shared masks. Both works find the mutual effect for both seg-
mentation and depth prediction. Recently, several works [193],
[194] have adopted the vision transformers with multiple task-
aware queries for multi-task dense prediction tasks. In partic-
ular, they treat object queries as task-specific hidden features
for fusion and perform cross-task reasoning using MSHA on
task queries. Moreover, in addition to dense prediction tasks,
FashionFormer [192] unifies fashion attribute prediction and
instance part segmentation in one framework. It also finds the
mutual effect on instance segmentation and attribute prediction
via query sharing. Recently, X-Decoder [237] uses two different
queries for segmentation and language generation tasks. The
authors jointly pre-train two different queries using large-scale
vision language datasets, where they find both queries can
benefit corresponding tasks, including visual segmentation and
caption generation.

5) Conditional Query Fusion: In addition to using object
query for multitask prediction, several works adopt conditional
query design for cross-modal and cross-image tasks. The query
is conditional on the task inputs, and the decoder head uses such
a conditional query to obtain the corresponding segmentation
masks. Based on the source of different inputs, we split these
works into two aspects: language features and image features.
• Conditional Query Fusion From Language Feature: Sev-

eral works [48], [48], [57], [195], [196], [197], [199], [200],
[201], [222], [245], [246], [247] adopt conditional query fusion
according to input language feature for both referring image
segmentation (RIS) [48] and referring video object segmentation
(RVOS) [57] tasks. In particular, VLT [195], [222] first adopts
the vision transformer for the RIS task and proposes a query gen-
eration module to produce multiple sets of language-conditional
queries, which enhances the diversified comprehensions of the
language. Then, it adaptively selects the output features of these
queries via the proposed query balance module. Following the
same idea, LAVT [196] designs a new gated cross-attention
fusion where the image features are the query inputs of a
self-attention layer in the encoder part. Compared with previ-
ous CNN approaches [248], [249], using a vision transformer
significantly improves the language-driven segmentation qual-
ity. With the help of CLIP’s knowledge, CRIS [198] proposes
vision-language decoding and contrastive learning for achieving
text-to-pixel alignment. Meanwhile, several works [57], [199],
[202], [250] adopt video detection transformer in Section III-B2
for the RVOS task. MTTR [199] models the RVOS task as
a sequence prediction problem and proposes both language
and video features jointly. Recently, several works [57], [245]
explore referring VOS under fast motion condition settings.
Each object query in each frame combines the language features
before sending it into the decoder. To speed up the query learn-
ing, ReferFormer [202] designs a small set of object queries
conditioned on the language as the input to the transformer.
The conditional queries are transformed into dynamic kernels
to generate tracked object masks in the decoder. With the same
design as VisTR, ReferFormer can segment and track object
masks with given language inputs. In this way, each object
tracklet is controlled by a given language input. In addition
to referring segmentation tasks, MDETR [251] presents an
end-to-end modulated detector that detects objects in an image
conditioned on a raw text query. In particular, they fuse the text
embedding directly into visual features and jointly train the fused
feature and object query. X-DETR [238] proposes an effective
architecture for instance-wise vision-language tasks via using
dot-product to align vision and language. In summary, these
works fully utilize the interaction of language features and query
features.
•Condition Query Fusion From Image Feature: Several tasks

take multiple images as references and refine corresponding
object masks of the main image. The multiple images can be
support images in few shot segmentation [203], [209], [252]
or the same input image in matting [205], [253] and seman-
tic segmentation [206], [207]. These works aim to model the
correspondences between the main image and other images via
condition query fusion. For SS, StructToken [207] presents a
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new framework by doing interactions between a set of learn-
able structure tokens and the image features, where the image
features are the spatial priors. In the video, BATMAN [208]
fuses optical flow features and previous frame features into
mixed features and uses such features as a query to decode the
current frame outputs. For few-shot segmentation, CyCTR [203]
aggregates pixel-wise support features into query features. In
particular, CyCTR performs cross-attention between features
from different images in a cycle manner, where support image
features and query image features are the query inputs of the
transformer jointly. Meanwhile, MM-Former [209] adopts a
class-agnostic method [225] to decompose the query image
into multiple segment proposals. Then, the support and query
image features are used to select the correct masks via a
transformer module. Then, for few-shot instance segmentation,
RefTwice [254] proposes an object query enhanced framework
to weight query image features via object queries from support
queries. In image matting, MatteFormer [205] designs a new
attention layer called prior-attentive window self-attention based
on Swin [23]. The prior token represents the global context
feature of each trimap region, which is the query input of win-
dow self-attention. The prior token introduces spatial cues and
achieves thinner matting results. In summary, according to the
different tasks, the image features play as the decoder features in
previous Section III-B2, which enhance the features in the main
images.

IV. SPECIFIC SUBFIELDS

In this section, we revisit several related subfields that adopt
vision transformers for segmentation tasks. The subfields in-
clude point cloud segmentation, domain-aware segmentation,
label and model efficient segmentation, class agnostic segmen-
tation, tracking, and medical segmentation.

A. Segmentation

• Semantic Level Point Cloud Segmentation: Like image
segmentation and video semantic segmentation, adopting trans-
formers for semantic level processing mainly focuses on learning
a strong representation (Section III-B1). The works [29], [255]
focus on transferring the success in image/video representa-
tion learning into the point cloud. Early works [29] directly
use modified self-attention as backbone networks and design
U-Net-like architectures for segmentation. In particular, Point-
Transformer [29] proposes vector self-attention and subtraction
relation to aggregate local features progressively. The concur-
rent work PCT [255] also adopts a self-attention operation
and enhances input embedding with the support of farthest
point sampling and nearest neighbor searching. However, the
ability to model long-range context and cross-scale interaction
is still limited. Stratified-Transformer [256] extends the idea
of Swin Transformer [23] into the point cloud and dived 3D
inputs into cubes. It proposes a mixed key sampling method
for attention input and enlarges the effective receptive field
via merging different cube outputs. Meanwhile, several works
also focus on better pre-training or distilling the knowledge
of 2D pre-trained models. PointBert [257] designs the first

Masked Point Modeling (MPM) task to pre-train point cloud
transformers. It divides a point cloud into several local point
patches as the input of a standard transformer. Moreover, it also
pre-trains a point cloud Tokenizer with a discrete variational
autoEncoder to encode the semantic contents and train an extra
decoder using the reconstruction loss. Following MAE [24],
several works [258], [259] simply the MIM pretraining process.
Point-MAE [258] divides the input point cloud into irregular
point patches and randomly masks them at a high ratio. Then,
it uses a standard transformer-based autoencoder to reconstruct
the masked points. Point-M2AE [259] designs a multiscale MIM
pretraining by making the encoder and decoder into pyramid
architectures to model spatial geometries and multilevel se-
mantics progressively. Meanwhile, benefiting from the same
transformer architecture for point cloud and image, several
works adopt image pre-trained standard transformer by distill-
ing the knowledge from large-scale image dataset pre-trained
models.
• Instance Level Point Cloud Segmentation: As shown in

Section II, previous PCIS / PCPS approaches are based on
manually-tuned components, including a voting mechanism
that predicts hand-selected geometric features for top-down
approaches and heuristics for clustering the votes for bottom-
up approaches. Both approaches involve many hand-crafted
components and post-processing, The usage of transformers
in instance-level point cloud segmentation is similar to the
image or video domain, and most works use bipartite matching
for instance-level masks for indoor and outdoor scenes. For
example, Mask3D [260] proposes the first Transformer-based
approach for 3D semantic instance segmentation. It models each
object instance as an instance query and uses the transformer
decoder to refine each instance query by attending to point
cloud features at different scales. Meanwhile, SPFormer [261]
learns to group the potential features from point clouds into
super-points [262], and directly predicts instances through in-
stance query with a masked-based transformer decoder. The
super-points utilize geometric regularities to represent homo-
geneous neighboring points, which is more efficient than all
point features. The transformer decoder works similarly to
Mask2Former, where the cross-attention between instance query
and super-point features is guided by the attention mask from the
previous stage. PUPS [263] proposes a unified PPS system for
outdoor scenes. It presents two types of learnable queries named
semantic score and grouping score. The former predicts the class
label for each point, while the latter indicates the probability of
grouping ID for each point. Then, both queries are refined via
grouped point features, which share the same ideas from previ-
ous Sparse-RCNN [158] and K-Net [163]. Moreover, PUPS also
presents a context-aware mixing to balance the training instance
samples, which achieves the new state-of-the-art results [264].

B. Tuning Foundation Models

We divide this section into two aspects: vision adapter de-
sign and open vocabulary learning. The former introduces new
ways to adapt the pre-trained large-scale foundation models
for downstream tasks. The latter tries to detect and segment
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unknown objects with the help of the pre-trained vision language
model and zero-shot knowledge transfer on unseen segmentation
datasets. The core idea for vision adapter design is to extract the
knowledge of foundation models and design better ways to fit
the downstream settings. For open vocabulary learning, the core
idea is to align pre-trained VLM features into current detectors
to achieve novel class classification.
• Vision Adapter and Prompting Modeling: Following the

idea of prompt tuning in NLP, early works [265], [266] adopt
learnable parameters with the frozen foundation models to bet-
ter transfer the downstream datasets. These works use small
image classification datasets for verification and achieve better
results than original zero-shot results [217]. Meanwhile, there
are several works [267] designing adapter and frozen foundation
models for video recognition tasks. In particular, the pre-trained
parameters are frozen, and only a few learnable parameters or
layers are tuned. Following the idea of learnable tuning, recent
works [268], [269] extend the vision adapter into dense predic-
tion tasks, including segmentation and detection. In particular,
ViT-Adapter [268] proposes a spatial prior module to solve the
issue of the location prior assumptions in ViTs. The authors de-
sign a two-stream adaption framework using deformable atten-
tion and achieve comparable results in downstream tasks. From
the CLIP knowledge usage view, DenseCLIP [269] converts the
original image-text in CLIP to a pixel-text matching problem
and uses the pixel-text score maps to guide the learning of dense
prediction models. From the task prompt view, CLIPSeg [270]
builds a system to generate image segmentations based on
arbitrary prompts at test time. A prompt can be a text or an
image where the CLIP visual model is frozen during training. In
this way, the segmentation model can be turned into a different
task driven by the task prompt. Previous works only focus
on a single task. OneFormer [271] extends the Mask2Former
with multiple target training setting and perform segmentation
driven by the task prompt. Moreover, using a vision adapter
and text prompt can easily reduce the taxonomy problems of
each dataset and learn a more general representation for different
segmentation tasks. Recently, SAM [272] proposes more gener-
alized prompting methods, including mask, points, box, and text.
The authors build a larger dataset with 1 billion masks. SAM
achieves good zero-shot performance in various segmentation
datasets.
• Open Vocabulary Learning: Recent studies [246], [273],

[274], [275], [276], [277], [278] focus on the open vocabulary
and open world setting, where their goal is to detect and segment
novel classes, which are not seen during the training. Different
from zero-shot learning, an open vocabulary setting assumes that
large vocabulary data or knowledge can provide cues for final
classification. Most models are trained by leveraging pre-trained
language-text pairs, including captions and text prompts, or with
the help of VLM. Then, trained models can detect and segment
the novel classes with the help of weakly annotated captions
or existing publicly available VLM. In particular, VilD [274]
distills the knowledge from a trained open vocabulary image
classification model CLIP into a two-stage detector. However,
VilD still needs an extra visual CLIP encoder for visual distilla-
tion. To handle this, Forzen-VLM [279] adopts the frozen visual

clip model and combines the scores of both learned visual em-
bedding and CLIP embedding for novel class detection. From the
data augmentation view, MViT [280] combines the Deformable
DETR and CLIP text encoder for the open world class-agnostic
detection, where the authors build a large dataset by mixing
existing detection datasets. Motivated by the more balanced sam-
ples from image classification datasets, Detic [275] improves the
performance of the novel classes with existing image classifica-
tion datasets by supervising the max-size proposal with all image
labels. OV-DETR [276] designs the first query-based open vo-
cabulary framework by learning conditional matching between
class text embedding and query features. Besides these open
vocabulary detection settings, recent works [281], [282] per-
form open vocabulary segmentation. In particular, L-Seg [282]
presents a new setting for language-driven semantic image seg-
mentation and proposes a transformer-based image encoder that
computes dense per-pixel embeddings according to the language
inputs. OpenSeg [281] learns to generate segmentation masks
for possible candidates using a DETR-like transformer. Then it
performs visual-semantic alignments by aligning each word in a
caption to one or a few predicted masks. BetrayedCaption [283]
presents a unified transformer framework by joint segmenta-
tion and caption learning, where the caption part contains both
caption generation and caption grounding. The novel class in-
formation is encoded into the network during training. With
the goal of unifying different segmentation with text prompts,
FreeSeg [284] adopts a similar pipeline as OpenSeg to crop
frozen CLIP features for novel class classification. Meanwhile,
open set segmentation [285] requires the model to output class
agnostic masks and enhance the generality of segmentation
models. Recently, ODISE [286] uses a frozen diffusion model
as the feature extractor, a Mask2Former head, and joint train-
ing with caption data to perform open vocabulary panoptic
segmentation. There are also several works [287] focusing on
open-world object detection, where the task detects a known set
of object categories while simultaneously identifying unknown
objects. In particular, OW-DETR [287] adopts the DETR as
the base detector and proposes several improvements, includ-
ing attention-driven pseudo-labeling, novelty classification, and
objectness scoring. In summary, most approaches [284], [288]
adopt the idea of region proposal network [115] to generate
class-agnostic mask proposals via different approaches, includ-
ing anchor-based and query-based decoders in Section III-A.
Then, the open vocabulary problem turns into a region-level
matching problem to match the visual region features with
pre-trained VLM language embedding.

C. Domain-Aware Segmentation

• Domain Adaption: Unsupervised Domain Adaptation
(UDA) aims at adapting the network trained with source (syn-
thetic) domain into target (real) domain [45], [289] without
access to target labels. UDA has two different settings, including
semantic segmentation and object detection. Before ViTs, the
previous works [290] mainly design domain-invariant represen-
tation learning strategies. DAFormer [291] replaces the outdated
backbone with the advanced transformer backbone [123] and
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proposes three training strategies, including rare class sam-
pling, thing-class ImageNet feature loss, and a learning rate
warm-up method. It achieves new state-of-the-art results and
is a strong baseline for UDA segmentation. Then, HRDA [292]
improves DAFormer via a multi-resolution training approach
and uses various crops to preserve fine segmentation details
and long-range contexts. Motivated by MIM [24], MIC [293]
proposes a masked image consistency to learn spatial context
relations of the target domain as additional clues. MIC en-
forces the consistency between predictions of masked target
images and pseudo-labels via a teacher-student framework. It is
a plug-in module that is verified among various UDA settings.
For detection transformers on UDA, SFA [294] finds feature
distribution alignment on CNN brings limited improvements.
Instead, it proposes a domain query-based feature alignment
and a token-wise feature alignment module to enhance. In par-
ticular, the alignment is achieved by introducing a domain query
and performing the domain classification on the decoder. DA-
DETR [295] proposes a hybrid attention module (HAM), which
contains a coordinate attention module and a level attention mod-
ule along with the transformer encoder. A single domain-aware
discriminator supervises the output of HAM. MTTrans [296]
presents a teacher-student framework and a shared object query
strategy. Meanwhile, SePiCo [297] introduces a new framework
that extracts the semantic meaning of individual pixels to learn
class-discriminative and class-balanced pixel representations. It
supports both CNN and Transformer architecture. The image
and object features between source and target domains are
aligned at local, global, and instance levels.
• Multi-Dataset Segmentation: The goal of multi-dataset

segmentation is to learn a universal segmentation model on
various domains. MSeg [298] re-defines the taxonomies and
aligns the pixel-level annotations by relabeling several existing
semantic segmentation benchmarks. Then, the following works
try to avoid taxonomy conflicts via various approaches. For
example, Sentence-Seg [299] replaces each class label with a
vector-valued embedding. The embedding is generated by a lan-
guage model [15]. To further handle inflexible one-hot common
taxonomy, LMSeg [300] extends such embedding with learnable
tokens [265] and proposes a dataset-specific augmentation for
each dataset. It dynamically aligns the segment queries in Mask-
Former [164] with the category embeddings for both SS and
PS tasks. Meanwhile, there are several works on multi-dataset
object detection [301], [302]. In particular, Detection-Hub [302]
proposes to adapt object queries on language embedding of
categories per dataset. Rather than previously shared embedding
for all datasets, it learns semantic bias for each dataset based
on the common language embedding to avoid the domain gap.
Meanwhile, several works [303], [304] focus on segmentation
domain generation, which directly transfers learned knowledge
from one domain to the remaining domains. TarVIS [127] jointly
pre-trains one video segmentation model for different tasks
spanning multiple benchmarks, where it extends Mask2Former
into the video domain and adopts the unified image datasets
pretraining and video fine-tuning. Recently, OMG-Seg [126] has
unified multi-dataset segmentation, image/video segmentation,

and open-vocabulary segmentation in one shared model and
achieved using one model to segment all entities.

D. Label and Model Efficient Segmentation

• Weakly Supervised Segmentation: Weakly supervised seg-
mentation methods learn segmentation with weaker annotations,
such as image labels and object boxes. For weakly supervised
semantic segmentation, previous works [305], [306] improve
the typical CNN pipeline with class activation maps (CAM)
and use refined CAM as training labels, which requires an extra
model for training. ViT-PCM [307] shows the self-supervised
transformers [150] with a global max pooling can leverage
patch features to negotiate pixel-label probability and achieve
end-to-end training and test with one model. MCTformer [305]
adopts the idea that the attended regions of the one-class token in
the vision transformer can be leveraged to form a class-agnostic
localization map. It extends to multiple classes by using multi-
ple class tokens to learn interactions between the class tokens
and the patch tokens to generate the segmentation labels. For
weakly supervised instance segmentation, previous works [308],
[309], [310] mainly leverage the box priors to supervise mask
heads. Recently, MAL [308] shows that vision transformers
are good mask auto-labelers. It takes the box-cropped images
as inputs and adopts a teacher-student framework, where the
two vision transformers are trained with multiple instances
loss [308]. MAL proves the zero-shot segmentation ability and
achieves nearly mask-supervised performance on various base-
lines. Meanwhile, several works [311], [312] explore the text-
only supervision for semantic segmentation. One representative
work, GroupViT [311] adopts ViT to group image regions into
progressively larger shaped segments.
• Unsupervised Segmentation: Unsupervised segmentation

performs segmentation without any labels [313]. Before ViTs,
recent progress [314] leverages the ideas from self-supervised
learning. DINO [216] finds that the self-supervised ViT features
naturally contain explicit information on the segmentation of
input image. It finds that the attention maps between the CLS
token and feature to describe the segmentation of objects. Instead
of using the CLS token, LOST [315] solves unsupervised object
discovery by using the key component of the last attention layer
for computing the similarities between the different patches.
Several works are aiming at finding the semantic correspon-
dence of multiple images. Then, by utilizing the correspon-
dence maps as guidance, they achieve better performance than
DINO. Given a pair of images, SETGO [316] finds the self-
supervised learned features of DINO have semantically consis-
tent correlations. It proposes to distill unsupervised features into
high-quality discrete semantic labels. Motivated by the success
of VLM, ReCo [317] adopts the language-image pre-trained
model, CLIP, to retrieve large unlabeled images by leveraging
the correspondences in deep representation. Then, it performs
co-segmentation among both input and retrieved images. There
are also several works adopting sequential pipelines. MaskDis-
till [318] first identifies groups of pixels that likely belong to
the same object with a bottom-up model. Then, it clusters the
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object masks and uses the result as pseudo ground truths to train
an extra model. Finally, the output masks are selected from the
offline model according to the object score. FreeSOLO [319]
first adopts an extra self-supervised trained model to obtain the
coarse masks. Then, it trains a SOLO-based instance segmenta-
tion model via weak supervision. CutLER [320] proposes a new
framework for multiple object mask generation. It first designs
the MaskCut to discover multiple coarse masks based on the
self-supervised features (DINO). Then, it adopts a detector to
recall the missing masks via a loss-dropping strategy. Finally, it
further refines mask quality via self-training
• Mobile Segmentation: Most transformer-based segmenta-

tion methods have huge computational costs and memory re-
quirements, which make these methods unsuitable for mobile
devices. Different from previous real-time segmentation meth-
ods [68], [70], [321], the mobile segmentation methods need
to be deployed on mobile devices with considering both power
cost and latency. Several earlier works [322], [323], [324], [325],
[326], [327] focus on a more efficient transformer backbone.
In particular, Mobile-ViT [323] introduces the first transformer
backbone for mobile devices. It reduces image patches via
MLPs before performing MHSA and shows better task-level
generalization properties. There have also been several works
on designing mobile semantic segmentation using transformers.
TopFormer [328] proposes a token pyramid module that takes
the tokens from various scales as input to produce the scale-
aware semantic feature. SeaFormer [329] proposes a squeeze-
enhanced axial transformer that contains a generic attention
block. The block mainly contains two branches: a squeeze axial
attention layer to model efficient global context and a detail
enhancement module to preserve the details. RAP-SAM [327]
proposes a new unified setting to put real-time interactive seg-
mentation, panoptic segmentation, and video segmentation into
one framework.

E. Class Agnostic Segmentation and Tracking

• Fine-grained Object Segmentation: Several applications,
such as image and video editing, often need fine-grained details
of object mask boundaries. Earlier CNN-based works focus on
refining the object masks with extra convolution modules [71], or
extra networks [330]. Most transformer-based approaches [331],
[332], [333], [334], [335] adopt vision transformers due to their
fine-grained multiscale features and long-range context model-
ing. Transfiner [331] refines the region of the coarse mask via a
quad-tree transformer. By considering multiscale point features,
it produces more natural boundaries while revealing details for
the objects. Then, Video-Transfiner [332] refines the spatial-
temporal mask boundaries by applying Transfiner [331] to the
video segmentation method [166]. It can refine the existing video
instance segmentation datasets [50]. PatchDCT [336] adopts the
idea of ViT by making object masks into patches. Then, each
mask is encoded into a DCT vector [337], and PatchDCT designs
a classifier and a regressor to refine each encoded patch. Entity
segmentation [338] aims to segment all visual entities without
predicting their semantic labels. Its goal is to obtain high-quality
and generalized segmentation results.

• Video Object Segmentation: Recent approaches for VOS
mainly focus on designing better memory-based matching meth-
ods [339]. Inspired by the Non-local network [18] in image
recognition tasks, the representative work STM [339] is the
first to adopt cross-frame attention, where previous features
are seen as memory. Then, the following works [204] design
a better memory-matching process. associating objects with
transformers (AOT) [204] matches and decodes multiple objects
jointly. The authors propose a novel hierarchical matching and
propagation, named long short-term transformer, where they
joint persevere an identity bank and long-short term attention.
XMem [340] proposes a mixed memory design to handle the
long video inputs. The mixed memory design is also based
on the self-attention architecture. Meanwhile, Clip-VOS [341]
introduces per-clip memory matching for inference efficiency.
Recently, to enhance instance-level context, Wang et al. [342]
adds an extra query from Mask2Former into memory matching
for VOS.

F. Medical Image Segmentation

CNNs have achieved milestones in medical image anal-
ysis. In particular, the U-shaped architecture and skip-
connections [343], [344] have been widely applied in vari-
ous medical image segmentation tasks. With the success of
ViTs, recent representative works [345], [346] adopt vision
transformers into the U-Net architecture and achieve better
results. TransUNet [345] merges transformer and U-Net, where
the transformer encodes tokenized image patches to build the
global context. Then decoder upsamples the encoded features,
which are then combined with the high-resolution CNN feature
maps to enable precise localization. Swin-Unet [346] designs
a symmetric Swin-like [23] decoder to recover fine details.
TransFuse [347] combines transformers and CNNs in a parallel
style, where global dependency and low-level spatial details
can be efficiently captured jointly. UNETR [348] focuses on
3D input medical images and designs a similar U-Net-like
architecture. The encoded representations of different layers in
the transformer are extracted and merged with a decoder via skip
connections to get the final 3D mask outputs.

V. BENCHMARK RESULTS

In this section, we report recent transformer-based visual
segmentation and tabulate the performance of previously dis-
cussed algorithms. For each reviewed field, the most widely
used datasets are selected for performance benchmark in Sec-
tions V-A and V-C. We further re-benchmark several represen-
tative works in Section V-B using the same data augmentations
and feature extractor. Note that we only list published works for
reference. For simplicity, we have excluded several works on
representation learning and only present specific segmentation
methods. For a comprehensive method comparison, please refer
to the supplementary material that provides a more detailed
analysis. In addition, several works [349], [350], [351] achieve
better results. However, due to the extra datasets [352] they used,
we do not list them here.
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TABLE V
BENCHMARK RESULTS ON SEMANTIC SEGMENTATION VALIDATION DATASETS

TABLE VI
BENCHMARK RESULTS ON INSTANCE SEGMENTATION OF COCO VALIDATION

DATASETS

TABLE VII
BENCHMARK RESULTS ON PANOPTIC SEGMENTATION VALIDATION DATASETS

A. Main Results on Image Segmentation Datasets

• Results On Semantic Segmentation Datasets: In Table V,
Mask2Former [225] and OneFormer [271] perform the best on
Cityscapes and ADE20 K dataset, while SegNext [145] achieves
the best results on COCO-Stuff and Pascal-Context datasets.
•Results on COCO Instance Segmentation: In Table VI, Mask

DINO [180] achieves the best results on the COCO instance
segmentation with both ResNet and Swin-L backbones.
•Results on Panoptic Segmentation: In Table VII, for panoptic

segmentation, Mask DINO [180] and K-Max Deeplab [228]
achieve the best results on the COCO dataset. K-Max Deeplab
also achieves the best results on Cityscapes. OneFormer [271]
performs the best on ADE20 K.

B. Re-Benchmarking for Image Segmentation

• Motivation: We perform re-benchmarking on two segmen-
tation tasks: semantic segmentation and panoptic segmentation
on four public datasets, including ADE20 K, COCO, Cityscapes,
and COCO-Stuff datasets. In particular, we want to explore
the effect of the transformer decoder. Thus, we use the same
encoder [7] and neck architecture [25] for a fair comparison.

TABLE VIII
BENCHMARK RESULTS ON VIDEO SEMANTIC SEGMENTATION OF VPSW

VALIDATION DATASETS

TABLE IX
EXPERIMENT RESULTS ON SEMANTIC SEGMENTATION DATASETS

TABLE X
EXPERIMENT RESULTS ON INSTANCE SEGMENTATION DATASETS

TABLE XI
EXPERIMENT RESULTS ON PANOPTIC SEGMENTATION DATASETS

• Results on Semantic Segmentation: As shown in Table IX,
we carry out re-benchmark experiments for SS. In particular,
using the same neck architecture, Segformer+ [123] achieves
the best results on COCO-Stuff and Cityscapes. Mask2Former
achieves the best result on the ADE-20 k dataset.
• Results on Instance Segmentation: In Table X, we also

explore the instance segmentation methods on COCO datasets.
Under the same neck architecture, we observe gains on both K-
Net and MaskFormer, compared with origin results in Table VI.
Mask2Former achieve the best results.
• Results on Panoptic Segmentation: In Table XI, we present

the re-benchmark results for PS. In particular, Mask2Former
achieves the best results on all three datasets. Compared
with K-Net and MaskFormer, both K-Net+ and MaskFormer+
achieve over 3-4% improvements due to the usage of stronger
neck [25], which close the gaps between their original results
and Mask2Former.
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TABLE XII
BENCHMARK RESULTS ON VIDEO INSTANCE SEGMENTATION VALIDATION

DATASET

TABLE XIII
BENCHMARK RESULTS ON VIDEO PANOPTIC SEGMENTATION VALIDATION

DATASETS

C. Main Results for Video Segmentation Datasets

• Results On Video Semantic Segmentation: In Table VIII,
we report VSS results on VPSW. Among the methods, Tube-
Former [173] achieves the best results.
• Results on Video Instance Segmentation: In Table XII, for

VIS, CTVIS [357] achieves the best result on YT-VIS-2019
and YT-VIS-2021 using ResNet50 backbone. GenVIS [358]
achieves better results on OVIS using ResNet50 backbone.
When adopting Swin-L backbone, CTVIS [357] achieves the
best results.
• Results on Video Panoptic Segmentation: In Table XIII, for

VPS, SLOT-VPS [360] achieves the best results on Cityscapes-
VPS. TubeLink [241] achieves the best results on the VIP-Seg
dataset. Video K-Net [172] achieves the best results on the
KITTI-STEP dataset.

VI. FUTURE DIRECTIONS

• General and Unified Image/Video Segmentation: The trend
of using transformers to unify diverse segmentation tasks is
gaining traction. Recent studies [26], [126], [129], [163], [172],
[173], [271] have employed query-based transformers for vari-
ous segmentation tasks within a unified architecture. A promis-
ing research avenue is the integration of image and video seg-
mentation tasks in a universal model across different datasets.
Such models may achieve general, robust segmentation capabili-
ties in multiple scenarios, like detecting rare classes for improved

robotic decision-making. This approach holds significant prac-
tical value, particularly in applications like robot navigation and
autonomous vehicles.
• Joint Learning with Multi-Modality: Transformers’ inherent

flexibility in handling various modalities positions them as ideal
for unifying vision and language tasks. Segmentation tasks,
which offer pixel-level information, can enhance associated
vision-language tasks such as text-image retrieval and caption
generation [360]. Recent studies [237], [361], [362], [363]
demonstrate the potential of a universal transformer architecture
that concurrently learns segmentation alongside visual language
tasks, paving the way for integrated multi-modal segmentation
learning.
• Life-Long Learning for Segmentation: Existing segmenta-

tion methods are usually benchmarked on closed-world datasets
with a set of predefined categories, i.e., assuming that the training
and testing samples have the same categories and feature spaces
that are known beforehand. However, realistic scenarios are
usually open-world and non-stationary, where novel classes may
occur continuously [364]. For example, unseen situations can oc-
cur unexpectedly in self-driving vehicles and medical diagnoses.
There is a distinct gap between the performance and capabilities
of existing methods in realistic and open-world settings. Thus,
it is desired to gradually and continuously incorporate novel
concepts into the existing knowledge base of segmentation
models, making the model capable of lifelong learning.
• Long Video Segmentation in Dynamic Scenes: Long videos

introduce several challenges [56], [57], [365]. First, existing
video segmentation methods are designed to work with short
video inputs and may struggle to associate instances over longer
periods. Thus, new methods must incorporate long-term mem-
ory design and consider the association of instances over a more
extended period. Second, maintaining segmentation mask con-
sistency over long periods can be difficult, especially when in-
stances move in and out of the scene. This requires new methods
to incorporate temporal consistency constraints and update the
segmentation masks over time. Third, heavy occlusion can occur
in long videos, making it challenging to segment all instances ac-
curately. New methods should incorporate occlusion reasoning
and detection to improve segmentation accuracy. Finally, long
video inputs often involve various scene inputs, which can bring
domain robustness challenges for video segmentation models.
New methods must incorporate domain adaptation techniques to
ensure the model can handle diverse scene inputs. In short, ad-
dressing these challenges requires the development of new long
video segmentation models that incorporate advanced memory
design, temporal consistency constraints, occlusion reasoning,
and detection techniques.
• Generative Segmentation: With the rise of stronger gen-

erative models, recent works [366], [367], [368] solve image
segmentation problems via generative modeling, inspired by a
stronger transformer decoder and high-resolution representation
in the diffusion model [369]. Adopting a generative design
avoids the transformer decoder and object query design, which
makes the entire framework simpler. However, these generative
models typically introduce a complicated training pipeline. A
simpler training pipeline is needed for further research.
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• Segmentation with Visual Reasoning: Visual reason-
ing [370], [371], [372], [373], [374] requires the robot to un-
derstand the connections between objects in the scene, and this
understanding plays a crucial role in motion planning. Previous
research has explored using segmentation results as input to
visual reasoning models for various applications, such as object
tracking and scene understanding. Joint segmentation and visual
reasoning can be a promising direction, with the potential for
mutual benefits for both segmentation and relation classification.
By incorporating visual reasoning into the segmentation process,
researchers can leverage the power of reasoning to improve the
segmentation accuracy, while segmentation can provide better
input for visual reasoning.

VII. CONCLUSION

This survey provides a comprehensive review of recent ad-
vancements in transformer-based visual segmentation, which, to
our knowledge, is the first of its kind. The paper covers essential
background knowledge and an overview of previous works be-
fore transformers and summarizes more than 120 deep-learning
models for various segmentation tasks. The recent works are
grouped into six categories based on the meta-architecture of the
segmenter. Additionally, the paper reviews five specific subfields
and reports the results of several representative segmentation
methods on widely-used datasets. To ensure fair comparisons,
we also re-benchmark several representative works under the
same settings. Finally, we conclude by pointing out future re-
search directions for transformer-based visual segmentation.
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