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ABSTRACT In this manuscript a novel computationally efficient method for implementing the Deter-
ministic Maximum Likelihood estimator of multiple superimposed real sinusoids is derived. This method is
an adaptation of a recently proposed algorithm for the estimation of undamped exponentials and offers two
significant advantages in terms of complexity with respect to various alternatives available in the technical
literature. First, the dependence of the computational complexity on the snapshot length is the same as that of
the Fast Fourier Transform. Consequently, increasing the snapshot length does not have a substantial impact
on the overall computational burden. Second, the proposed method exploits the ability of the periodogram
estimator to coarsely locate the global maximum of the Deterministic Maximum Likelihood cost function,
thereby eliminating the need for a global search on this last function. Our numerical results show that it
achieves a better accuracy-complexity trade-off than various estimators available in the literature.

INDEX TERMS Amplitude estimation, array signal processing, direction-of-arrival estimation, discrete
Fourier transforms, Fourier transforms, frequency estimation, harmonic analysis, interpolation, maximum
likelihood estimation, parameter estimation.

I. INTRODUCTION
The estimation of the parameters of multiple sinusoids, espe-
cially their frequencies, is one of the oldest problems in signal
processing and is a fundamental problem in various fields,
including radar systems and wireless communications [1],
[2], [3], [4], [5]. Most of the solutions available in the
technical literature employ a procedure consisting of the fol-
lowing three steps. First, the so-called periodogram of the
set of measured samples (also termed snapshot) is computed,
which consists of the Fast Fourier Transform (FFT) of these
samples followed by the computation of their square absolute
value. Second, the main local maxima of the periodogram
are located and their corresponding abscissas are taken as
the initial coarse estimates of the frequencies. And third,
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these estimates are improved through either interpolation
formulas or an iterative algorithm to obtain the final fre-
quency estimates. This standard procedure has been followed
in many papers, such as [6], [7], [8], [9], and [10], and
although its first two steps are computationally efficient, they
have two fundamental shortcomings. First, the procedure
may fail to estimate closely spaced frequencies or produce
biased estimates when the separation is small [11], [12], [13].
Second, the third step requires periodogram samples at off-
grid frequencies. Unluckily, the computational cost required
for this task is substantial, usually of order O(N ) where N is
the snapshot length.

In the literature, various attempts have been made to mit-
igate the first shortcoming by adapting estimators originally
designed for direction of arrival (DOA) estimation, such as
multiple signal classification (MUSIC), estimation of signal
parameters via rotational invariant techniques (ESPRIT),
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Newtonalized orthogonal matching pursuit (NOMP) [14],
various implementations of theDeterministicMaximum Like-
lihood (DML) estimator [15], [16], [17] and methods based
on the variational Bayesian inference method [18], [19].
However, this approach is problematic for two reasons.
First, frequency estimation is typically performed on the
basis of a single snapshot, whereas most DOA estimators
require multiple snapshots [20], [21]. Second, the snapshot
length N is usually large in frequency estimation, but
small in DOA estimation. As DOA estimators involve a
large number of O(N ) operations, their adaptation to the
multiple frequency estimation problem usually entails a
significant computational burden. For this reason, more
recently, Fourier-based methods have been proposed in [22],
[23], [24], [25], and [26].

An alternative approach, circumventing the previous two
shortcomings and exploiting the favorable interpolation
properties of trigonometric polynomials, has been presented
in a series of papers [27], [28], [29]. In these manuscripts it
was shown that the DML estimate of multiple frequencies
can be computed with a complexity independent of the
snapshot length N , once the output of the initial FFT
is available. This is due to the fact that the correlations
required to compute DML estimates through complicated
procedures, such as the Alternate Projection (AP) method
in [16] or the Newton method in [27], can be obtained either
through closed-form formulas or through accurate interpo-
lation methods requiring a few FFT samples only. From
a complexity perspective, this result implies that no O(N )
operation is required, so that excellent estimators, such as the
DML estimator, can be implemented with low computational
burden.

Multiple frequency estimation can be performed for two
related cases, one involving the superposition of multiple
real sinusoids and another involving multiple undamped
exponentials. If we refer to these two variants as real and
complex multiple frequency (MF) problems, respectively, the
results in [2], [3], [27], [28], [29], [31], and [32] apply only
to the complex MF problem. The purpose of this paper is
to show how various mathematical results illustrated in the
above-mentioned references can be applied to the real MF
problem without any mismatch or performance degradation.
This leads to the development of an estimation method
that can be viewed as the real counterpart of the methods
illustrated in [2], [3], [27], [28], and [29]. For this reason,
this method can evaluate DML estimates in the real MF
problemwithN -independent complexity, once the initial FFT
is computed.

The remainder of this paper is organized as follows.
In Section II, we briefly recall the complex MF problem
and the computational procedure required for the DML
estimator. In Section III, a new signal model is proposed for
the real MF problem and the related ML cost function is
presented. Section IV presents a new method for the efficient
computation of the real DML multiple-frequency estimates.
The performance of our estimator is compared with that

of other estimators available in the literature in Section V.
Finally, conclusions are presented in Section VI.

A. NOTATION
The following notation is adopted throughout the paper:
1) Vectors are written in bold face (e.g., x) and are always

assumed to be column vectors. The matrices are written
in upper bold face (e.g., X).

2) [x]n denotes the nth element of the vector x.
3) [X]m,n denotes the (m, n)th element of the matrix X.
4) For any column vector y of length N , y(d) denotes the

2N × 1 vector generated by duplicating all components
of y, so that

[y(d)]2n−1 = [y(d)]2n ≜ [y]n, (1)

with n = 1, 2, . . . , N .
5) The sub-scripts (·)R and (·)I denote the real and

imaginary parts, respectively. Thus, for example, for a
complex function c(f ), we have that cR(f ) = Re{c(f )}
and cI (f ) = Im{c(f )}.

6) IN denotes the N × N identity matrix.
7) [x; y] denotes the vertical concatenation of two column

vectors x and y.
8) X† is the Moore-Penrose pseudo-inverse of matrix X.

For any full column-rank matrix X, it is given by

X†
= (XHX)−1XH . (2)

9) R(A,B) ≜ ATB denotes the correlation between the
real matrices A and B of proper size.

II. COMPUTATION OF DML ESTIMATES FOR THE
COMPLEX MF PROBLEM THROUGH THE
PERIODOGRAM-NEWTON METHOD
In this section, we briefly recall the DML estimation problem
considered in [2], [3], [27], [28], and [29] and the related
signal model, both designed for the complex MF case. This
problem involves the complex signal

xc(t) ≜
K∑
k=1

ac,kej2πνk t + wc(t), (3)

that consists of a weighted sum of K undamped exponentials
overlapped with noise; here, ac,k and νk represent the
unknown complex amplitude and frequency, respectively,
of the kth exponential, and wc(t) is a band-limited complex
Gaussian noise process having zero mean. If the estimator
samples the signal xc(t) at the instants {(n−1)T ; 1 ≤ n ≤ N }

with sampling period T , the vector collecting the resulting
samples can be written as

xc = Vc(f)ac + wc, (4)

where

[xc]n ≜ xc((n− 1)T ), [Vc(f)]n,k ≜ ej2π fk (n−1),

[ac]k ≜ ac,k , [f]k ≜ fk ≜ νkT , [wc]n ≜ wc((n− 1)T ),

(5)
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with n = 1, 2, . . . , N and k = 1, 2, . . . , K . If the
elements of the Gaussian vector wc are independent and
identically distributed (i.i.d.), the DML estimate is the pair
(f̂, âc) maximizing the cost function

LDML(f̃, ac; xc) ≜ −∥xc − Vc(f̃)ãc∥2, (6)

where f̃ and ãc denote the trial values of f and ac of size
K × 1. This optimization problem can be simplified by
maximizing (6) in closed form with respect to ã for a given f̃.
In fact, the global maximum of (6) in ãc for fixed f̃ is
attained at

ãc = V†
c(f̃)xc. (7)

Thus, substituting this ãc into (6), produces the concentrated
cost function

L̄c(f̃; xc) = −∥xc − Pc(f̃)xc∥2, (8)

where

Pc(f̃) ≜ Vc(f̃)Vc(f̃)† (9)

is the orthogonal projection matrix of Vc(f̃). Finally, note
that maximizing the concentrated cost function L̄c(f̃; xc) (8)
is equivalent to maximizing

Lc(f̃; xc) ≜ xHc Pc(f̃)xc, (10)

given that Pc(f̃) is idempotent,1 i.e., Pc(f̃)2 =Pc(f̃).
A method for maximizing LDML(f̃; ãc, xc) (6), which

results from combining theAPmethod in [16] with a Newton-
type method, was proposed in [27], [28], and [29]. The
main steps of thismethod, dubbedPeriodogram-Newton (PN)
method, are listed below.

Step 1)We sample Lc(f̃ ; xc) (10) on a regular grid formed
by bN samples, where b > 1 is an integer oversampling
factor, i.e., we compute

Lc
( p
bN

; xc
)
, p = 0, 1, . . . , bN − 1. (11)

Since Vc(f̃ )HVc(f̃ ) = N (f̃ is a scalar), we have from (2)
and (9) that the set of samples in (11) is just the length-(bN )
periodogram of xc, which can be computed efficiently using
an FFT. More precisely, since the periodogram of xc is
defined by

[Pc(xc)]p+1 ≜
1
N

∣∣[xc,F ]p+1
∣∣2, (12)

where xc,F is the bN -length DFT of xc,

[xc,F ]p+1 ≜
N−1∑
n=0

[xc]n+1e−j2πpn/(bN ), (13)

it holds that

Lc
( p
bN

; xc
)

= [Pc(xc)]p+1. (14)

1This property follows from the fact that Pc(f̃) is an orthogonal projection
matrix.

Step 2) If the frequencies contained in the sequence xc are
close to the abscissas of the periodogram and the associated
amplitudes are sufficiently above the noise level, they can
be estimated with reasonable quality. Therefore, if we fix a
detection threshold2 ϵ and then form the set I of indices p
such that [Pc(xc)]p+1 > ϵ, the above mentioned frequencies
must be close to one of the frequencies p/(bN ), with p in I.
In this step, we compute the set I in preparation for steps 3)
and 5) in which we require to scan either the periodogram
Pc(xc) or a residual periodogram (defined in Step 5) ) over
the whole set of indices p, 0 ≤ p < bN − 1. In those two
steps, we scan over the set I rather than over the whole set p,
0 ≤ p < bN − 1, thus reducing the complexity from O(N )
to O(K ).

Step 3) In this step, we determine the values of the index
p in I for which [Pc(xc)]p+1 is a local maximum of the
periodogram Pc(xc). The frequencies corresponding to each
local maximum are then collected in the vector f̂0. Note that
this vector represents the coarse initial estimate of the set of
frequencies contained in the sequence xc.
Step 4) The fourth step improves the initial estimate f̂0

through an iterative Newton-type method. More specifically,
if f̂α (with α = 0, 1, . . . ,Nit − 1, where Nit denotes the
maximum number of iterations) represents the vector of
frequency estimates at the input of the αth iteration, the new
estimate of f (i.e., f̂α+1) is computed following this two-step
procedure:

1) Compute a new estimate of ac given f̂α as (see (7))

âc,α = Vc(f̂α)†xc. (15)

2) Compute a new estimate f̂α+1 of f, given âc,α
and f̂α , as

f̂α+1 = f̂α − µH−1
c (f̂α, âc,α) gc(f̂α, âc,α), (16)

where µ is a real positive parameter (step size),

gc(f, ac) ≜ 2Re
{
a∗
c ⊙ (VH

c,1(xc − Vcac))
}
, (17)

and

Hc(f, ac) ≜ 2Re
{
(acaHc ) ⊙ (VH

c,1Vc,1)T

− diag{a∗
c ⊙ (VH

c,2(xc − Vcac))}
}

(18)

are the gradient and Hessian,3 respectively, of LDML(f, ac; xc)
(6) evaluated with respect to f̃ (for a given ac) and

[Vc,r ]·,k ≜
d r

df rk
[Vc]·,k , (19)

with r = 1, 2 and k = 1, 2, . . . , K , is the r th order
column-wise derivative of Vc. In (16), the step size µ is set
equal to one unless no increase in the value of LDML(f, ac; xc)
is observed; otherwise, it is reduced (usually halved). The
Newton-type method expressed by (16)–(18) is repeated until

2In our computer simulations, this threshold was selected to minimize the
detection of false (i.e., ghost) spectral components (the Chi-Square test has
been adopted [33, Par. 4.7.2]).

3In (17) and (18) the dependence on f is omitted for simplicity.
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convergence4 or until the maximum number of iterations
is reached. At the end of the last iteration, whose index is
denoted ᾱ, the estimate f̂ of f is set equal to fᾱ+1.
Step 5) In this step, Step 3) is executed again for

the residual periodogram Pc(xc − Pc(f̂)xc)) rather than
for Pc(xc), and the frequencies corresponding to each
local maximum are collected in the vector f̂′0. If this last
vector is empty, the procedure is stopped; otherwise, the
process proceeds with Step 4), but the input vector [f̂; f̂′0]
is used.

It is important to point out that:
a) The repetition of Step 3) in Step 5) is usually

unnecessary or needs to be performed only once.
b) The residual periodogram Pc(xc − Pc(f̂)xc)) needs

to be computed only around the active indices. This
implies that its complexity is just O(K 2) rather
than O(N 2).

c) At the end of Step 5), the estimate K̂ of the overall
number of overlapped complex exponentials (i.e., K ) is
given by the size of the frequency vector f̂.

III. ADAPTATION OF THE COMPLEX MF SIGNAL MODEL
AND PN METHOD TO THE REAL MF PROBLEM
In this section, we adapt the results illustrated in the previous
section to the estimation of multiple real frequencies. In this
case, xc(t) (3) is replaced by the real signal

x(t) ≜
K∑
k=1

ak cos(2πνk t + φk ) + w(t), (20)

where ak , νk and φk denote the unknown real amplitude,
frequency and phase, respectively, of the kth sinusoid (with
k = 1, 2, . . ., K ), and w(t) is a band-limited real Gaussian
noise process having zeromean. Using the angle-sum identity
for the cosine, (20) can be rewritten as

x(t) =

K∑
k=1

[cos(2πνk t), sin(2πνk t)]
[
ak cos(φk )
−ak sin(φk )

]
+ w(t).

(21)

Then, sampling x(t) at the instants {(n− 1)T ; 1 ≤ n ≤ N }

with sampling period T produces theN -dimensional vector x,
such that [x]n ≜ x((n− 1)T ). Based on (21), it can be shown
that

x = V(f(d))a + w, (22)

where
• [f]k ≜ νkT , k = 1, 2, . . . , K , and f(d) follows the
notation in (1);

• for any 2K -dimensional vector γ , V(γ ) is an N × (2K )
signature matrix such that

[V(γ )]n,2k−1 ≜ cos(2π [γ ]2k−1(n− 1)),

[V(γ )]n,2k ≜ sin(2π [γ ]2k (n− 1)), (23)

4In practice, the Newton-type refinement is stopped if no relevant increase
in the value of the cost function Lc(f; xc) (10) is observed.

and

[a]2k−1 ≜ ak cos(φk ), [a]2k ≜ −ak sin(φk ),

[w]n ≜ w((n− 1)T ).

with 1 ≤ n ≤ N and 1 ≤ k ≤ K .
Note that the model (22) is mathematically equivalent

to (4) except for the following:
1) Equation (22) is a real model whereas (4) is a complex

one.
2) In (22), the columns of V(f(d)) depend on the compo-

nents of f in a pairwise fashion since both [V(f(d))]·,2k−1
and [V(f(d))]·,2k depend on the same frequency fk (with
k = 1, 2, . . . , K ). In (4), instead, each column of Vc(f)
depends on a single frequency, that is [Vc(f)]k depends
exclusively on fk (with k = 1, 2, . . . , K ).

Taking into account the similarities between (22) and (4)
as well as the last two differences, we can adapt the
results illustrated in the previous section for the complex
MF problem to the real counterpart. If the elements of w
are i.i.d., evaluating the DML estimate f̂ of f in (22) requires
maximizing the cost function

L̄DML(f̃, ã; x) ≜ −∥x − V(f̃(d))ã∥2 (24)

with respect to f̃ and ã. Following the same approach
described in the complex MF case (see (7)–(10)) for
L̄DML(f̃, ã; x) (24), leads to the concentrated cost function

L̄(f̃; x) ≜ xTP(f̃(d))x, (25)

where P(f̃(d)) ≜ V(f̃(d))V(f̃(d))†. Then, steps 1) to 5) can
also be followed for the computation of the real DML
estimates. However, the following differences must be taken
into account:

1) The ‘‘c’’ subscript appearing in various variables must
be removed.

2) The vector f is replaced by f(d).
3) In Step 1) the vector Pc(xc) (see (12)) is replaced

by P(x), that represents a ‘‘real’’ periodogram whose (p+ 1)
element is (see (25))

[P(x)]p+1 ≜
1
2
L̄
( p
bN

; x
)

=
1
2
xTP

([ p
bN

;
p
bN

])
x (26)

for p = 1, 2, . . . , bN/2−1, where bN is assumed to be even.
The periodogram P(x) can be obtained5 from the half-length
DFT of x, given by the (bN/2)-length vector

[xF ]p+1 ≜
N−1∑
n=0

[x]ne−j2πpn/(bN ). (27)

Note that:
• Only half of the DFT is computed in this case, since the
size of xF is bN/2 rather than bN .

5See App for further details on this step.
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• Computationally, bothPc(x) andP(x) haveO(N logN )
order, but Pc(x) is somewhat less complex, given that
P(x) involves the evaluation of the formula derived
in App.

• Pc(x) ≈ P(x) for frequencies not in the vicinity of
f = 0. Thus, P(x) can be replaced by Pc(x) in our
method for solving the real MF problem if there is no
significant spectral content around f = 0.

4) Step 4) is modified by
• Replacing the Hermitian operator (·)H with the trans-
pose operator (·)T in all expressions as the involved
matrices are real.

• Applying the chain rule for the derivative in the
evaluation of the expression of the gradient and
the Hessian (see (17) and (18), respectively), because
the columns of V(f(d)) depend on each element of f
in a pair-wise fashion rather than individually (for this
reason, (17) and (18) cannot be used in this case). Since
f(d) is a function of f whose Jacobian is the 2K × K
matrix J, with

[J]r,k ≜

{
1 if r = 2k or r = 2k − 1,
0 otherwise,

(28)

for k = 1, 2, . . . , K , it is only required to left-multiply
the gradient by JT and left- and right-multiply the
Hessian by JT and J. The resulting expressions for the
gradient and the Hessian are

g(f̃(d), a) ≜ 2 JT
(
a ⊙ ( VT

1 (x − Va))
)
, (29)

and

H(f̃(d), a) ≜ −2 JT
(
(aaT ) ⊙ (VT

1V1)

− diag
(
a ⊙ (VT

2 (x − Va)
))
J, (30)

respectively. Note that: a) in the right hand side (RHS)
of the last equations, the dependence on f̃(d) has been
omitted for simplicity; b) the effect of multiplying
by J (or JT ) is simply to combine pairs of adjacent
columns (or rows) of the matrix it right- (or left-)
multiplies.

IV. COMPUTATIONALLY EFFICIENT IMPLEMENTATION
OF THE DML ESTIMATOR FOR THE REAL MF PROBLEM
The DML estimator described in the previous section may
appear computationally daunting, given that it involves
matrix functions such as the gradient and Hessian in (29)
and (30) or the projection matrix P(f̃(d)) in (25). However,
a closer analysis reveals two relevant features.6 First, the
computed functions exclusively depend on the autocorrelation
of the signature matrix V(f̃(d)), or on its correlation with the

6These features were first noticed and exploited in [27], and play an
important role in the minimization of the usual cost functions defined in ML
frequency estimation and in DOA estimation.

data vector x. Second, these correlations are the only com-
putations whose complexity is proportional to the snapshot
length N , except for the inner product xT x which, being
constant, needs to be computed only once. From these con-
siderations, it can be inferred that the overall complexity of
the DML estimator can be made independent of N and small
if an efficient computation method for the abovementioned
correlations is found. In the sequel, we provide additional
details and present an efficient method for computing corre-
lations with complexity independent of N . To begin, we note
that all computations in the proposed estimator depend on the
correlations7

R(V,V), R(V,V1), R(V,V2), R(V1,V1) (31)

R(V, x), R(V1, x), R(V2, x). (32)

To show a few examples, the cost function in (25) can be
written as

xTP(f̃(d))x = R(V, x)TR(V,V)−1R(V, x). (33)

and the gradient and Hessian in (29) as

g(f̃(d), a) = 2 JT
(
a ⊙ (R(V1, x) −R(V,V1)T a)

)
, (34)

and

H(f̃(d),a) = −2 JT
(
(aaT ) ⊙R(V1,V1)

− diag
(
a ⊙ (R(V2, x) −R(V,V2)T a)

)
J, (35)

respectively. Note that if all correlations (31)–(32) are
available then Step 4) can be computed inO(K 3) operations,
i.e, with a complexity that is independent of N . Besides, the
onlyO(K 3) operations in this step are those required to solve
the two linear systems

R(V,V)âα = R(V, x), (36)

H(f̃(d), âα)y = g(f̃(d), âα), (37)

where y is a K × 1 real vector. Actually, since these linear
systems are real and symmetric, each of them can be solved
in K 3/3+ 2K 2 flops using the Cholesky decomposition (see
Algs. 4.2.1 and 3.1.1 in [34]).

Let us now address the problem of computing the
correlations (31)–(32) with O(1) in N . The correlations
in (31) are independent of x and consist of trigonometric
sums for which closed-form formulas exist. Such formulas
are based on the product-to-sum identity of two cosines and
geometric series. More precisely, they can be expressed in
terms of the function

C(x, y; α, β) ≜
N−1∑
n=0

cos(2πnx + α) cos(2πny+ β)

=
1
2
Re{ej(α−β)S(x − y) + ej(α+β)S(x + y)}

(38)

7Here and in the sequel, we omit the dependence of the signature matrix
on f̃(d) to ease reading.
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and its derivatives, if a proper combination of the values 0
and −π/2 is assigned to α and β; here, S(z) ≜ (ej2πNz − 1)/
(ej2πz − 1) represents the closed-form expression of the
geometric sum 1 + ej2πz + . . . + ej2π (N−1)z. Note that, since
the expression of C(x, y; α, β) in (38) can be differentiated
in closed form in x and y to any order, the computational
cost of all the (x-free) correlations listed in (31) is O(K 2)
(i.e., it is O(1) in N ).
The x-dependent correlations listed in (32) can be accu-

rately interpolated withO(1) complexity from a few elements
of xF (see (27)). Therefore, we do not need to directly
compute the correlation

R(Vq, x) ≜ Vq(f̃(d))T x. (39)

according to its definition (the computational cost of this task
would be O(N )). To demonstrate this, we note that

[R(Vq, x)]2k−1:2k =

[
Re{Gq(f̃k ; x)}

−Im{Gq(f̃k ; x)}

]
, (40)

for 1 ≤ k ≤ K , where

Gq(f ; x) ≜
dq

df q

N−1∑
n=0

[x]n+1e−j2πnfT (41)

represents the qth derivative of the DTFT of x (with q ≥ 0).
Thus, the problem of efficiently evaluating R(Vq, x) is
equivalent to that of efficiently computing the DTFTG0(f̃ ; x)
and its derivatives. Since G0(f ; x) is a band-limited signal in
the f̃ variable and its samples are known with oversampling
factor8 b, an interpolation formula of the form

Gq(f ; x) ≈

P∑
α=−P

cq,α(u(f ))G0

(n(f ) − p
bN

; x
)

(42)

can be used for its evaluation for any q ≥ 0; here, P is
the truncation index, cq,α(u(f )) is the qth coefficient of the
interpolator and

n(f ) ≜ ⌊1/2 + bNf ⌋, u(f ) ≜ f − n(f )/(bN ), (43)

so that f = n(f )/(bN ) + u(f ) represents a mod-(1/(bN ))
decomposition of f (further details regarding the available
interpolation formulas and their coefficients can be found
in [35]). It is important to point out that
1) The 2P + 1 samples {G0((n(f ) − p)/(bN ); x); p =

−P, −P + 1, . . . ,P} appearing in the RHS of (42) are
known because they are elements of xF (with a proper
index mapping).

2) According to [35], the interpolation error due to the
use of (42) decreases exponentially with P. In practice,
if b = 2, selecting P between 3 and 6 is sufficient.

3) The evaluation of (42), including the coefficients
cq,α(u), requires a small number of flops if the so-called
barycentric interpolator is employed [35].

8Note that these samples are the elements of xF (see (27)).

4) The computation of the x-dependent correlations listed
in (32) require O(1) operations for each frequency f̄k ;
therefore, the overall computational cost is O(K ).

The computationally efficient implementation of the pro-
posed estimator, called the PN algorithm, as in the complex
case, is summarized in Algorithm 1.

V. NUMERICAL RESULTS
In this section, we compare, in terms of accuracy and
computational complexity, the PN algorithm with the meth-
ods proposed by Djukanović [36], Ye et al. [7], [37],
and Candan and Çelebi [38] (denoted Alg-D, Alg-Y, and
Alg-C, respectively, in the following). Moreover, we assess
the improvement in the estimation accuracy provided by
the expectation maximization (EM) algorithm [17] when
initialized by each of the above-mentioned algorithms.
Although Alg-D, Alg-Y and Alg-C are single frequency
estimators, they can also be used for the estimation of
multiple sinusoids through a serial cancellation procedure
consisting of the estimation of the dominant sinusoid
followed by its subtraction from the available signal
samples [39]. Two different scenarios were considered in
our computer simulations. In all of them, N = 1024
has been selected for the number of samples, and, for
any k , the phases of the K sinusoids have been randomly
selected over the interval [0, 2π ], each independently of the
other ones.

The specific features of the simulated scenarios can be
summarized as follows:
Scenario #1 (S1): This is characterized by K = 4, that is,

by four tones, whose amplitudes are a1 = 1, a2 = 0.782,
a3 = 0.873 and a4 = 0.687. The frequency fi of the ith
sinusoid is given by fi = f0 + 1fi (with i = 1, 2, 3
and 4), where f0 is uniformly distributed over the interval
[10/N , 30/N ], 1f1 = 0, 1f2 = 1.5/N , 1f3 = 1.5/N and
1f4 = 10.5/N .
Scenario #2 (S2): This is characterized by K = 4, that is,

by four tones, with an amplitude equal to one. Moreover, the
frequency f0 of the first tone is uniformly distributed over the
interval [10/N , 20/N ], whereas that of the kth (k = 1, 2, 3)
tone is fk = f0+d k/N . Here, d (with d = 1, 2, 3) is assumed
to be a non-negative parameter controlling the frequency
spacing between adjacent tones.

The signal-to-noise ratio (SNR) range [−10, 20] dB and
the following parameters were selected: a) oversampling
factor b = 2, interpolation order P = 6 and maximum
number of iterations Nit = 5 for the PN algorithm,
b) number of frequency bins employed in filtering equal
to 1 for Alg-D (this corresponds to selecting K = 0 in
that algorithm (see [36, Subsec. III.A]), c) overall number
of iterations Q = 3 for Alg-Y, d) oversampling factor
and overall number of iterations equal to 2 and 6, respec-
tively, for Alg-C, e) number of grid nodes equal to 11
and overall number of iterations equal to 3 for the EM
algorithm, and f) false-alarm probability equal to 10−5 in the
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Algorithm 1 Periodogram-Newton Algorithm
Input: vector x (22), detection threshold ϵ,
oversampling factor b, interpolation order P, and
maximum number of iterations Nit.

1 Initialization:
a) Compute the periodogram P(x) from the DFT of x
(see (26) and (27)) (O(N logN ) complexity).
b) Store the indices of the elements of P(x) with
amplitude exceeding ϵ in the set I (O(N ) complexity).
c) Find out the indices p in I such that [P(x)]p is a local
maximum of the vector P(x) and store their
corresponding frequencies (p− 1)/(bN ) in the vector f̂0
(O(K ) complexity).

2 Frequency and amplitude refinement:
for α = 0 to Nit do

d) Compute the refined estimate âα (see (15)) of the
amplitudes according to the methods described in
Sec. IV, that is asR(V,V)−1R(V, x) (O(K 3)
complexity).
e) Compute the refined estimate of the frequencies
as f̂α+1 = f̂α − µH−1(f̂(d)α , âα)g(f̂

(d)
α , âα); here, g

(29) and H (30) are computed according to the
method described in Sec. IV, that is as
2 JT (âα ⊙ (R(V1, x) −R(V1,V)âα)) and
−2 JT ((âα âTα ) ⊙R(V1,V1) − diag(âα ⊙

(R(V2, x) −R(V2,V)âα)))J, respectively (O(K 3)
complexity).
f) The Newton-type refinement of steps d) and e) is
stopped if no relevant increase in the value of the
cost function L̄(f̃; x) (25) is observed.

end
Set f̂ equal to f̂ᾱ+1.

3 Residual periodogram computation:
g) For each index p in I, compute the residual
periodogram sample as

∥R(V̄, x) −R(V̄,V)b∥
2
; (44)

here, b ≜ âᾱ (see d)) and

V̄ = V([p/(bN ); p/(bN )]).

Since the computational cost of (44) is O(K ) and
cardinality of I is K , the overall cost of this step is
O(K 2).
h) If any peak with amplitude greater than ϵ appears in
the residual periodogram, include it as a new element of
the vector f̂ and go to step d); otherwise, go to Output.

4 Output: 1) The estimates f̂ and â of f and a; 2) the
estimate K̂ of K as the cardinality of f̂.

computation of the noise threshold ϵ employed in frequency
detection.

Our computer simulations have allowed us to assess:
1) the root mean square error (RMSEf ) achieved in the

FIGURE 1. Root mean square error and CRLB versus SNR (first scenario).
Dashed red (solid blue) lines refer to the accuracy achieved when the EM
is (not) used. The PN, Alg-C, Alg-Y and Alg-D are considered. The CRLB is
also shown for comparison.

FIGURE 2. Average number of detected sinusoids versus SNR (first
scenario). The PN, Alg-C, Alg-Y and Alg-D are considered.

frequency estimation of the first (i.e., of the strongest) tone9;
2) the computational complexity in Megaflops10; and 3) the
average number of detected sinusoids. The aforementioned
performance metrics have been computed by running 104

Montecarlo simulations.
Some numerical results forS1 are shown in Figs. 1, 2, and 3.

From these results it can be inferred that: a) the PN algorithm
accuracy is very close to the Cramér Rao lower bound
(CRLB) in the SNR range [−4, 20] dB; b) the RMSEf
reduction achieved through the use of the EM algorithm is
significant for Alg-D, Alg-Y, and Alg-C; c) the RMSEf of
Alg-D is far from the CRLB for any value of SNR even
if the EM is employed; d) Alg-C and Alg-D (with EM
refinement) depart from the CRLB for an SNR greater than
10 dB; e) the average number of detected sinusoids for the
PN algorithm is equal to 4 if the SNR is greater than −2 dB,
whereas it is greater than 4 for the Alg-D, Alg-C, and Alg-Y

9This choice is motivated by the fact that, as K is unknown, the overall
number of tones detected by each of the considered algorithms is not
necessarily correct.

10The computational complexity of each algorithm has been accurately
evaluated by counting the number of flops executed in all its steps.
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FIGURE 3. Computational cost versus SNR (first scenario). Dashed red
(solid blue) lines refer to the case in which frequency estimates are (not)
refined by the EM algorithm. The PN, Alg-C, Alg-Y and Alg-D are
considered. The computational cost of FFT processing is also shown for
comparison.

FIGURE 4. Root mean square error and CRLB versus tone spacing (second
scenario). The PN, Alg-C, Alg-Y and Alg-D are considered. The CRLB is also
shown for comparison.

if the SNR exceeds 0 dB, 8 dB and 9 dB, respectively11;
f) the PN algorithm is more computationally efficient than
Alg-C, Alg-Y, and Alg-D for any SNR greater than the SNR
threshold (i.e., −2 dB); g) the computational cost added
by the EM refinement step is small with respect to the
overall computational cost of the algorithms themselves in
the considered scenario.

Some of the numerical results for S2 are presented in Fig. 4.
Our results show that: 1) all the considered algorithms depart
from the CRLB for d = 1; 2) the PN algorithm attains the
CRLB for d ≥ 1.5; 3) the RMSEf of Alg-C and Alg-Y is
approximately 3 dB far from the CRLB for 1.5 ≤ d ≤ 2.5;
4) the RMSEf of Alg-C, Alg-Y and Alg-D departs from the
CRLB for d = 3. The last result is due to the fact that, for
d = 3, the average number of estimated tones differs from its
true value (i.e., from 4). This entails an increase in the RMSEf
observed for the first tone.

These results lead to the conclusion that, in the presence
of multiple sinusoids, the PN algorithm achieves the best
performance-complexity trade-off.

11Note that as the SNR increases, the detection threshold ϵ decreases; this
implies that the error accumulation affecting the serial cancellation procedure
employed for the sequential detection of multiple tones can potentially lead
to the detection of false (i.e., ghost) spectral components.

VI. CONCLUSION
A novel estimator for multiple real tones has been developed.
It employs the periodogram to obtain initial coarse estimates
of multiple frequencies, and a combination of AP and a
Newton-type method to refine them. The main strength
of the proposed estimator is its low complexity. In fact,
once a single FFT (requiring O(N logN ) operations) is
computed, the refinement of the frequency estimates is
independent of the snapshot size and requires at most O(K 3)
operations. Our numerical results show that the proposed
method achieves a better performance-complexity trade-off
than other estimators available in the technical literature.

APPENDIX
COMPUTATION OF REAL PERIODOGRAM FROM
DISCRETE-TIME FOURIER TRANSFORM (DTFT)
In this Appendix, a method for the efficient computation of
the periodogram P(x) (26) from xF (27) is derived. First of
all, let c(f ; x) denote the Discrete-Time Fourier Transform
(DTFT) of x, i.e.,

c(f ; x) ≜
N−1∑
n=0

[x]n+1e−j2πnf . (45)

Based on (45), it can be shown that (see (26) and (27))

[xF ]p+1 = c(f ; x) (46)

and

[P(x)]p+1 =
1
2
L̄
(
f ; x

)
(47)

for f = p/(bN ). If we set f̃ = f in (25), where f denotes an
arbitrary scalar frequency, L̄(f ; x) (25) represents the square
norm of the orthogonal projection of x onto the span of
V(f (d)) (23). In this case, the matrixV(f (d)) has the following
properties: a) its size is N × 2; b) its first and second column
are formed by cosines and sines, respectively, all at the same
frequency f ; c) it has the same column span as the complex
matrix Vc([f ; −f ]), defined in (5). Thus, if we define
γ ≜ [f ; −f ], L(f ; x) can be computed by projecting x onto
the span of Vc(γ ), i.e. as

L
(
f ; x

)
= xTPc(γ )x

= xTVc(γ )(Vc(γ )HVc(γ ))−1Vc(γ )Hx. (48)

Note that: a) the term Vc(γ )Hx appearing in the RHS of (48)
can be expressed as (see (45))

Vc(γ )Hx =

(
c(f ; x)
c(f ; x)∗

)
=

(
1 j
1 −j

)
·

(
cR(f ; x)
cI (f ; x)

)
, (49)

if notation 5) is adopted; b) the product Vc(γ )HVc(γ ) can be
expressed as

Vc(γ )HVc(γ ) =

(
N h(f )

h(f )∗ N

)
, (50)
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where

h(f ) ≜
N−1∑
n=0

e−j4πnf = Ne−j2π(N−1)f sinc(2Nf )
sinc(2f )

. (51)

From (50) it is easily inferred that

(Vc(γ )HVc(γ ))−1
=

1
N 2 − |h(f )|2

(
N −h(f )

−h(f )∗ N

)
. (52)

Finally, substituting (49), (51) and (52) into (48) and
expanding the matrix products yields

L
(
f ; x

)
=

2
N 2 − hR(f )2 − hI (f )2

·
(
cR(f ; x), cI (f ; x)

)
·

(
−hR(f ) + N −hI (f )

−hI (f ) hR(f ) + N

)
·

(
cR(f ; x)
cI (f ; x)

)
. (53)

The last formula allows us to compute L̄(f ; x) from the
DTFT c(f ; x) and, consequently, to obtain P(x) from xF ;
in doing so, we set f = p/(bN ), with p = 0, 1, . . . ,
bN/2−1. □
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