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Computer Vision for Gait Assessment in
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Absiract— Assessing the motor impairments of
individuals with neurological disorders holds significant
importance in clinical practice. Currently, these clinical
assessments are time-intensive and depend on qualitative
scales administered by trained healthcare professionals at
the clinic. These evaluations provide only coarse snapshots
of a person’s abilities, failing to track quantitatively the
detail and minutiae of recovery over time. To overcome
these limitations, we introduce a novel machine learning
approach that can be administered anywhere including
home. It leverages a spatial-temporal graph convolutional
network (STGCN) to extract motion characteristics from
pose data obtained from monocular video captured by
portable devices like smartphones and tablets. We propose
an end-to-end model, achieving an accuracy rate of approx-
imately 76.6% in assessing children with Cerebral Palsy
(CP) using the Gross Motor Function Classification System
(GMFCS). This represents a 5% improvement in accuracy
compared to the current state-of-the-art techniques
and demonstrates strong agreement with professional
assessments, as indicated by the weighted Cohen’s Kappa
(kpw = 0.733). In addition, we introduce the use of metric
learning through triplet loss and self-supervised training to
better handle situations with a limited number of training
samples and enable confidence estimation. Setting a
confidence threshold at 0.95, we attain an impressive
estimation accuracy of 88%. Notably, our method can be
efficiently implemented on a wide range of mobile devices,
providing real-time or near real-time results.
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[. INTRODUCTION

HE assessment of motor function in individuals affected

by a range of diseases, particularly those with neurolog-
ical origins, plays a pivotal role in modern healthcare. Gross
and fine motor skills, which encompass daily activities related
to mobility such as walking, balance, postural control, and to
arm/hand control such as reaching to and manipulating objects,
are integral to an individual’s independence and quality of
life. Various neurological disorders, including conditions like
Cerebral Palsy (CP), Metachromatic Leukodystrophy, Stroke,
and Parkinson’s, may significantly impair an individual’s
motor control and coordination abilities. The importance of
assessing motor abilities and capabilities via standardized
clinical assessments spanning the World Health Organization
(WHO) International Classification of Functioning, Disability,
and Health (ICF) cannot be overstated. The ICF, developed by
the WHO, provides a unified framework for describing health
and health-related domains. These domains are categorized
into two lists: 1) body functions and structures, such as muscle
power and brain function, and 2) activities and participation,
like task execution and involvement in life situations. As a
research tool, the ICF helps measure patient outcomes and
categorize quality of life or environmental factors affecting
performance.

The Gross Motor Function Classification System (GMFCS)
is a widely used functional assessment tool for children
with CP, comprising five levels that range from those who
can independently walk or run on all surfaces (level I) to
those with severely limited mobility requiring assistive devices
(level V) [2], as summarized in Table 1. Typically, GMFCS
demonstrates good performance in terms of both inter-rater
reliability, which concerns agreements in assessments between
different evaluators, and intra-rater reliability, which pertains
to consistency in evaluations by the same assessor over
time [3], [4]. However, being a qualitative and rudimentary
nominal scale, the GMFCS presents challenges when used
by non-professionals. Previous research has shown that the
inter-rater agreement between parents and therapists is much
lower than the agreement between two therapists, and parents
tend to assign a higher GMFCS level to the patients [5],
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TABLE |
DESCRIPTION OF THE 5 GMFCS LEVELS

Level

Description

- Can walk indoors and outdoors and climb stairs without using their hands for support.

I - Can run and jump.

- Has decreased speed, balance, and coordination.

11

- Can walk indoors and outdoors and climb stairs using a railing.
- Experiences difficulty with uneven surfaces, inclines, or while in crowds.
- Can minimally run or jump.

1

- Walks with assistive mobility devices indoors and outdoors on level surfaces.
- May be able to climb stairs using a railing.
- May propel a manual wheelchair; may require assistance for long distances or uneven surfaces.

- Walking ability is severely limited, even with assistive devices.
- Uses a wheelchair most of the time and may propel their own power wheelchair.
- May participate in standing transfers.

- Has physical impairments that restrict voluntary movement control and the ability to maintain head and neck position against gravity.
- Experiences impairment in all areas of motor function.
- Can’t sit or stand independently, even with adaptive equipment.
- Can’t independently walk, though may be able to use powered mobility devices.

(o)
H %
e B N
[ T i
4 ~ 7/

The process is carried
out in hospitals

Experienced professionals
required for the assessment

Subjective
Manual Scoring

GMFCS
Level

%

Conventional Manual GMFCS Evaluation

Ay -

AL |-| L
Can be perform at the
convenience of home

~
[ a
ﬂ ~ 7
Parents take videos of
the patient child

Proposed Al-based GMFCS Evaluation

Fig. 1. The Al-based GMFCS assessment is quick, cost-effective, and
convenient, enabling detailed patient monitoring.

Objective Al
Algorithm Scoring

[6]. In some studies, the inter-rater variability can be as
high as k7, = 0.64 between a clinical physiotherapist and a
researcher, and k;,, = 0.57 between a clinical physiotherapist
and a parent/guardian [7]. Consequently, GMFCS assessments
usually require clinic visits, where clinical evaluators observe
and categorize a child’s movement abilities by instructing them
to perform various physical exercises. The assessment session
for the GMFCS and other scales can be time-consuming
and must be repeated regularly to assess the effectiveness of
interventions, placing a considerable time burden on families
or caregivers throughout the course of treatment.

In this study, we introduce an innovative approach that uses
machine learning and computer vision to assess motor func-
tion from monocular videos of patients walking or running,
recorded with consumer-level devices. For example, parents of
children with Cerebral Palsy can easily capture a video of their
child’s gait, and our program can promptly evaluate GMFCS
levels on their personal devices. Compared to conventional
methods, our approach offers significant advantages: it allows
evaluations outside hospital settings for greater convenience,
reduces inter-rater and intra-rater variability for consis-
tent assessments, and enables continuous and fine-grained
monitoring—features not possible with traditional methods.

Computer vision techniques have made significant advance-
ments in recent years, leading to growing interest in their
application for patient movement analysis. The majority of
these initial studies primarily concentrate on early prediction
of Cerebral Palsy. These investigations have harnessed the

power of machine learning techniques, alongside the incor-
poration of hand-crafted features [8], [9], [10], [11], with
limited attention given to GMFCS estimation. A notable
exception is the work by Kidziniski et al. [12]. Their approach
involved the use of a simple end-to-end 1D convolutional
neural network, which operated on time-series data derived
from expert-defined keypoints and hand-crafted features. Our
proposed method represents a significant step forward in this
direction. We adopt a more advanced network architecture,
Spatial-Temporal Graph Convolutional Networks (STGCN),
to encode human movements. Furthermore, our approach
employs a data-driven method that is not reliant on expert-
defined features, thereby effectively addressing the limitations
associated with traditional feature-based engineering.
Healthcare data limitations, such as data scarcity, privacy
issues, and quality challenges, hinder the full potential of
machine learning in the sector, often leading to overfitted mod-
els that perform poorly in testing. To address this, we propose a
metric learning approach using triplet loss and consistency loss
to develop a robust movement encoder. This enhanced encoder
is crucial for our GMFCS level and confidence estimation
strategies. Our results show that this method significantly
outperforms end-to-end models and provides confidence esti-
mates, addressing uncertainty in healthcare data analysis [13].
We can summarize our innovative contributions as follows:

o We introduce the use of STGCN to encode sequences of
human pose data for GMFCS assessment, and perform a
head-to-head comparison with the current state-of-the-art
approach.

o We introduce a metric learning approach that combines
triplet loss with self-supervised learning to train a robust
STGCN movement encoder, based on which we further
propose methods for retrieval-based GMFCS level and
confidence estimation.

o We release the code for academic non-commercial use.!

I[I. METHODS
A. Overview

Our method, illustrated in Fig. 2, comprises two stages: first
we extract a sequence of poses from the input video, and

1 https://github.com/the771ab/gmfcs_stgen
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Fig. 2. Overview of our proposed method.

then we employ this time-series of poses as the input for the
second-stage neural network to encode the movement.

To obtain poses from the input video, we can employ estab-
lished off-the-shelf methods known for their effectiveness. For
example, we can use OpenPose [14], which is a bottom-up
approach where all human joints present in the image are first
detected, and then the detected joints are connected to form
skeletons for each individual within the scene. The human
skeleton data in the open dataset that we used in this research
is extracted with OpenPose.

After extracting the poses, we have a collection of keypoints
denoted as I € RT*V>*3 where T signifies the total number
of timestamps, and V represents the count of keypoints
within a human pose. Each keypoint is characterized by a
3-dimensional vector that encompasses the pixel coordinates
for x and y, along with the confidence score for the keypoint’s
detection. The central innovation in this paper is focused on
the second stage, which we introduce in the remaining part of
this section.

B. Spatial-Temporal Graph Convolutional Networks

Since its first adoption in Human Action Recognition
(HAR) [15], STGCN has attracted significant research interest
in the HAR community. STGCN, along with its variants,
combines principles from graph theory and convolutional
neural networks (CNNs), where it extracts spatial features
based on graph topology with graph convolutional networks
(GCN), modeling the spatial relationship between different
joints, and temporal information with temporal convolutional
networks (TCN) which encodes the movement features. They
are particularly well-suited for tasks like action recognition in
videos, where the spatial position of body joints or objects and
the temporal sequence of actions needs to be analyzed. Note
that we also adopt a residual connection, except for the first
block, with a possible convolutional operation to change the
channel width when the input and output feature dimensions
are different. The matrix [ that represents the sequence of key-
points is directly used as the input of the first STGCN block:

X1 =TCNo(GCNy(I)) (1)

and for an intermediate block with an input X; € RTixVxCi

the operation in each STGCN block can be represented as:
Xit+1 = TCN;(GCN;(X;)) + RES; (X)) 2

where i € [I, N — 1], X;;1 € RI+1*VxCit1 and RES is a
1 x 1 convolutional operation when C;+; # C;. For certain
blocks we can apply a maxpooling with a size of 2 and a
stride of 2 along the time dimension, leading to 7;4; being
halved compared to T;.

Movement
Feature

Fig. 3. The architecture of end-to-end GMFCS assessment model.

From different variations of STGCN, we choose to use
a GCN with trainable adjacent matrix, and a multi-branch
TCN as introduced in STGCN++ [16]. Following this pattern,
we alternately extract spatial and temporal features. Suppose
we have B blocks, we can get an intermediate feature rep-
resentation Xz € RTB*XVXCB where Ty is the number of
timestamps after temporal convolution, and Cp is the dimen-
sion of latent feature. We further apply average pooling on
both temporal and spatial dimensions, and we can get a latent
representation of the movement in the video as E € R¢5.

C. End-to-End Model

The most straightforward approach for GMFCS level assess-
ment involves employing an end-to-end architecture, as we
proposed in our conference paper [1], which serves as a
head-to-head comparison of motion encoder to the previous
state-of-the-art [12]. In this architecture, linear layers are
utilized to map the latent feature to multiple neurons, each
corresponding to a GMFCS level, as depicted in Fig. 3.
A softmax activation function is applied to the output layer,
and the GMFCS level with the highest probability is selected
as the predicted level. In our proposed model, we employ
two linear layers to map the latent feature to the output layer,
which consists of 4 neurons representing the 4 GMFCS Level
(GMECS level V is self evident and excluded from this work).
This mapping process can be expressed as follows:

Your = softmax(Wp(ReLU(WnE + b)) +bp)  (3)

where W;; and W, represent the weight matrices for the first
and second linear layers, respectively. b;; and bjp are the
bias terms associated with the linear layers. And finally, the
predicted GMFCS level is the argmax of y,,;. The end-to-end
model can be trained with cross-entropy loss.

Transfer learning has been shown to be particularly effective
in scenarios where the training dataset is limited in size. Given
the limited availability of medical data, we employ transfer
learning by leveraging a pre-trained STGCN model from an
action recognition dataset known as “NTU RGB—+D 120” [17].
We adapt it and discard the original classification layers
from the pre-trained model, which were designed for action
recognition, and substitute them with our own classification
module.

D. Metric Learning With Triplet Loss and Self-Supervised
Training

In healthcare applications, limited sample sizes, especially
those professionally labeled, are common. This often leads to
overfitting and reduced testing performance, as demonstrated
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Fig. 4. The workflow of our proposed method.

in Section III. To improve performance with such limitations,
we further improve the basic end-to-end model by employing
Metric Learning for training the STGCN encoder and using an
instance-retrieval based classification method. The idea behind
metric learning is to ensure that embedding of samples from
different GMFCS levels are far apart in the latent space, while
embedding of samples from the same GMFCS level are closer.
This encourages the extraction of distinct features for clear
movement identification and classification. Our metric learning
framework is illustrated in Fig. 4.

We use a combination of triplet loss and consistency loss
to train the network, with a weight of 1:1 following:

L= »Ctriplet + £consistency (4)

Triplet loss serves to compel the network to extract distinct
features for samples from different GMFCS Levels while
ensuring similar features for samples from the same level.
To implement triplet loss, we create triplets comprising an
anchor sample, a positive sample (another sample with the
same GMFCS level), and a negative sample (with a different
GMEFCS level). These triplets are encoded using the STGCN
backbone as E,, E,, and E,. The triplet loss can be expressed
as follows:

Liripter = max (0, [|[Ea — Epll2 = |[Eqa — Epll2 +m)  (5)

Here, m represents the margin we aim to establish between the
distances of positive pairs and negative pairs within a specific
triplet. In other words, for a given triplet, if the distance
between the negative pairs is not greater than the distance
between the positive pairs by a margin of m, this pair is
penalized and contributes to the update of the STGCN encoder
weights through back-propagation. It’s important to note that
the margin is important for effective network training. Without
it, the encoder might simply produce identical embedding for
all input samples to meet the constraints.

On the other hand, observing movement introduces aleatory
uncertainty [18], stemming from camera position, orientation,
occasional occlusion, key point mis-detection, etc. To enhance
the robustness of the feature encoder, we adopt a loss function
named Consistency Loss, which focuses on minimizing the
feature distance between a pose sequence and its augmented
version.

For instance, if we have an original sample I,,;, we apply a
random data augmentation to produce I,,,. We then feed both

samples into the network to obtain their latent representations,
Eori and Eqyug. The adopted consistency loss is expressed as
follows:

Econxistency =max (0, || Eori — Eaug”Z —€) 6)

where € is an empirical value to allow a feature distance
threshold between the original sample and its augmented
version. Here we use an € value of 0.1.

We incorporate the following three data augmentation
techniques:

¢ A random Shear Transformation, which simulates varia-
tions in camera position and orientation.

o A Mirror Transformation, involving the swapping of
keypoints between the left and right sides.

o A Masking operation, randomly concealing one of the
keypoints from the upper body and its neighboring key-
points, simulating the scenario of missing body part
detection.

Each of the manipulations is applied with a 50% chance. It’s
important to note that the augmented sample preserves the
original sample movement. Ideally, it would be encoded into
the exact same embedding as the original sample. However
this can be too demanding for the encoder because the input is
different. Therefore, we introduce a feature distance threshold
to relax slightly this constraint and promoting a more stable
training, as depicted in Equation 6.

E. GMFCS Level and Confidence Estimation

In our GMFCS level estimation, we employ a
retrieval-based approach and estimate confidence based
on the retrieved embedding and their corresponding labels.
During testing, the training samples serve as the support set.
We calculate the embedding for each training sample and
store the mapping between embeddings and their labels.

For a given test video, we segment it into samples. With
each testing sample, we compute a latent embedding using the
trained STGCN encoder. Subsequently, we retrieve the nearest
k embedding from the support set, denoted as N = {n;|i =
1,2, ..., k}, along with their corresponding labels, represented
as L = {l;li = 1,2,...,k}, from the support set. We then
calculate the distances between the testing sample and each
of the embedding in N, resulting in D = {d;|i = 1,2, ..., k}.

Using these distances, we compute the probability of the
testing sample belonging to different GMFCS levels, which
further leads to an overall GMFCS level and a confidence
estimation for the entire video input. The complete procedure
is outlined in Algorithm 1.

There are a few cases where we aim to assign low
confidence during the final voting process. The first cate-
gory comprises samples with Out-of-Distribution uncertainty,
meaning the movement observed in the testing sample has
never been encountered in the training set. This is particularly
likely when the training set is small, and it’s indicated by a
relatively large distance between the test embedding and the
nearest embedding in the support set. The second category
includes testing samples that lack sufficient information to
clearly determine their GMFCS level. For instance, samples
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Algorithm 1 GMFCS Level and Confidence Estimation
1: test_embeddings <— ENCODER(test_samples)
2: sample_results <« []
3: for all test_embedding in test_embeddings do
4: N <« GETSUPPORTSAMPLES(test_embedding)
5: L < GETSUPPORTLABELS(N)
6: D <« GETSUPPORTDISTANCES(N)
7
8
9

P < GETLABELPROBS(D, L)
: Append P to sample_results
: end for
. label, confidence <~
DENCE(sample_results)

GETLABELANDCONFI-

—_
(=]

containing the movement of a patient slowly turning around
may pertain to either Level I or Level II patients, and a single
sample does not provide enough information for a definitive
decision. In terms of the latent feature space, the closest
embedding may belong to both Level I and Level II, both
with small distances, prompting us to assign low confidence
to these types of samples. Additionally, a patient’s gross motor
function ability might lie between two GMFCS levels, making
it challenging to provide a confident estimation of the patient’s
specific GMFCS Level.

In our proposed approach, as described in Algorithm 1,
we employ the following equations to calculate the probability
that a sample falls into each GMFCS level, represented as

P = [p1, p2, p3, p4l:

1
————, 3di,nj; €N
mean(d; ;) . (7

0, otherwise

pj=

where mean(d; ;) is the average distance between the testing
embedding and the embedding in N that belongs to GMFCS
Level j. After that we perform a softmax operation on P to
get the probability:

P < softmax(P) ®)

After we get the probability vector P for each testing sample,
we perform the final GMFCS level and confidence estimation
following Eq. 9 and Eq. 10. Suppose we have a total of M
testing samples, we have:

M
GMFCS = argmax »_ pjm ©)
J m=1

where p; , represents the confidence of label j for the m'h
testing sample. Furthermore, the confidence of the video can
be calculated as:

Z,?L] PGMFCS,m
4 M
Zj=1 2 m=1 Pj.m

Note that the confidence here is a manually defined metric,
and it does not directly reflect the probability of the GMFCS
estimation being correct, e.g., a confidence of 0.75 does not
indicate that there is a 75% chance of the current video being
correctly classified.

Confidence = (10)

We have the option to reject the GMFCS estimation if the
confidence is low. In such cases, the video can be forwarded
to experts for manual labeling, contributing to continuous
learning. By retaining only the estimations with high confi-
dence, we enhance the accuracy of GMFCS level estimation,
as illustrated in Section III.

I1l. EVALUATION

We initiate the evaluation by assessing the end-to-end
model, which was proposed in our original conference
paper [1]. This evaluation mainly compares the STGCN
encoder to the IDCNN proposed in the previous state-of-the-
art [12]. We further delve into ablation studies concerning
transfer learning policies, and explore the correlation between
training set size and the performance of the end-to-end model,
setting the stage for subsequent experiments on metric learning
and confidence estimations. Additionally, we discuss instances
of error cases encountered during the evaluations. Finally,
we evaluate the on-device inference speed of all the proposed
methods.

A. Dataset Preparation

We use a publicly available dataset from Kidzinski et. al.
[12] for the evaluations. This dataset contains videos from CP
youngsters collected in a clinical setting with their GMFCS
level assessed by health care professionals (ground truth).
Average age of the youngsters is 11 y.o. (s.d. = 5.9),
with average height of 133cm (s.d. = 22), and weight of
34kg (s.d. = 17). The original paper lacks some details on
how to reproduce the exact training, validation and testing
split. As we cannot get the same dataset split running their
provided code, we use our own protocol for pre-processing.

We use data with GMFCS levels I to IV, because children at
level V cannot move by themselves. We check all the skeleton
videos and manually remove 85 videos that contain more
than one person, resulting in 1,450 videos from 861 patients.
We split the dataset into training, validation and testing.
We use stratified sampling and sample each GMFCS level
separately. For each GMFCS score, we split the dataset using
the patient’s ID with ratio of 7:1:2, as we want a patient,
labeled with a specific level, to appear in only one of the
training, validation, and testing dataset. The detailed ground
truth GMFCS level distribution of the dataset is shown in
Fig. 5.

B. Method Implementation

We implemented our GMFCS assessment model and met-
ric learning approach using PyTorch, integrating code and
a pre-trained STGCN model from Pyskl [16]. The train-
ing involves initially keeping the STGCN backbone fixed
for 3 epochs while training the classification layers, then
fine-tuning the last 2 STGCN blocks. We used the Adam
optimizer with a learning rate of le-4 and a weight decay
of 5e-5, running the model for 10 epochs with a batch size
of 128. Model selection was based on the highest validation
accuracy, using cross-entropy loss.
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In the context of metric learning, we incorporate the
open-source library pytorch-metric-learning [19] to execute
the triplet loss calculation and online triplet mining. Online
triplet mining dynamically selects triplets during the training
process, generating triplets within the current batch. This
method avoids the need for precomputed triplets, leading to
better adaptability, efficiency, and potentially improved model
performance compared to fixed triplets used in offline mining.

Our triplet loss function employs a margin of m = 0.6, and
we utilize € = 0.1 in the consistency loss. The model under-
goes training for 40 epochs, with a batch size set at 128 and a
learning rate of le-4. While we unfreeze the final 2 STGCN
blocks for fine-tuning in the end-to-end model, we unfreeze
the last 6 STGCN blocks from epoch 0 in the metric learning.
For model selection, we adopt a straightforward approach,
which entails using the label of the support embedding closest
to the validation sample embedding as an estimate of the
validation sample’s label. The best model is chosen based
on its performance in terms of validation accuracy. In the
retrieval-based method for GMFCS assessment, we retrieve
k = 20 nearest neighbors for each testing sample.

C. End-to-End Model Evaluation

We assess the efficacy of our proposed end-to-end approach
on the testing dataset, wherein each sample undergoes clas-
sification, and the final outcome is determined through a
majority voting mechanism. To gauge the performance of
our method, we conduct a comparative analysis against the
previous state-of-the-art approach [12]. The previous method
involves segregating the displacement of 8 joints and an
additional 8 hand-crafted features into distinct channels within
the time-series data. It then employs a 1D Convolutional
Neural Network for subsequent temporal feature extraction.
A key distinction between our approach and the prior method
lies in our avoidance of manual feature selection; instead,
we leverage spatial constraints, in the form of graph topology,
during training to amalgamate information from various joints.

For the sake of a fair and objective comparison to the
baseline [12], we execute their official code directly on our
dataset split, making use of their provided pre-processing,
training, and testing pipelines. Our results with their method
surpass the figures reported in their original paper, which
had indicated an accuracy of 66%. To mitigate the impact
of randomness inherent in network training, we run each
method 5 times. The prior state-of-the-art method manages
to attain an accuracy of 71.61% (s.d. 0.76%), whereas our
method demonstrates better performance with an accuracy of

Baseline Ours

PN 6.36% 0.00% 0.00% — RN 7.64% 0.69%  0.00%

15.25% 0.00%

0.00%

2.12% REEPEI

1.27%

2.43%

Predicted GMFCS
Predicted GMFCS

>- 0.00% 0.00% 0.00% 0.00%

0.00%

=>- 0.00% 0.35% 0.35%
i i N i i i v
True GMFCS True GMFCS
Accuracy: 71.19%
Weighted Kappa: 0.651

Accuracy: 76.74%
Weighted Kappa: 0.734

Fig. 6. Our proposed method outperforms the previous method in
terms of accuracy and linear weighted Cohen’s Kappa, which is used
to measure the agreement of two voters, i.e., clinician and Al algorithm.

76.60% (s.d.0.35%) and an average kj,, = 0.733. To facilitate
a more comprehensive analysis, we select one model from
each approach and compare their outcomes in Figure 6.

As can be seen in the results, our proposed approach has
an accuracy of around 5% higher than the previous approach.
According to the confusion matrix, the errors mostly happen
between Level I and Level II. This is because GMFCS Level
I and Level II are inherently similar, and it’s very challenging
for machine learning methods to learn subtle differences.
Furthermore, the ground truth labels provided by healthcare
professionals could be sub-optimal, as these two levels could
be confusing to human raters as well. As for the two methods
compared here, our proposed approach correctly classifies
75.3% of the Level I and Level II samples, while the baseline
approach has an accuracy of 69.1%. We believe that this is
due to the much stronger representation ability of our proposed
model, which captures more subtle features in these two levels.
As a result, our method could possibly perform even better if
the quality and quantity of the training dataset further improve.
Also, we can see that both models struggle to correctly classify
Level IV samples, as we do not have enough Level IV training
data. Also, our method has a linear weighted Kappa of 0.734,
a significant improvement over the previous method with a
Kappa of 0.651, demonstrating a substantial agreement with
the ground truth labels. This proves that our proposed method
has great potential for accurate GMFCS Level estimation.

D. Ablation Study on Transfer Learning of End-to-End
Model

For a more comprehensive understanding of our proposed
method, we conducted an ablation study, where we compare
the following 4 methods: (1) “Ours” refers to our proposed
transfer learning policy introduced in Section II, where we
only fine-tune the last 2 STGCN blocks of the pre-trained
model; (2) “Fixed”, where the weights of the backbone
STGCN remained fixed after loading the pre-trained model;
(3) “All”, where all the blocks of the backbone STGCN were
fully unfrozen for fine-tuning; (4) “No-Pre”, where the weights
of the backbone STGCN were trained from scratch using the
CP dataset. The results are presented in Fig. 7.

Notably, when we kept the STGCN weights fixed to the
pre-trained values, the accuracy significantly deteriorated. This
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Fig. 8. Impact of training set size on end-to-end model accuracy.

decline may be attributed to the domain differences between
action recognition and GMFCS scoring. Conversely, when all
STGCN blocks were made trainable, the accuracy was only
marginally inferior to our proposed training method, indicating
the robustness of our approach to the degree of STGCN block
fine-tuning. However, if we didn’t load the pre-trained weights
and trained the model from scratch, the performance suffered
significantly, underscoring the pivotal role of transfer learning
in our case.

E. Impact of Training Set Size on End-to-End Model
Accuracy

As demonstrated in the previous section, transfer learning
plays a critical role in mitigating overfitting and improving
model performance during testing. In this section, we delve
deeper into evaluating the influence of training data size on
the testing accuracy of the end-to-end model. We conduct a
stratified sampling of our training set, selecting 10%, 20%,
... 90% of the original training data. We compare the testing
accuracy of training from scratch and using transfer learning.
To ensure robust results, each experiment with a specific
training set size is repeated 5 times, both for sampling and
training. The findings are summarized in Fig. 8.

As evident in the outcomes, when considering both trans-
fer learning and training from the ground up, the accuracy
demonstrates an upward trajectory as the volume of training
data increases. Nevertheless, the disparity in accuracy between
these two approaches widens notably when dealing with a
smaller quantity of training data. Specifically, when working
with only 10% of the original training data, employing transfer
learning still yields testing accuracy in the range of 65% to
70%, whereas starting from scratch results in a significantly
lower accuracy range of approximately 40% to 45%, akin to

76%
74%
72%

70%

68%

Accuracy

E2E T T+C
(std=127)  (std=0.95)  (std=1.19)

T+C+U
(std=1.75)

Fig. 9. With 10% of the original training dataset size, metric learning
methods are able to achieve significant better performance than the end-
to-end model.

random guessing. These results further underscore the pivotal
role of transfer learning in medical applications, particularly
in scenarios where the availability of labeled data is limited.

F. Metric Learning Evaluation

We further evaluate the proposed metric learning and
retrieval-based GMFCS assessment approach, as a possible
solution to the impact of limited amount of training data.
We first conduct an experiment, where we sampled 10% of
the original training set with stratified sampling, and repeat the
training of each method 5 times. When it comes to medical
data, it could also be highly possible that we would have a
larger amount of unlabeled data, and we also take this into
consideration. We compare the following 4 methods here:

1) End-to-end model. (E2E)

2) Metric Learning with Triplet Loss Only. (T)

3) Metric Learning with Triplet Loss and Consistency Loss.

(T+C)

4) Metric Learning with Triplet Loss and Consistency
Loss. Using the remaining 90% of training set data as
unlabeled data. (T4+C+U)

For Method 4), when calculating consistency loss, we keep
the same batch size as in 3), while randomly sample the batch
from the whole training set instead of from the 10% as in
triplet loss. The results of this experiment is shown in Fig. 9.
Note that to have a fair comparison, for T, T4+C and T4C+U
methods, we adopt a simple labeling approach, where for each
testing sample, we assign a GMFCS level based on majority
voting of 5 nearest neighbors, and the final video label is
estimated using the majority voting of sample labels.

As observed in the figure, training the end-to-end model
directly on a training set with only 10% of the original size
results in suboptimal performance, with an average accuracy
below 70%. However, the inclusion of metric learning methods
significantly improves the results. We conducted Welch’s t-
test [20] on pairs of the results, as summarized in TABLE II.

The t-test analysis reveals that models trained with the triplet
loss exhibit a relatively high confidence in outperforming the
end-to-end models. Importantly, we have strong confidence
(with p < 0.01) that models trained with the triplet + consis-
tency loss, whether utilizing the remaining unlabeled data or
not, consistently surpass end-to-end models and models trained
with only the triplet loss. The inclusion of the remaining 90%
unlabeled data shows potential for further enhancing model
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TABLE I
T-TEST RESULTS FOR METRIC LEARNING EVALUATION

Comparison P-Value

E2E vs. T 0.068334

E2E vs. T+C 0.001800

E2E vs. T+C+U  0.001734

T vs. T+C 0.010154

T vs. T+C+U 0.008095

T+C vs. T+C+U  0.179590

performance. However, given the p-value’s limited confidence
and the real-world constraints regarding the availability of
unlabeled data, this aspect warrants future exploration.

G. Retrieval-Based Classification and Confidence
Estimation Evaluation

We further conduct the evaluation of the Retrieval-based
Classification and Confidence Estimation method, employing
a model trained with only 10% of the original training data
set size using triplet loss and consistency loss. Following the
approach outlined in Section II, we compute GMFCS label
predictions and their corresponding confidence estimates for
each testing video. The confidence distribution for correct
predictions and incorrect predictions is illustrated in Fig. 10.

As depicted in the illustration, erroneous predictions typi-
cally exhibit reduced confidence and seem to follow a more
evenly spread distribution when contrasted with accurate
predictions. On the other hand, the majority of accurate pre-
dictions boast notably high confidence levels. These disparities
in distribution open up avenues for establishing specific con-
fidence thresholds that could potentially enhance the accuracy
of GMFCS assessments.

In a follow-up experiment, we vary the confidence thresh-
olds and assess how the accuracy and the proportion of
confident estimations change in response to different threshold
values. The outcomes of this experiment are presented in
Fig. 11.

The results illustrate a clear and notable trend. When the
confidence threshold is set below 0.4, all GMFCS Level
estimations are deemed confident, resulting in an accuracy of
76.04%, which is already quite good, as it closely approaches
the performance of the end-to-end model trained with a
full-sized training set. As the confidence threshold is increased
to accept fewer GMFCS Level predictions, accuracy rises.
It reaches 88% when the confidence threshold is set at 0.95,
where approximately 34.72% of the testing video GMFCS
estimations are considered confident. In practical applications,
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Fig. 11. The change of accuracy and percentage of confident samples
with different confidence thresholds.

these confidence thresholds can be adjusted to meet specific
requirements.

H. Visualization and Error Cases Study

To better grasp the assignment of confidence scores to
testing videos, we visualize the support and testing sam-
ple embeddings in a lower-dimensional latent space using
t-SNE [21], a commonly employed dimensionality reduction
technique for data visualization. Here the t-SNE reduces the
embedding dimension to 2 for visual representation, available
in Fig. 12.

The visualization provides valuable insights. For GMFCS
estimations with high confidence, the embeddings of the
testing samples are clearly located within one of the distinct
clusters representing Level I to IV (e.g. Fig. 12 (a)). Con-
versely, when the testing embedding occupy a space between
two clusters or span across different clusters, the final GMFCS
estimation is associated with lower confidence. In such cases,
correct predictions can still occur, as seen in Fig. 12 (b).
However, there is also the possibility of an incorrect prediction,
as demonstrated in Fig. 12 (c), where some of the testing
samples are within the Level I cluster and others within the
Level II cluster. This observation may suggest that the patient’s
gross motor function falls somewhere between Level I and II.

Fig. 12 (d) shows a scenario where we have a high confi-
dence on a wrong GMFCS Level estimation. We argue that
this could due to two reasons:

« Inaccurate Ground Truth Labeling: The ground truth
labels are not always perfectly accurate. As discussed
earlier, these labels are provided by healthcare profession-
als, and there can be inherent intra-rater and inter-rater
variability. Consequently, a video labeled as Level II
might actually correspond to Level 1.

« Overfitting to Spurious Features: Overfitting to cer-
tain non-representative features is another possibility,
especially when dealing with a limited training dataset.
This issue may potentially be mitigated through lifelong
learning and continuous model refinement.

In real-world scenarios, a pragmatic strategy involves send-
ing videos with low-confidence GMFCS estimations to health-
care professionals for manual labeling and cross-verifying
results from confident estimations. This iterative process accu-
mulates valuable data for fine-tuning the encoder, strength-
ening its robustness and enhancing the GMFCS estimation
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TABLE IlI
RUNNING TIME ON MOBILE DEVICES AND LAPTOPS (MS)
Device Platform CPU GPU PoseNet STGCN_E2E STGCN_B  Sample Video
Samsung Galaxy ZFlip 5 Android Snapdragon 8.2 Adreno 740 373 106.9 106.7 6.6 0.03
Samsung Galaxy Tab S8+ | Android Snapdragon 8.1 Adreno 730 47.7 121.4 118.2 8.0 0.03
Google Pixel 4a Android  Snapdragon 730G Adreno 618 66.7 489.9 490.2 423 0.02
Apple iPhone 7 plus i0S A10 Fusion PowerVR 7XT+ 87.6 873.2 732.6 18.4 0.03
ASUS ROG Strix Windows Core 19-12900H RTX 3080Ti 8.2 76.7 86.5 3.2 0.006
ASUS Zenbook Pro Windows Core i7-12700H Intel Iris Xe 16.8 81.0 79.4 4.2 0.007
EST L1 Leven EST L1 Leven the latent representation, and the “Sample” column represents
Level3 Level3 the runtime for retrieval of the nearest k = 20 neighbors
Lo Lo and the calculation of the label probability vector for a single
X testing sample, with a support set size of 3000. Finally, the
% “Video” column shows the run time of the final decision
*% making and confidence estimation process, based on 30 testing
samples.
» Results show that pose extraction achieves around 30 FPS
(a) Correct. Confidence: 1.0 (b) Correct. Confidence: 0.6 on modern mobile phones like the Samsung Galaxy ZFlip
E'SI'TL |2_1 Level1 E'SFTL |1_2 Levell 5 using the onboard GPU, and performs even faster on laptops
' pever ! ’ Level2 with high-performance graphics cards. Although the STGCN
evel Il Level3 L. . N
Level IV Leveld runs slower on the CPU, it is only called intermittently when
x  Test x  Test . . .
enough frames (124) are available, and can run in parallel with
pose extraction. Additionally, retrieval-based classification and
X confidence estimation are quick, even on older devices such
X as the iPhone 7 Plus (18.43 ms). Thus, the proposed method
% operates nearly in real-time on mobile devices.

(c) Incorrect. Confidence: 0.48  (d) Incorrect. Confidence: 0.99

Fig. 12. t-SNE visualization of correct and incorrect GMFCS level
estimations with different confidence.

system’s accuracy and reliability. Over time, this approach
ensures continuous improvement of the system, adapting to
a wider range of scenarios and reducing the margin of error.

I. Running Time Evaluation

Given the sensitive nature and privacy of patients’ video
data, it is ideal to perform all computations on end-
user devices, ensuring no visual data is transferred online.
To achieve this, the proposed method must be efficient enough
to run on various platforms. We use a web app to evaluate the
runtime of the proposed method on mobile devices, enabling
cross-platform adoption. Notably, although it is a web applica-
tion, all computations occur on the client-side, with no visual
data transferred to a server.

For the demonstration, PoseNet [22] from Tensorflow.js is
employed as the pose extractor, running with the WebGL back-
end on a GPU. The STGCN PyTorch model is converted to an
ONNX model and executed with ONNX Runtime Web. Due
to some unsupported operators with ONNX Runtime Web’s
WebGL backend, it is run with the WASM backend, utilizing
the CPU. All the calculation afterwards are based on native
JavaScript code. The experiment is conducted within a React
application running in the Chrome browser. The results are
summarized in Table III. The “STGCN_E2E” column reflects
the runtime of the end-to-end model, the “STGCN_B” column
illustrates the runtime of the STGCN backbone for calculating

IV. DISCUSSION

The GMFCS is a nominal functional scale used for classi-
fication, but it could also be viewed as a regression problem.
Classification aims to create distinct features for different
classes to minimize confusion, a principle we used in our met-
ric learning approach. However, impairment is a continuous
process, and its features should form a continuous pattern in
the feature space. Since the ground truth labels are discrete
levels, direct regression is impractical as it would cause the
network to map samples from each class to a single point,
limiting the effectiveness of a regression-based approach.
In future work, exploring methods for training the model using
a regression approach could be highly beneficial, as it aligns
better with the nature of the evaluation problem. This might
involve developing finer and more continuous ground truth
labels to capture gradual changes in gross motor function.
Studies using robot-based kinematic measurements in stroke,
such as those by [23], [24], [25], [26], and [27], suggest that
a regression approach could yield a significantly larger effect
size compared to traditional nominal clinical scales, potentially
reducing the patient census needed to test new interventions.
Additionally, improving the accuracy of the computer vision
scheme, for instance from 71.61% to 76.60%, would also lead
to a larger effect size.

Also, in this work we only employed 3 basic skeleton
augmentation techniques: Shear, Mirroring and Masking. More
advanced augmentation methods, including AdaIN, Gaussian
Noise, Gaussian Blur, Rotation, and Skeleton Mix, have been
proved effective in recent work [28]. Incorporating these
extra enhancements may offer understanding into the model’s
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behavior when subjected to various data augmentations, and
whether they are successful in reducing overfitting of the
model. We will further investigate this topic in our future work.

V. CONCLUSION

In this article, we explore the application of computer vision
and Al techniques to estimate GMFCS levels, comparing these
Al-driven evaluations with those performed by professional
therapists. We employ STGCN-based networks to analyze
spatial and temporal features extracted from single-view video
data of human motion, offering a robust approach in GMFCS
assessment. Our research introduces an end-to-end model that
significantly outperforms the current state-of-the-art, achieving
an accuracy of 76.60% compared to the prior benchmark of
71.61%. This model demonstrates a high degree of agreement
with therapist assessments, evidenced by an average «j,, of
0.733. Additionally, we have developed a novel training strat-
egy for the STGCN encoder using a metric learning approach.
This allows for a retrieval-based GMFCS classification system
that includes a mechanism for confidence estimation. Notably,
this method excels in scenarios with limited training data.
By setting a confidence threshold of 0.95, our model attains
an accuracy of 88% using only 10% of the training data typi-
cally required, which is particularly advantageous for smaller
research studies. Furthermore, our proposed solution is capable
of running in near real-time on various mobile platforms,
enhancing its applicability in diverse clinical and remote
settings. This study highlights the significant potential of Al in
advancing smart, efficient, and personalized healthcare solu-
tions, particularly in the realm of patient mobility assessment.
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