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Abstract—A modulation format identification (MFI) method is
proposed for high-speed optical fiber communication systems em-
ploying probabilistic shaping (PS) signals in polarization division
multiplexing (PDM). The approach utilizes a multi-feature input
hybrid neural network (MFHNN) incorporating constellation dia-
gram features and histogram of oriented gradients (HOG) features
as dual inputs. These features are trained using a multi-scale con-
volutional neural network (MS-CNN) and a deep neural network
(DNN) to obtain corresponding feature vectors. In the fusion layer,
the two feature vectors are merged and classified through fully
connected layers, thus constructing an efficient MFI model. The
method enhances MFI accuracy by leveraging features of different
modulation formats and representations at different neural net-
work levels. To validate the feasibility of the proposed method,
signals are collected through the construction of a simulated PDM
optical fiber communication system with a fiber length of 80 km
and a symbol rate of 50 GBaud. The gathered data is then utilized
with the proposed MFI to identify six PS-QAM signals (PS-16QAM
with 3 b/symbol and 3.5 b/symbol, PS-64QAM with 4 b/symbol,
4.5 b/symbol, 5 b/symbol, and 5.5 b/symbol) and two uniform
shaping (US) QAM signals (US-16QAM with 4 b/symbol and US-
64QAM with 6 b/symbol). Simulation results demonstrate that the
MFI model constructed by the proposed method achieves an overall
identification accuracy of 91.6% for the eight modulation formats
when the optical signal-to-noise ratio (OSNR) is within the range of
10 to 30 dB. Compared to traditional MFI methods, our approach
significantly improves both MFI accuracy and convergence speed.

Index Terms—High-speed optical fiber communication,
modulation format identification (MFI), multi-feature input
hybrid neural network (MFHNN).
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I. INTRODUCTION

THE rapid development of businesses such as Big Data,
cloud computing, and artificial intelligence has increased

demand for data transmission speed and capacity [1], [2], [3],
[4], [5], [6], [7]. Consequently, high-speed optical fiber commu-
nication has become a focal area for meeting the growing data
requirements and enhancing transmission performance.

In this context, probabilistic shaping (PS) technology has
gradually emerged as a prominent solution. PS technology pos-
sesses the potential to significantly enhance the capacity and
spectral efficiency of optical fiber communication systems [8],
[9], [10], [11]. This technology optimizes data transmission
by dynamically adjusting the probability distribution of signal
constellation points to meet diverse transmission requirements,
thereby enhancing system adaptability and performance. In
high-speed optical fiber communication systems, the accurate
identification of signal modulation formats becomes particularly
crucial due to the combination of high-speed signal transmission
and the mixing of multiple types of signals [12], [13].

To address this challenge, machine learning (ML) technology
has become a crucial tool for modulation format identification
(MFI) in optical fiber communication systems [14], [15], [16],
[17], [18], [19]. A CNN-based method is proposed for identi-
fying images collected by a constellation diagram analyzer, im-
proving MFI identification performance [14]. Using deep neural
networks to identify modulation formats in the two-dimensional
Stokes plane achieves remarkably high identification accuracy
even under low OSNR conditions [15]. The method utilizing
higher-order cumulants (HOC) for signal feature extraction, cou-
pled with the DNN algorithm, exhibits outstanding classification
performance [16]. By leveraging transfer learning (TL) and a
simplified multi-task deep neural network (MT-DNN), MFI is
achieved directly from detected PDM-64QAM signals, attaining
high identification rates for high-order QAM formats [17]. A
method employing artificial neural networks (ANN) for mod-
ulation format detection exhibits high identification rates and
robustness against interference [18]. In coherent optical com-
munication, the utilization of signal constellation diagrams and
support vector machines (SVM) has achieved precise identifi-
cation of multiple modulation formats [19].

However, these ML techniques are often designed for tradi-
tional modulation formats (such as PSK and QAM) at conven-
tional rates. In high-speed optical fiber communication systems
incorporating probabilistic constellation shaping technology,
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Fig. 1. The proposed MFI scheme.

the accuracy of conventional methods for MFI may be com-
promised. This is because the modulation format of signals
shaped by probabilistic shaping might sometimes resemble other
uniform shaping (US) signal formats. Therefore, there is a need
to develop more efficient and intelligent MFI methods for signals
generated using probabilistic constellation shaping techniques.

In this paper, an MFI method based on MFHNN is proposed,
which employs constellation diagram features and HOG features
as dual input features to the MFHNN. These features are trained
using an MS-CNN and a DNN to obtain corresponding feature
vectors. In the fusion layer, the two feature vectors are merged
and classified through fully connected layers, thus constructing
an efficient MFI model. The method enhances MFI accuracy
by leveraging features of different modulation formats and
representations at different neural network levels. The paper is
organized as follows: Section II describes the working principle
of MFHNN in detail, and Section III collects the required dataset
through simulation. In Section IV, the identification accuracy
of the proposed MFI is analyzed and compared with the MFI
performance of other schemes. Finally, conclusions are drawn
in Section V.

II. OPERATION PRINCIPLES

The proposed MFI scheme is shown in Fig. 1. First, the signals
are power normalized and then divided into a training set and
a test set in the ratio of 4:1. Next, the constellation diagram
feature set and HOG feature set are input into the MFHNN for
training to construct the MFI model. Then, the performance of
the constructed MFI model is tested based on data in the test set.
Finally, the results are analyzed based on the MFI.

A. Generation of PS-QAM Signal

In conventional optical fiber communication systems, points
in the constellation of QAM signals are transmitted with equal
probabilities, preventing the channel capacity from approaching
the Shannon limit. PS techniques aim to increase the transmis-
sion probability of inner-circle constellation points while re-
ducing the transmission probability of outer-circle constellation
points. The significance of this approach lies in improving the
occurrence frequency of symbols with lower energy compared
to symbols with higher energy, thereby reducing the average

constellation power and enhancing system performance.

P (xi) =
1∑M

m=1 e
−vx2

m

e−vx2
i (1)

The probability distribution of constellation points follows the
Maxwell-Boltzmann distribution, as expressed by the following
(1) [20], where the signal x ∈ [x1, x2, . . . , xM ], with M being
the number of signal constellation points; the shaping factor
v ∈ [0, 1] ensures that the sum of probabilities for all signal
constellation points equals 1 and represents the degree of prob-
ability shaping. When v = 0, the constellation points are uni-
formly distributed, maximizing the entropy of the transmitter’s
information. A larger v indicates a lower entropy value for the
transmitter source and a greater degree of probability shaping
for the signal constellation.

In this scheme, the probability distribution entropy for PS-
16QAM is 3 b/symbol and 3.5 b/symbol. The probability dis-
tribution entropy for PS-64QAM is 4 b/symbol, 4.5 b/symbol,
5 b/symbol,and 5.5 b/symbol.

B. Design of an MFHNN

To identify between the US signals and PS signals in 16QAM
and 64QAM, an MFHNN structure is devised in this study, as
illustrated in Fig. 1.

εk =
exp (zk)∑N
n=1 exp (zn)

(2)

Constellation diagram features and HOG features serve as dual
inputs for the MFHNN. These features are individually trained in
MS-CNN and DNN. In the fusion layer, the feature vectors of the
two features are spliced into a composite vector in the channel
dimension using a feature cascade approach and mapped into a
one-dimensional vector space by a fully connected layer. After
passing through the Softmax function, as indicated in (2), where
zk =

∑
wnkxk + bk denotes the output result of thek-th neuron

in the network, and εk represents the probability of zk among
all output results, the probability distribution across different
modulation formats for the input sample is obtained, yielding
the predicted classification result.

C = −∑
iui ln yi (3)
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Fig. 2. Sample 16QAM and 64QAM constellation diagrams.

To train the model, it is essential to compute a loss function
to optimize the model. Cross-entropy is a commonly used loss
function [21], as shown in (3). It is employed to calculate the
error between the predicted classification results and the actual
classification results. During the model training process, the
Adaptive Moment Estimation (Adam) optimization algorithm
is utilized to update model parameters and minimize the loss
function. This approach enables the model to gradually converge
towards the optimal solution, improving its adaptation to the
training data.

1) Training Constellation Diagram Features Using an MS-
CNN: At the receiving end of the optical fiber communication
system, the IQ two-way data of the signals are captured. As
shown in Fig. 2, the signals are presented in the form of constel-
lation diagrams for ease of visualization and analysis. The OSNR
range considered in this paper is from 10 dB to 30 dB in steps of
2.5 dB, and for each signal type, 200 sets of corresponding IQ
two-way data samples are collected at each OSNR condition.

In the MFHNN, the features of the constellation diagram
are trained by the MS-CNN. To simplify the feature extraction
process, downsample the grayscale constellation diagram. Each
convolutional layer utilizes multiple convolutional kernels of
different sizes to perform convolution operations on the input
constellation diagram so that the model can extract features of
different scales, thus capturing diverse scale information in the
input data and enhancing the model’s representative capacity.
The output of the convolutional layers undergoes a non-linear
transformation through the ReLU activation function [22].

f(x) = max(0, x) (4)

The ReLU activation function is defined as follows in (4),
where x represents the output of the convolution operation. The
activation function enables the convolutional neural network to
learn more complex features and patterns. A one-dimensional
max-pooling layer is introduced in each CNN, with pooling
window sizes of 127, 126, and 125, respectively. Max-pooling
involves selecting the maximum value from multiple pixels
within each pooling window, reducing the dimensionality of
the data, decreasing computational load, and retaining essential
features. The feature vectors obtained from the three parallel
CNN undergo average pooling and are then outputted, resulting
in the final constellation diagram feature vector.

2) Training HOG Features by DNN: HOG features are a
widely employed method for object detection [23], character-
ized by analyzing the gradient direction histograms of various
regions in an image to represent the morphological features of
objects. This method plays a crucial role in tasks such as object
detection and image identification, effectively extracting texture
information from images.

To obtain HOG features. First, the gradient of the grayscale
image is calculated to get the gradient information in horizontal
and vertical directions:{

Ui(i, j) = H(i+ 1, j)−H(i− 1, j)
Uj(i, j) = H(i, j + 1)−H(i, j − 1)

(5)

In (5): At the pixel point (i, j), Ui(i, j) represents the gradient
in the horizontal direction,Uj(i, j) represents the gradient in the
vertical direction; H(i, j) represents the pixel value.{

G(i, j) =
√

Ui(i, j)2 + Uj(i, j)2

θ(i, j) = arctan
Uj(i,j)
Ui(i,j)

(6)

The gradient magnitude and direction at the pixel point (i, j)
can be calculated using (6), where G(i, j) is the magnitude of
the gradient, and θ(i, j) is the gradient direction of the pixel.

Then, divide the image into equally sized feature cells. Within
each feature cell, partition the gradient direction into nine re-
gions. For each feature cell, accumulate the gradient magni-
tudes within the cell based on the corresponding areas of the
gradient direction. Then, record the distribution of regions for
each feature cell, forming a histogram for that feature cell.
This constitutes the HOG feature for each feature cell. Finally,
Combine multiple feature cells into a feature block. Within each
feature block, concatenate the HOG features of all feature cells,
normalize the feature vector, and obtain the HOG feature for
that feature block. Concatenate the HOG features of all feature
blocks to form the HOG features for the entire image.

In MFHNN, DNN is used to train HOS features, which
comprises an input layer and a hidden layer. The input layer
receives HOG feature inputs, and the input data enters the hidden
layer after a linear combination. The function f(x) in the hidden
layer represents the activation function, performing a non-linear
transformation on the input data to obtain the HOG feature
vector. Similar to the training of constellation map features
with MS-CNN, the ReLU function is also used as the activation
function.

III. SIMULATION SETUP

To validate the effectiveness of the algorithm, this scheme
integrates the VPI optical communication system simulation
software with MATLAB. It constructs a 50 GBaud/s PDM-QAM
coherent optical transmission system, as shown in Fig. 3. At the
transmitter, a continuous wave (CW) laser with a wavelength of
1550 nm and a linewidth of 100 KHz generates an optical carrier.
The light is then split by a polarization beam splitter (PBS)
and enters two modulators separately. Pseudo-random binary
sequence (PRBS) is used for QAM mapping, producing 16QAM
and 64QAM signals. The uniform signals undergo probabilistic
shaping using the probability density function represented in
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Fig. 3. Simulation setup for high-speed fiber optical communication system.

(1). The real and imaginary parts of the generated QAM signals
enter two IQ modulators. The output light signals from the
two IQ modulators are combined using a polarization beam
combiner (PBC), resulting in 3 b/symbol PDM-PS-16QAM,
3.5 b/symbol PDM-PS-16QAM, 4 b/symbol PDM-US-16QAM,
4 b/symbol PDM-PS-64QAM, 4.5 b/symbol PDM-PS-64QAM,
5 b/symbol PDM-PS-64QAM, 5.5 b/symbol PDM-PS-64QAM,
and 6 b/symbol PDM-US-64QAM signals. The input signals are
power-controlled by an erbium-doped fiber amplifier (EDFA) to
achieve an output power of 0 dBm. Subsequently, the OSNR is
adjustable within the range of 10∼30 dB. The optical signal is
transmitted through an optical fiber link composed of 80 km stan-
dard single-mode fiber and an EDFA with a gain of 16 dB. The
single-mode fiber has an attenuation of 0.2 dB/km, a dispersion
of 16 ps/(nm·km), and a nonlinear refractive index coefficient
of 26× 10−21 m2/W. At the receiver, the optical signal, after
passing through an optical filter, enters a coherent receiver
along with the local oscillator light for heterodyne mixing,
obtaining four signals in dual-polarization states. Finally, digital
signal processing (DSP) techniques are employed to compensate
for distortions occurring during the fiber transmission process
accurately; before MFI, the signal undergoes a series of DSP
algorithms independent of the modulation format, including
analog-to-digital conversion (ADC), chromatic dispersion (CD)
compensation, constant modulus algorithm (CMA) equaliza-
tion, and carrier frequency recovery. The proposed MFI scheme
is utilized to identify different modulation formats. After MFI,
the modulation formats undergo additional processing steps such
as carrier phase recovery and decoding.

IV. ANALYSIS OF THE RESULTS

During the training of the MFHNN model, cross-entropy is
employed as the loss function, and the Adam optimizer is chosen
for optimization. The training is performed for nineteen itera-
tions. For the input training set, consisting of the constellation
diagram feature set and the HOG feature set, 40 feature samples
are extracted for each training iteration. To assess the impact of
network model parameters on performance and training results,
the learning rate is varied within the range of [1e-2, 1e-3, 1e-4].
This variation aimed to find the most suitable learning rate
setting, enabling fast and stable convergence.

Fig. 4. Comparison of loss function changes at different learning rates.

The loss function curves for different learning rates are illus-
trated in Fig. 4. As the number of training iterations increases,
the loss function gradually decreases. There are noticeable dif-
ferences between the loss function curves for different learning
rates, indicating that the MFHNN designed in this study is sen-
sitive to the adjustment of the learning rate. When the learning
rate is set to 1e-2, the loss function of the network exhibits
a significant sharp increase within a certain range, suggesting
that this learning rate makes the model parameters update too
aggressively, leading to oscillations and unstable behavior in
the loss function during training. For a learning rate of 1e-3, the
loss function curve shows a relatively fast and stable decline,
with minor fluctuations during the training process, indicating
better convergence of the model at this learning rate. When the
learning rate is set to 1e-4, the loss function curve exhibits a
slower descent with fluctuations, suggesting that this learning
rate results in smaller updates to the model parameters, requiring
more iterations for convergence to the optimal solution. Based on
the performance of the loss function curves at different learning
rates, a learning rate of 1e-3 is chosen, as it strikes a good balance
between the speed of loss function reduction and the stability of
the training process.
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Fig. 5. Identification accuracy for eight modulation formats of the proposed
MFI method.

The identification accuracy curves of the proposed MFI
method for eight types of uniform/probabilistic distribution
QAM signals with varying OSNR are illustrated in Fig. 5.
It can be observed that within the OSNR range of 10 to
30 dB, the identification accuracy of these eight signal mod-
ulation formats gradually improves with increasing OSNR.
When the OSNR ≥ 17.5 dB, the identification accuracy for
all eight modulation formats stabilizes at 100%. Within the
specified OSNR range, for eight modulation formats including
3 b/symbol PDM-PS-16QAM, 3.5 b/symbol PDM-PS-16QAM,
4 b/symbol PDM-US-16QAM, 4 b/symbol PDM-PS-64QAM,
4.5 b/symbol PDM-PS-64QAM, 5 b/symbol PDM-PS-64QAM,
5.5 b/symbol PDM-PS-64QAM, and 6 b/symbol PDM-US-
64QAM, the minimum OSNR required to stabilize identification
accuracy at 100% is 12.5 dB, 15 dB, 17.5 dB, 15 dB, 17.5 dB,
17.5 dB, 15 dB, and 15 dB, respectively. This indicates that
the proposed MFI method achieves robust identification perfor-
mance for these eight modulation formats.

Confusion matrix of average identification accuracy for
eight modulation formats is shown in Fig. 6. Across the
entire OSNR range, the average identification accuracy for
3 b/symbol PDM-PS-16QAM, 3.5 b/symbol PDM-PS-16QAM,
4 b/symbol PDM-US-16QAM, 4 b/symbol PDM-PS-64QAM,
4.5 b/symbol PDM-PS-64QAM, 5 b/symbol PDM-PS-64QAM,
5.5 b/symbol PDM-PS-64QAM, and 6 b/symbol PDM-US-
64QAM is 89.6%, 91%, 98.1%, 93.3%, 86.2%, 94.1%, 94.3%,
and 87.5%, respectively. Furthermore, it can be observed from
the confusion matrix that the proposed MFI method exhibits
excellent performance in distinguishing between PS and US
signals.

Two comparative methods are chosen in this paper to
demonstrate the superiority and stability of the proposed MFI
method. These include an identification method based on
constellation diagram features and CNN and an identification
method based on HOG features and SVM. The identification
accuracy of these three methods is compared under the same
optical fiber channel conditions as the OSNR changes. The

Fig. 6. Confusion matrix of average identification accuracy for eight modula-
tion formats.

Fig. 7. Comparison of overall identification accuracy of different MFI meth-
ods.

overall identification accuracy trends of the eight modulation
formats based on different methods with varying OSNR are
shown in Fig. 7. When the OSNR ranges from 10 to 30 dB, the
proposed MFI method shows better identification performance
and stability compared to the other two methods. Specifically,
for the method using constellation diagram features and CNN,
the overall identification accuracy within the entire OSNR range
is 84.5%, and the accuracy stabilizes at 100% when the OSNR
≥ 30 dB. For the method using HOG features and SVM, the
overall identification accuracy within the entire OSNR range
is 75.1%, but the identification accuracy is unstable within the
entire OSNR range. In comparison, the proposed MFI method
achieves an overall identification accuracy of 91.6% within the
entire OSNR range, and the accuracy stabilizes at 100% when
the OSNR ≥ 17.5 dB. Based on these results, under the same
optical fiber channel conditions, our proposed MFI method
performs significantly better in overall identification accuracy.

The identification accuracy of different methods for different
modulation formats under the same conditions is shown in Fig. 8.
It can be observed that with the increase in OSNR, the proposed
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Fig. 8. Comparison of identification accuracy of different methods for different modulation formats under the same conditions. (a) PDM-PS-16QAM (3
bit/symbol), (b) PDM-PS-16QAM (3.5 bit/symbol), (c) PDM-US-16QAM (4 bit/symbol), (d) PDM-PS-64QAM (4 bit/symbol), (e) PDM-PS-64QAM (4.5
bit/symbol), (f) PDM-PS-64QAM (5 bit/symbol), (g) PDM-PS-64QAM (5.5 bit/symbol), (h) PDM-US-64QAM (6 bit/symbol).

Fig. 9. Comparison of complexity of different methods.

MFI method gradually approaches stability in the independent
identification accuracy for the eight modulation formats. How-
ever, within the set OSNR range, the identification method
based on constellation diagram features and CNN, along with
the identification accuracy of the identification method based
on HOG features and SVM is not stable for most modulation
formats. This phenomenon is due to the fact that there is a certain
degree of overlap in the features between the US signals and PS
signals. The use of a single MFI method can not enable them to
be accurately classified in the feature space. The proposed MFI
method has more stable and superior identification accuracy for
the eight modulation formats compared to the other two methods
through feature fusion and multilevel learning strategies. In
addition, for PS signals, the proposed MFI method is able to
achieve 100% identification accuracy with a smaller OSNR.

To evaluate the computational complexity of the proposed
MFI method, the CPU running time required for signal feature
processing is measured and compared with the other two
methods, as detailed in Fig. 9. The test CPU running time

is performed on a personal computer equipped with an Intel
i5-10210 U processor, 1.60 GHz clock speed, 16 GB RAM, and
Windows 10 Home operating system. Combining the data from
Figs. 7 and 8, the proposed MFI method achieved significant
improvements in both identification accuracy and stability
while only sacrificing slight computational complexity. This
achieves an optimal balance between accuracy and stability.
In future research, we will continue to optimize the method to
reduce complexity further, making it more widely applicable to
various application scenarios.

V. CONCLUSION

In this paper, an MFI method based on MFHNN is proposed,
which employs constellation diagram features and HOG fea-
tures as dual input features to the MFHNN. These features are
trained using an MS-CNN and a DNN to obtain corresponding
feature vectors. In the fusion layer, the two feature vectors
are merged and classified through fully connected layers, thus
constructing an efficient MFI model. The method enhances
MFI accuracy by leveraging features of different modulation
formats and representations at different neural network levels.
To validate the feasibility of the proposed method, signals are
collected through the construction of a simulated PDM optical
fiber communication system with a fiber length of 80 km and a
symbol rate of 50 GBaud. The gathered data is then utilized with
the proposed MFI to identify six PS-QAM signals (PS-16QAM
with 3 b/symbol and 3.5 b/symbol, PS-64QAM with 4 b/symbol,
4.5 b/symbol, 5 b/symbol, and 5.5 b/symbol) and two uni-
form shaping (US) QAM signals (US-16QAM with 4 b/symbol
and US-64QAM with 6 b/symbol). Simulation results demon-
strate that the MFI model constructed by the proposed method
achieves an overall identification accuracy of 91.6% for the
eight modulation formats when the OSNR is within the range of
10 to 30 dB. Compared to traditional MFI methods, our approach
significantly improves both MFI accuracy and convergence
speed.
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