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Rethinking Self-Supervised Semantic Segmentation:
Achieving End-to-End Segmentation

Yue Liu"”, Jun Zeng

Abstract—The challenge of semantic segmentation with scarce
pixel-level annotations has induced many self-supervised works,
however most of which essentially train an image encoder or a
segmentation head that produces finer dense representations, and
when performing segmentation inference they need to resort to
supervised linear classifiers or traditional clustering. Segmentation
by dataset-level clustering not only deviates the real-time and
end-to-end inference practice, but also escalates the problem from
segmenting per image to clustering all pixels at once, which results
in downgraded performance. To remedy this issue, we propose a
novel self-supervised semantic segmentation training and inferring
paradigm where inferring is performed in an end-to-end manner.
Specifically, based on our observations in probing dense representa-
tion by image-level self-supervised ViT, i.e. semantic inconsistency
between patches and poor semantic quality in non-salient regions,
we propose prototype-image alignment and global-local alignment
with attention map constraint to train a tailored Transformer De-
coder with learnable prototypes and utilize adaptive prototypes for
segmentation inference per image. Extensive experiments under
fully unsupervised semantic segmentation settings demonstrate the
superior performance and the generalizability of our proposed
method.

Index Terms—Self-supervised learning, semantic segmentation.

I. INTRODUCTION

NDERSTANDING image at pixel-level granularity still
U stands as one of the most important and challenging tasks
in computer vision due to the following proverbial facts: extreme
scarcity of pixel-level annotations and non-trivial effort transfer-
ring knowledge learned from coarse granularity to finer granular-
ity (e.g. image-level to pixel-level granularity) [1]. Recently, the
vision community resorts to self-supervised learning for novel
solutions of pixel-level tasks, e.g. semantic segmentation.
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Without pixel-level annotations, many works introduce
domain-specific priors to assist self-supervised dense repre-
sentation learning, which include contour detectors [2], [3],
saliency detectors [4], [5], region proposals [6], [7], or cluster-
ing [8], [9]. However, the dense representation learning is largely
limited by these hand-crafted priors consequentially. Recently,
image-level self-supervised ViTs are found to be able to produce
semantic information in dense representations [10], therefore
facilitating many self-supervised semantic segmentation works
like STEGO [11] and ACSeg [12] that preliminarily explore
dense prediction with fixed pre-trained models. Some other
works design dedicated self-supervised pre-training tasks for
dense representation learning [13], [14], and achieve impressive
performance in downstream semantic segmentation tasks.

Nevertheless, most self-supervised semantic segmentation
methods essentially train an image encoder or a segmentation
head that produces finer dense representations, and when per-
forming semantic segmentation inference or evaluation, they
still need to resort to fine-tuned linear classifier or traditional
clustering (e.g. K-means). We illustrate typical evaluation proto-
cols of self-supervised semantic segmentation methods in Fig. 1.
Fig. 1(a) fixes the self-supervised encoder and fine-tunes a linear
classifier with pixel-level annotations for segmentation results,
which essentially makes this evaluation supervised. Under fully
unsupervised settings, final segmentation results are obtained by
clustering dense representations on dataset level as Fig. 1(b). The
inference practices in both Fig. 1(a)(b) significantly deviate from
the conventional semantic segmentation where segmentation
results are inferred in a real-time and end-to-end manner. More
importantly, clustering on dataset level or at least large-batch
level actually escalates the problem from segmenting per image
to clustering all pixels at once, which we argue is one key
aspect that the evaluation performance of unsupervised semantic
segmentation methods greatly lag behind supervised methods.
On the one hand, clustering is neither elegant nor efficient and
often yields inconsistent evaluation results [15]. On the other
hand, without pixel-level categorical supervision by ground-
truth annotations, the dense representations learned by self-
supervision may only contain coarse categorical information
which causes difficulty in categorical alignment in dataset-level
embedding space, thus clustering or even linear probe may
result in downgraded performance (fine-tuning a linear classifier
is essentially clustering dataset-level dense representations to
semantic classes in a supervised manner), we will show more
about this observation in Section III. To remedy this issue, we
propose a novel self-supervised semantic segmentation training
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and inferring paradigm as shown in Fig. 1(c) where inferring
is performed in a real-time and end-to-end manner. Instead of
traditional clustering, we introduce prototypes that are extracted
per image adaptively and then used for inference by a simple
similarity argmax function.

Following prior works [11], [12], we break down self-
supervised semantic segmentation into self-supervised dense
representation learning and self-supervised segmentation head
training, in this work, we primarily focus on the latter based
on fixed self-supervised image encoders. Although in this paper
we only use image-level self-supervised ViT (e.g. DINO [10])
to illustrate our self-supervised training method, the proposed
method can be flexibly integrated with other self-supervised
dense representation learning frameworks to achieve real-time
and end-to-end semantic segmentation. Inspired by DETR [16]
and MaskFormer [17], we utilize learnable prototypes to query
image dense representations through a tailored Transformer
Decoder [18]. VITA [19] also explores a token association
mechanism for video instance segmentation, where an object
detector is used to distill object-specific contexts into object
tokens which are similar to the concept of prototypes in our work.
And based on our observations in probing dense representations
by self-supervised ViT, we propose two Alignment methods
for self-supervised semantic Segmentation training (AlignSeg),
we elaborate our observations in Section III and the alignment
methods in Section I'V.

We extensively evaluate the proposed AlignSeg under fully
unsupervised semantic segmentation settings on commonly
used datasets, including PASCAL VOC 2012 [20] and COCO-
Stuff [21]. Thanks to the new inferring paradigm as in Fig. 1(c),
we can evaluate semantic segmentation end-to-end and image-
by-image without fine-tuning extra components or running extra
clustering. We also show that the proposed AlignSeg can be used
as a generalizable method that is easily integrated with current
self-supervised dense representation frameworks.

To summarize, our main contributions are as follows:

® We propose a novel self-supervised semantic segmenta-

tion training and inferring paradigm where inferring is
performed in a real-time and end-to-end manner. We uti-
lize prototype-image alignment and global-local alignment
with attention map constraint to train a tailored Trans-
former Decoder with learnable prototypes and then use
adaptive prototypes for segmentation inference per image.
® We probe the dense representations produced by image-
level self-supervised ViTs and reveal the semantic incon-
sistency between patches and the poor semantic quality

Embedding

Unsupervised

Evaluation protocols of self-supervised semantic segmentation methods.
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in non-salient regions, and prove unsupervised segmenta-
tion inference by clustering results in downgraded perfor-
mance.

e We demonstrate that under fully unsupervised semantic
segmentation settings, the proposed method achieves state-
of-the-art segmentation performances.

II. RELATED WORKS

A. Self-Supervised Learning

Self-supervised learning, especially image-level representa-
tion learning, has been extensively studied in the vision com-
munity. Self-supervised learning methods mainly utilize two
types of optimization target, i.e. contrastive target [22], [23] and
generative target [24], [25], to learn visual representations which
benefit downstream tasks. Recently, self-distilled method DINO
observes image-level self-supervised ViT outputs semantic-
aware dense representations which leads to the emergence of
object segmentation in the attention map [10].

Despite the success of self-supervised learning in image-level
downstream tasks (e.g. classification, retrieval), it still faces dif-
ficulties in transferring to pixel-level tasks (e.g. object detection,
semantic segmentation), thus motivating some self-supervised
dense representation learning works which design dedicated
self-supervised pixel-level pre-training tasks [14], [26], [27],
[28], [29]. These works utilize pixel-level pre-training objectives
that facilitate the learning of finer dense representations, and they
indeed achieve better performance in downstream pixel-level
tasks. However, these methods are not specially designed for se-
mantic segmentation and normally need additional supervision
when transferring to segmentation tasks.

B. Self-Supervised Semantic Segmentation

Aiming at semantic segmentation, many self-supervised
dense representation learning works introduce domain-specific
priors, including contour detectors [2], [3], saliency detec-
tors [4], [5], region proposals [6], [7], or clustering [8], [9].
However, the dense representation learning is largely limited
by these hand-crafted priors consequentially. Recently, inspired
by semantic-aware dense representations in DINO [10], self-
supervised semantic segmentation works like Leopart [13] and
HP [15] use image-level pre-trained models as initialization
and guidance, works like STEGO [11] and ACSeg [12] fur-
ther explore dense prediction with fixed pre-trained models,
other works utilize image-level self-supervised ViTs in various
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ways [30], [31], [32], [33], [34]. This stream of works shows
that data-driven self-supervised models provide stronger prior
knowledge for semantic segmentation training than those hand-
crafted priors, and decoupling self-supervised dense representa-
tion learning and self-supervised semantic segmentation training
gives promising results. We also extend this stream of works and
train segmentation head upon fixed self-supervised models.

However, most self-supervised semantic segmentation meth-
ods essentially train an image encoder or a segmentation head
that produces finer dense representations, and when performing
semantic segmentation inference or evaluation, they still need to
resort to fine-tuned linear classifier or traditional clustering (e.g.
K-means), as illustrated in Fig. 1(a) and (b). MaskDistill [34]
facilitates a multistage self-supervised training framework based
on its hand-made rules and realizes end-to-end semantic seg-
mentation inference, but it is complex and comprises training
of several models. Although these self-supervised semantic
segmentation methods can fine-tune a segmentation head using
pseudo-labels generated by clustering as in LUSS [35], the eval-
uation is essentially the same as clustering, and the segmentation
quality using noisy clustering labels is poor. To remedy this
issue, we propose a novel self-supervised semantic segmentation
training and inferring paradigm where inferring is performed in
a real-time and end-to-end manner.

Recently, with the prevalence of vision-language pre-training
methods, works like GroupViT [36] and SegCLIP [37] show
that object segments automatically emerge with text supervision,
they also utilize learnable centers to segment semantic regions.

III. PROBING IMAGE-LEVEL SELF-SUPERVISED VIT

Image-level self-supervised ViTs are proven to be able to
output semantic-aware dense representations, but the semantic
quality is unclear. Hence, it is crucial to probe these dense
representations thoroughly if we are to build a segmentation
module upon frozen pre-trained ViTs.

A. Semantic Consistency Between Patches

DINO [10] shows the attention map of [CLS] token contains
segmentation information, indicating that the patch embedding
contains semantic information. We find this property exists
in other image-level self-supervised models as well, such as
MoCo [23] and even generative method MAE [24]. In terms
of semantic segmentation, it is important to know how much
semantic information patches contain and how well the se-
mantic features are aligned between patches. Generally, the
better semantic consistency produced by ViT, the better semantic
segmentation performance we will get.

We introduce the concept of prototype, which can be in-
terpreted as the representative of a semantic class, to probe
semantic consistency. We average the embedding of patches
highlighted by the attention map as a semantic prototype, and
use the prototype to segment the same semantic patches of
different images with similarity function. We use the pre-trained
ViT-S/16 and threshold the averaged attention map as in DINO,
then we extract the semantic prototype and use it to segment the
same semantic patches by thresholding the similarity map which
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Fig. 2. Probing semantic consistency between patches: “Attention Map” col-
umn shows the [CLS] token’s attention map after thresholding as DINO, then
the semantic prototype is extracted according to the attention map; “Prototype
Similarity Map” column shows the similarity map after thresholding, which
is computed by cosine similarity between the prototype and the patches; the
rightmost column shows the visualization of the patch embedding space with
ground-truth class annotations in different colors.

is computed by cosine similarity between the prototype and
patch representations, similar to how we process the attention
map. Results are shown in Fig. 2, where the attention map
and similarity map are thresholded using the hand-picked best
ratio, i.e. the ratio is selected by manually checking the best
IoU between the binary mask and the ground-truth semantic
region when adjusting the threshold by 5% each time until a
best ratio is selected. We also visualize the patch embedding
space with ground-truth class annotations in different colors.
Notably, although the patch embeddings of dogs seem to be
well clustered, as the number and variance of patches increase
for the same semantic class, patch embeddings start to scatter
and to mix with other patches in the embedding space, which is
lethal for semantic categorization.

Probing semantic consistency between patches reveals that
without pixel-level categorical supervision by ground-truth an-
notation, variance exists between same semantic patch embed-
dings in a single image, and becomes non-negligible when
scaling up to multiple images. IPMT [38] introduces this
semantic inconsistency as intra-class diversity, I12F [39] and
GMMSeg [40] suggest to perform feature adaption for se-
mantic segmentation. Thus, it is undoubted that unsuper-
vised segmentation by traditional clustering (e.g. K-means)
on dataset level would only get downgraded performances.
To tackle this problem, we propose to adaptively extract pro-
totypes by a tailored Transformer Decoder (i.e. prototype-
image alignment) and perform segmentation inference per
image instead of on dataset level, details are described in
Section IV.

B. Semantic Quality Across Image

Good semantic segmentation performance requires good se-
mantic quality across the whole image, even in small object
or edge regions. To probe the semantic quality provided by
self-supervised ViT, we utilize two hand-picked prototypes (for
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Fig. 3. Probing semantic quality across image: “‘Prototype” column indicates
the semantic prototypes used; “Image” column shows the global and local crop
of an image; “Attn. Map” column shows the attention map for both crops after
thresholding; and the rightmost column shows the segmentation result with each
mask being colored as same as the corresponding prototype, and the grey mask
representing the background. Best viewed with zoom-in.

a given image, we manually identify two main semantic classes
and select two representative images each containing one se-
mantic class from the dataset, and then the two representative
prototypes are obtained using the same method as we use in
Fig. 2) to compute similarity matrix with patches and then
segment regions by argmax function. We show typical results
in Fig. 3, where each segmentation mask is colored as same
as the corresponding prototype, and the grey mask represents
the background. Background is segmented using a prototype
extracted by the reserve mask of the person image’s attention
map.

Besides the semantic inconsistency issue aforementioned, in
Fig. 3 it is noticeable that the non-salient image regions, such
as small objects and edge regions, are poorly segmented. We
believe it is due to the poor semantic quality in these regions.
Interestingly, when re-segmenting the cropped local regions,
finer segmentation is normally obtained, although the refinement
is limited for small objects due to limited pixel information.
STEGO [11] and Leopart [13] also prove that learning from
multiple global and local crops improves dense prediction per-
formance. Furthermore, we find that the attention map can serve
as a saliency mask for screening image patches, it is also utilized
as foreground hint in [12], [13].

Based on the observations, in order to make the best of
self-supervised ViT to train a segmentation module, we propose
global-local alignment and attention map constraint, details are
described in Section IV.

IV. METHOD

Here we elaborate the proposed AlignSeg framework, includ-
ing the overall structure, the self-supervised training objective
and the end-to-end semantic segmentation inference process.
AlignSeg is built upon a frozen self-supervised image encoder
and is trained in a fully self-supervised fashion without any
annotations.
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A. Segmentation Module

As illustrated in Fig. 4, AlignSeg consists of a frozen ViT
f () and a tailored Transformer Decoder Dec() with a set of K
learnable prototypes P € RX*P_ For an image, ViT outputs
dense representations x € R™*P where n is the number of
patches of the image, and a binary mask m € R™*! is obtained
by thresholding 60% of the attention map, which is computed
exactly the same as DINO [10].

Inspired by Mask2Former [41] (a brief introduction of the
Mask2Former architecture can be found in Appendix A, avail-
able online), we construct our Transformer Decoder with L
layers, each of which consists of a cross-attention operation,
a self-attention operation and a feed-forward network (FFN).
Decoder takes prototypes P as query and dense representations
x as key and value, and outputs the image-aligned prototypes
P € RE*DP_We refer readers to the original work of Trans-
former [ 18] for more details of the cross-attention, self-attention
and FFN operations. Here we define the function of querying
image dense representations = with prototypes P through our
Transformer Decoder as follows:

P? = Dec(P, x) (1

After extracting prototypes P® adaptively per image, we
compute the cosine similarity matrix s between prototypes and
image patches as follows:

s =cos <z, P* > 2)
where s € R ¥ Segmentation results are simply obtained
by the prototypical assignment of each patch with argmax
function:

3)

9 = arg max(s)
K

where § € R™*! and for a patch 4, we have §; € [0, K).

B. Self-Supervised Segmentation Training

In Section III we show that semantic segmentation can be
simply achieved by computing similarity between hand-picked
prototypes and patches, however the semantic inconsistency
and poor semantic quality in non-salient regions make the seg-
mentation performance less attractive, besides, we would want
AlignSeg to extract prototypes automatically. Therefore, we
propose two alignment methods, i.e. prototype-image alignment
and global-local alignment with attention map constraint, to
train a tailored Transformer Decoder and a set of learnable
prototypes in a self-supervised fashion.

Prototype-image alignment: We randomly initialize the learn-
able prototypes P and extract image-aligned prototypes P” for
each image crop as described in Section IV-A. The extracted
prototypes P should be distinct and represent different seman-
tic classes, while the i-th prototype P for each crop should
be semantically consistent. Thus we utilize a classic contrastive
loss InfoNCE [22] to constrain prototypes extracted for different
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Fig. 4. Overview of the AlignSeg framework.

crops as follows:

exp <COS<P% P’ i >/T)

Eproto = ‘ ZZ Og

p Kexp (COb<P P ! >/T)
“)

assuming we have one global crop and v; local crops for an
image, and Pf" denotes i-th extracted prototype for the global

crop, Pﬁ denotes the i-th extracted prototype for the v-th local
crop where v € {1,2,...,v;}, T is the temperature parameter to
control the softness.

Global-local alignment: Due to the nature of patch-based
encoding and the limit of self-supervised ViT, non-salient image
regions are poorly handled. Training with multiple local crops
enable the model to look at closer details of different regions
and to refine segmentation performance.

For an image z, we first randomly crop it into one global view
and v; local views, with the constraint that there should be a
minimum intersection in each global-local pair. We enforce this
constraint such that there would always exist strong alignment
signal for global-local segmentation pairs. For a global crop,
we get its dense representations x, € R™s*P and extract its
prototype P%s € RE*P with (1), then compute the prototyp-
ical similarity matrix s, € R"9 *K with (2); similarly, we get
2V € RmD, Pl ¢ REXD and s? € R™ X for the v-th local
crop. We then define the global-local prototypical similarity
correlation:

ProtoCorrg,;, = sg4 (s))" Q)

where ProtoCorr,,;, € R"*""  Intuitively, element of
ProtoCorrg,, should be large if global patch and local patch
are semantically correlated and small if their semantic features
do not correlate. Thus, we exploit the corresponding global-local
dense representation correlation as the optimization target of
ProtoCorrg;, . The dense representation correlation is com-
puted as:

DenseCorrg,, = cos < xg4,x] > (6)

Attention Map
Constraint

L Ity
.5 [.5
1
=N = Global-Local
oS oS Alignment
1| = wn
k vIOE b}
L © ©

Prototype-lmage Alignment

where DenseCorr,;, € R™"9*™". We then define the global-
local alignment objective with a simple element-wise multipli-
cation of ProtoCorrg;, and DenseCorrg, :

Leorr = |ZPr0toCorrgl ®(DenseCorrg;, —h)

u
@)

where h is a hyper-parameter that adds a negative pressure.
Optimizing L. with respect to DenseCorry, trains the
Segmentation Module to produce global segmentation result that
is semantically aligned with local segmentation results.

In experiments, we find the training is unstable especially
when optimizing ProtoCorrg;, for weakly correlated or un-
correlated patches, thus we adopt the “0-Clamp” modification
as [11], [12] and update ProtoCorry,, as:

-

ProtoCorry;, =545/, 5=

ax(s,0) ®)

By introducing % and “0-Clamp”, we make the training focus
more on strong alignment signal while mitigating the instability
brought by ambiguous alignment signals.

Attention map constraint: When probing semantic quality
across image, we find that the semantic quality of non-salient
region is poor which would jeopardize the segmentation training.
Although “0-Clamp” mitigates the issue to some extend, we
further utilize the binary mask m from the attention map which
can serve as a saliency mask to stabilize and accelerate the
training.

We first extract the binary mask m, € R"s*! and m} €
R™ *! for the global and the v-th local crop respectively, then
we compute the saliency intersection mask as:

T
Mg, = Mg ny © (m;’nq) , My = mg.repeat(n) (9)

where repeat(n) denotes repeating the tensor along its first
dimension by n times. Then we constrain the global-local opti-
mization within the saliency intersection region by updating the
global-local alignment objective as follows:

1
Leorr = — WZMQJ,U@ProtOCorrg,lU
v
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®(DenseCorrg;, —h) (10)

Overall optimization target: Combining prototype-image
alignment as (4) and global-local alignment with attention map
constraint as (10), the final self-supervised training objective is
defined as follows:

L= a‘cp’roto + ﬂ‘cco’m' (1 1)

where o and 3 are coefficients that control the training stability
and the diversity of prototypes.

C. End-to-End Segmentation Inference

As shown in Fig. 1(c), after self-supervised training, we get a
Transformer Decoder Dec() and a set of prototypes P that are
dataset specific. For an image, it is first resized to (H, W) and
sent to the ViT to get its dense representations x. We then query
x with prototypes P through Dec() to get the image specific
prototypes P” as (1), and compute the cosine similarity matrix
s as (2). The final segmentation results ¢ are obtained by the
prototypical assignment of image patches as (3). As the model
is trained in a fully self-supervised manner, the Segmentation
Module can not assign semantic labels for the prototypical
segmentation masks. For evaluation and visualization purposes,
as in prior art, we align the prototypes P* and the ground-truth
semantic labels using Hungarian Matching [42].

V. EXPERIMENTS

We evaluate the proposed AlignSeg on standard segmenta-
tion datasets and compare with state-of-the-art self-supervised
methods. We then ablate different design choices, and extend
AlignSeg to various self-supervised image encoders. We further
probe the prototypes to explore its adaptability. Implementation
details are provided in Appendix B, available online.

A. Setup

For fair comparison, we train a baseline AlignSeg model
with one layer Decoder and five prototypes (i.e. L = 1, K = 5),
using the image-level self-supervised ViT-S/16 from DINO [10]
in experiments unless otherwise stated, the parameters of ViT
are frozen during AlignSeg training. The segmentation results
from AlignSeg are directly used for evaluation, without any
post-processing, e.g. Conditional Random Field (CRF) [45] or
K-means clustering. We report results in mean Intersection over
Union (mlIoU).

Dataset: We evaluate AlignSeg on two commonly used
semantic segmentation datasets: the PASCAL VOC 2012
(PVOC) [20] and COCO-Stuff [21]. Following prior works [9],
[11], [12], [15], [43], we use the the 27-classes version of
COCO-Stuff with the “curated” split introduced by IIC [43].

Evaluation protocol: As seen in Fig. 1(c), we use the proposed
self-supervised semantic segmentation inferring paradigm for
evaluation, where the segmentation result is directly outputted
and evaluated for each image. Without fine-tuning extra classi-
fier or running extra clustering, AlignSeg is evaluated in a fully
unsupervised manner. Thus the two previously-adopted evalu-
ation methods, i.e. linear probe and clustering, are discarded.

10041
TABLE I
STATE-OF-THE-ART COMPARISON ON PASCAL VOC 2012 AND
COCO-STUFF-27

Method Encoder  Frozen Evaluation PVOC coco

Method Stuff27
IIC [43] ResNet18 X Clustering 9.8 6.7
PiCIE+H [9] ResNetl8 X Clustering - 14.4
MaskContrast [4]  ResNet50 X Clustering 35.0 8.9
MaskDistill [34] ResNet50 X End-to-End 45.8
DINO [10] ViT-S/16 X Clustering 4.6 9.6
DINO [10] ViT-S/16 X Linear Probe 50.6 29.4
Leopart [13] ViT-S/16 X Clustering 41.7
STEGO [11] ViT-S/16 v Clustering - 237
DINOSAUR [44]  ViT-B/16 v Clustering 37.2 24.0
ACSeg [12] ViT-S/16 v Clustering 47.1 16.4
AlignSeg ViT-S/16 v End-to-End 69.5 351

“Frozen” column indicates whether the encoder is frozen(y”) or not(x) during training. Results
are reported in mean intersection over union (mloU).

Please note since the prototypical segmentation mask is class-
agnostic, we match the extracted prototypes to the ground-truth
classes using Hungarian Matching [42] for evaluation, details
can be found in Appendix, available online.

B. Results

Quantitative Results: We report our main results in Table I,
most of the results are brought from [11], [12], and note that both
“Clustering” and “End-to-End” are fully unsupervised evalua-
tion methods while “Linear Probe” is not. AlignSeg significantly
outperforms prior state-of-the-art methods. Specifically, under
unsupervised evaluation settings, AlignSeg improves by 22.4
mloU on PVOC and 11.4 mloU on COCO-Stuff-27, compared
to the next best method. We attribute the significant improve-
ments to the end-to-end training and inferring paradigm, which
allows segmentation results to be evaluated image by image and
extricates from the compromised clustering evaluation. Surpris-
ingly, AlignSeg even outperforms DINO under linear probe, as
fine-tuning a linear classifier is essentially clustering dataset-
level dense representations to semantic classes in a supervised
manner. It further proves that unsupervised or self-supervised
methods can not guarantee perfect semantic alignment of dense
representations without pixel-level categorical supervision by
ground-truth annotations, as suggested in Section III. In contrast,
AlignSeg does not perform segmentation inference on dataset
level, but focuses on segmenting the current image based on se-
mantic difference of dense representations, achieving adaptabil-
ity to different images. MaskDistill [34] also performs end-to-
end segmentation inference by a DeepLab-v3 model [46] which
is trained with two self-supervised learning stages, in which
errors could be accumulated without ground-truth guidance.
Thus, although MaskDistill infers like supervised segmentation
methods, it does not provide corresponding performance.

Qualitative Results: We visualize the qualitative results on
PVOC and COCO-Stuff-27 in Figs. 5 and 6 respectively,
segmentation masks are not post-processed and are marked with
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Label Image
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Fig. 5. Qualitative results on Pascal VOC 2012.

Label Image

Ours

Fig. 6.

Qualitative results on COCO-Stuff-27. Best viewed with zoom-in.

corresponding colors for different prototypes. In Fig. 5, itis obvi-
ous that AlignSeg performs especially well for object-centric im-
agesin PVOC, as the image encoder is pre-trained using the same
type of images. AlignSeg also handles scene-centric images
successfully with five prototypes capturing different semantics.
It is noted that the prototypes adapt to different semantics for
each image, while the semantic consistency of prototypes is
preserved across different images. For example, segmentation
colored in green tends to be the body of something, person
segmentation is colored in yellow, and two of the prototypes
always select background regions which are colored in black
and gray. We also find that for images containing only one
major object (e.g. 1st and 2nd column in Fig. 5), AlignSeg tends
to segment object parts as Leopart [13], and for images with
less semantic diversity (e.g. 1st and 3 rd column in Fig. 5),
not all prototypes have to segment a region. Similar results
are observed in Fig. 6, but COCO-Stuff-27 contains complex
scene-centric images mostly. AlignSeg manages to segment the
major semantic regions for images of different scenes, e.g. in-
door, outdoor and street. However, limited by the self-supervised
image encoder and the number of prototypes, the segmentation
results are relatively coarse. Please note that in Figs. 5 and
6, as we do not apply any post-processing for segmentation
masks, the prototypical segmentation of patches are directly used
for visualization. We show examples of segmentation masks
post-processed by interpolation in Appendix C, available online.

In general, AlignSeg performs better for object-centric im-
ages as the image encoder is pre-trained by image-level task
on ImageNet, and it is obvious that non-salient regions are
handled worse than salient regions. It should be aware that unlike
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SAM [47], segmentation results of AlignSeg are semantically
consistent, i.e. objects of same semantic are segmented as one
segmentation mask. We show additional qualitative results and
failure cases in Appendix C, available online.

C. Ablation Study and Analysis

Here we ablate different design choices, including the con-
struction of loss function, the number of Decoder layers, pro-
totypes and crops. Furthermore, we analyze the training effi-
ciency, and more importantly, we analyze the effectiveness and
adaptability by extending AlignSeg to various self-supervised
image encoders. Ablations are performed on PVOC val unless
otherwise stated.

Design and training choices: The results of ablation study
on major design choices, i.e. the number of Decoder layers
L, the number of learnable prototypes K, and the number of
local crops vy, are shown in Table II(a). The proposed Decoder
is quite efficient with only one layer (i.e. L = 1), and when
using three layers, the performance improvement is marginal.
Learning from multiple crops is important, when v; = 2 the
performance improves by 2.6, but exploiting more crops does
not help anymore. Another important design is the number of
prototypes, more prototypes generally results in segmentation
with finer granularity, which contributes to the performance
gain when using many-to-one matching as [13], [43]. However,
it should be noted that the encoding capability of image-level
self-supervised ViT is limited, non-salient image regions may be
overlooked, thus it is impracticable to use too many prototypes
because the diversity and explainability of prototypes cannot be
guaranteed as one prototype may only represent a small portion
of an object part and easily get confused with other prototypes.
We also ablate the construction of loss function, i.e. Lprot0-
Utilizing the prototype constraint gives a notable improvement
as shown in Table II(b), we also observe that the segmenta-
tion masks are smoother. With regard to training efficiency,
Table II(c) shows that AlignSeg can be trained quite efficiently
with only 10 epoches and it does not require large batch size,
which makes AlignSeg training feasible on a single GPU. Fur-
thermore, we note that training on large scene-centric dataset
improves the segmentation performance in general as shown in
Table II(d).

Extending to various self-supervised methods: We analyze
the effectiveness and adaptability of AlignSeg by extending the
method to various self-supervised image encoders, results are
shown in Table III. We first test AlignSeg with image-level
self-supervised methods, e.g. DINO [10] and MoCo-v3 [23],
and then extend it to pixel-level self-supervised semantic seg-
mentation methods, e.g. Leopart [13] and HP [15], which are
further pre-trained on COCO-Stuff. The baseline performances
are evaluated by clustering under unsupervised evaluation set-
tings (as shown in Fig. 1(b)), and most of the baseline results
are taken from [13]. According to Table III, we observe the
following four insights. First, AlignSeg successfully adapts to
various self-supervised methods and the segmentation perfor-
mance improves with the quality of the encoder. Second, it is
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TABLE II
ABLATION STUDY ON DIFFERENT DESIGN AND TRAINING CHOICES
Layers Prototypes Crops | mloU
1 5 2 69.5 Train Eval. mloU
Leorr  Lproto | mloU Batch  Epoch | mloU

3 5 2 69.6 % v 695 2 10 95 PVOC PVOC 69.5

1 5 1 66.9 ' ’ COCO 325

1 5 3 9.5 v X 66.4 32 50 69.8 PVOC 207

’ X v 29.5 128 10 68.0 cocO ———
1 10 2 73.2 COCO 35.1
b) Loss ablation ¢) Training efficienc
1 15 2 733 () © & ¥ (d) Training dataset

(a) Design choices ablation

Fig. 7.
are assigned to corresponding prototypical segmentation regions.

TABLE III
EXTENDING ALIGNSEG TO VARIOUS SELF-SUPERVISED METHODS

Method Dataset Encoder Pixel-level | mloU Impv.
DINO [10] ImageNet ViT-S/16 X 69.5 +64.9
DINO [10] ImageNet ViT-B/16 X 70.4 +65.1
MoCo-v3 [23] ImageNet ViT-S/16 X 52.1 +38.7
SwAV [10] ImageNet ResNet-50 X 56.7 +43.0
MAE [24] ImageNet ViT-B/16 X 64.6 +46.1
DINOV2 [48] LVD-142M ViT-S/14 X 72.3 +39.3
Leopart [13] COCO-Stuff  ViT-S/16 v 71.2 +29.5
HP [15] COCO-Stuff VIiT-S/8 v 71.6 +23.1

“Method” column indicates the self-supervised method to be integrated with AlignSeg,
“Dataset” column shows the dataset for the “Encoder” pre-training. The segmentation
performance after integrating with AlignSeg on PVOC is shown in “mloU”, and “Impv.”
column shows the performance improvement compared with the self-supervised baseline
under unsupervised evaluation settings.

apparent that generally dedicated self-supervised dense repre-
sentation learning methods output patch embeddings with better
semantic quality, which improves the segmentation performance
when integrating with AlignSeg. Third, AlignSeg is adaptive to
both contrastive and generative self-supervised methods, and is
also adaptive to different encoder architectures, e.g. ViT and
ResNet. Fourth, it is surprising that although DINOvV2 [48] is
not specifically pre-trained for semantic segmentation, it still
outperforms some self-supervised semantic segmentation meth-
ods (e.g. Leopart [13] and HP [15]) when integrating with our
method.

O Corresponding segmentations

t-SNE visualization of the patch embeddings and the extracted prototypes. Patch embeddings are colored according to their ground-truth annotations, and

D. Probing the Prototypes

Here we probe the prototypes to explore its adaptability and
to prove the effectiveness of the proposed Transformer Decoder,
in particular we analyze the extracted prototypes P~.

Generalizability and consistency: We visualize segmentation
results of different types of objects in Fig. 8. It is obvious that
the five prototypes are semantically generalizable and consistent
across different types of objects, e.g. furniture, person, animal,
boat and plant. For example, “Proto-1” (Ist column) tends
to segment the head of an object or something on top while
“Proto-3” always extracts the object body, and both “Proto-4”
and “Proto-5" are backgrounds. It is interesting that “Proto-2”
does not always segment a region (e.g. 2nd column in Ist, 3rd
and 4th row), but it is sensitive to head and legs of person,
we believe “Proto-2” is trained to be responsible for “Person”
which is the most common object in PVOC dataset. Fig. 8
shows the prototypes successfully learn the most frequently
occurring semantic concepts and can well adapt to different
image content. It also proves that the Transformer Decoder is a
powerful query-based semantic feature aggregator.

We also compute the similarity between the self-supervised
prototypes P and the 21 semantic classes of PVOC (including
“Background”) and show the results after softmax in Table IV,
each semantic class is represented by averaging the semantic
prototypes manually extracted from 10 typical images, and very
small similarity scores are ignored. Each prototype’s largest
similarity score is marked in bold, and the second largest score
is underlined. Interestingly, the five learnt prototypes cover
all 21 semantic classes with each prototype preferring certain
classes. “Prototype 1-3” cover a wide range of semantics, while
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TABLE IV
SIMILARITY BETWEEN THE LEARNT PROTOTYPES AND 21 SEMANTIC CLASSES OF PVOC
Prototype | Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Dining Dog Horse Motorbike Person Potted Sheep  Sofa  Train I Background
Table lant Monitor
1 0.1 0. 0.05 0. 0. 0. 0.08 0.1 0. 0. 0. 0.08 0.1 0. 0. 0.08 0.06 0.27 0. 0.05 0.03
2 0.06 0.04 0. 0.04 007 008 008 005 003 0. 0.06 0.04  0.03 0.05 0.11 0.04 0. 0. 0.06 0.14 0.02
3 0. 0.13 0. 0.10 0. 0.35  0.09 0. 0. 0.08 0. 0. 0.17 0.08 0. 0. 0. 0. 0. 0. 0.
4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.23 0. 0.63 0. 0. 0.14
5 0. 0. 0. 0. 0.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.15 0. 0 0. 0. 0.66

Proto-2 Proto-3

Proto-4

Fig. 8. Prototypical segmentation results of different types of object. Segmen-
tation masks are marked with corresponding colors for different prototypes.

“Prototype 4” and “Prototype 5” are more similar to background
or background related semantics (e.g. sofa, potted plant).

t-SNE visualization: We visualize the patch embeddings and
the extracted prototypes, along with the segmentation regions
by prototypes in Fig. 7. DINO pre-trained ViT already provides
semantic-aware dense representations, from which AlignSeg
successfully extracts the most semantically representative pro-
totypes. And importantly, though background accounts for most
of the patches, AlignSeg manages to focus on meaningful fore-
ground patches by the attention map constraint. It is worth
mentioning that number of semantic classes discovered by pro-
totypes are more than the number of ground-truth classes for
object-centric images. Taking the second image in Fig. 7 as an
example, AlignSeg extracts four semantic prototypes (i.e. wall,
ground, plant and pot), compared to only one semantic class (i.e.
potted plant) in ground-truth annotation.

Difference from K-means clustering: Although K-means
clustering can be applied directly to patch embeddings per

AlignSeg Image

K-means

Fig. 9.
tering.

Comparison of segmentation results of AlignSeg and K-means clus-

image to obtain segmentations, the result is far from accept-
able. Theoretically, K-means clustering forces image patches
to be split into K clusters, without discriminating foreground
and background patches, while AlignSeg adaptively extracts
semantic prototypes with preference on foreground content and
the number of segmentation masks are adaptive to the diversity of
the image content as well. We visualize examplary segmentation
results of AlignSeg and K-means clustering in Fig. 9, where the
performance differences are significant. It further proves that
the design of Transformer Decoder with learnable prototypes is
superior semantic feature aggregator than traditional clustering.

VI. CONCLUSION

In this paper, we propose a novel self-supervised semantic
segmentation training and inferring paradigm where inferring is
performed in a real-time and end-to-end manner. We first probe
the dense representations by image-level self-supervised ViTs
and reveal the semantic inconsistency between patches and the
poor semantic quality in non-salient regions, then we propose
prototype-image alignment and global-local alignment with at-
tention map constraint to train a tailored Transformer Decoder
with learnable prototypes and utilize adaptive prototypes for
inference per image by a simple similarity argmax function.
AlignSeg achieves state-of-the-art segmentation performance on
PVOC and COCO-Stuff-27 under fully unsupervised semantic
segmentation settings. AlignSeg can also be easily integrated
with various self-supervised dense representation learning meth-
ods, and we prove the adaptability and effectiveness of the
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proposed Transformer Decoder framework by probing the pro-
totypes.

VII. LIMITATIONS

In this work, we break down self-supervised semantic seg-
mentation into self-supervised dense representation learning and
self-supervised segmentation head training, and we primarily fo-
cus on the latter based on fixed self-supervised image encoder. So
the performance of the proposed AlignSeg heavily relies on the
quality of the image encoder and its upper bound is also limited
by the encoder. Moreover, when extending AlignSeg to different
self-supervised methods, we find AlignSeg is very sensitive to
the pre-trained encoders and requires delicate hyper-parameter
tuning to realize a stable and effective training. Additionally,
the source domain for pre-training the image encoder and the
target domain for training AlignSeg should be homogeneous,
otherwise AlignSeg would fail. Another limitation of AlignSeg
is that once the model has been trained, the number of prototypes
is fixed and AlignSeg cannot adapt to the actual number of
semantic classes in an image when inferring. What is more,
AlignSeg does not use any technical tricks for segmentation
inference, e.g. CRF [45] or multi-scale strategy, thus the segmen-
tation results may seem coarse-grained with the low resolution
after patchification.
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