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Spatial–Spectral Learning Network for
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Abstract—Hyperspectral image superresolution (HSI-SR) has
become an essential step of data preprocessing for tasks such as
classification and change detection in remote sensing. For HSI-SR
tasks, the state-of-the-art methods lie in how to learn effective spa-
tial and spectral characteristics. More deeply mining the shallow
and deep spatial–spectral features is vital for the performance im-
provement of HSI-SR. Hereby, we provide an end-to-end multiscale
spatial–spectral network (M3SN) driven by a hybrid spectral atten-
tion mechanism (HSAM) for HSI-SR, aiming to fully dig shallow
and deep spatial–spectral characteristics. Precisely, considering the
importance of shallow spatial–spectral features at early stages, a
multiscale information block consisting of a 3-D convolution, three
parallel 2-D convolutions with different scale sizes, and SE-Net is
first designed to extract informative multiscale shallow spatial–
spectral features and recalibrate the channel weights of features.
Then, a dual-path multiscale spatial–spectral feature block is set
up to explore the deep spatial and spatial–spectral features. While
one path using 2-D convolutions extracts spatial features, the other
path employing 3-D-Res2Net as well as an updated HSAM module
mines multiscale deep spatial–spectral features. Finally, we design
a multiscale fusion block based on the channel reduction-scaling
operation to fuse the extracted hierarchical feature maps for the
final reconstruction. It is demonstrated that the M3SN outperforms
existing methods by extensive experiments on four publicly avail-
able hyperspectral datasets.

Index Terms—Convolutional neural network (CNN), dual-path
framework (DPF), hybrid spectral attention mechanism (HSAM),
hyperspectral image superresolution (HSI-SR), multiscale spatial–
spectral features.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) obtained by hyperspec-
tral sensor consists of hundreds of continuous bands. It is
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a 3-D data cube with a set of images recording reflectivity or
radiance at different wavelengths [1]. The high spectral reso-
lution of HSI can reflect the tiny spectral characteristics of the
measured object [2]. Therefore, HSI has been widely used for
medical diagnosis [3], plant disease detection [4], and mineral
exploration [5], etc. Hyperspectral sensors have many contin-
uous narrow bands while the photon energy is constant, so the
average number of photons reaching each narrow band is limited.
As a result of this inherent limitation, the spatial resolution of
HSI is generally low, and details are rarely captured, which limits
the performance of high-level tasks, such as classification [6],
change detection [7], [8], [9], small object detection [10] etc.
Generally, the spatial resolution of HSI is enhanced by improv-
ing hardware facilities or utilizing algorithms. The former is
expensive and has high requirements on existing engineering
techniques. The latter is hyperspectral image superresolution
(HSI-SR), which aims to recover high-resolution (HR) HSI from
low-resolution (LR) HSI and keep the spectrum undistorted
simultaneously.

The mainstream HSI-SR methods can be divided into
multimodal-fusion-based [11], [12] and single image superreso-
lution (SISR). For the former one, high spatial resolution images
such as panchromatic (PAN) images [13], RGB [14], or multi-
spectral Images (MSI) [15] are fused with HSI. Conventional
methods can be divided into three categories, the Bayesian-
based methods such as HySure [16], the matrix-factorization-
based methods such as CNMF [17], and the representative-based
methods such as LTTR [18]. However, obtaining high spatial
resolution images and HSIs corresponding to the same scene
is difficult in practical engineering. As for SISR, traditional
methods can be categorized into interpolation-based methods
and regularization-based methods, which mainly solve the ill-
posed inverse problem to get HR HSIs. The former primar-
ily includes bilinear, bicubic, and Nearest interpolation, while
the latter includes Markov random fields [19], total variation
(TV) regularization [20], sparse regularization [21], and the
self-similarity prior [22]. However, traditional methods rely on
heuristic and manually designed prior information, which has
weak representation capabilities. In addition, the necessity of
optimal parameter adjustments for different images and devices
limits the performance and practicality of these methods.

In recent years, the powerful representation capabilities
[23] of deep learning, especially convolutional neural network
(CNN), make it have great potential in the field of image
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processing. Many CNN models have been proposed in the
field of natural image superresolution (SR) [24], [25], [26]. For
example, SRCNN [24] is the first model for SR. Since then, many
typical networks have been proposed one after another, such as
EDSR [25], and VDSR [26], which have achieved satisfactory
results in the field of natural images. Therefore, many literatures
have begun to use CNN-based methods for HSI-SR. Unlike
natural images, HSI is a 3-D data cube with many bands, making
extracting feature information difficult. Due to the neglect of
spectral information, the model designed for natural images
is less effective for HSI. Therefore, developing a CNN-based
model for HSI-SR has become a research hotspot in recent years
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46]. In addition,
due the capability in establishing long-range dependencies
and capturing spectral features, Transformer has emerged as a
research hotspot in the field of HSI-SR [47], [48], [49].

However, there are three challenges in the CNN-based HSI-
SR. The first one is how to model the mapping relationship
between LR and HR HSIs without auxiliary HR images. There-
fore, the critical task is to design a rational network capable of
fully exploring spatial and spectral characteristics to enhance
the ability to model complex relationships effectively [27]. To
tackle this challenge, various approaches have been proposed.
One notable strategy involves leveraging typical basic blocks
such as Res2Net [50], renowned for their ability to extract
multiscale features at a finer granularity level, thereby achieving
the excellent performance. In addition, combining 3-D and 2-D
convolutions is preferred to fully explore the spatial and spectral
information, MCNet [28] and ERCSR [29], proposed by Li et
al. [28], [29], are two typical networks. While MCNet used
multiple 2-D and 3-D units to share spatial parameters, ERCSR
alternately used 3-D and 2-D units to fully consider the rela-
tionship between vertical, horizontal, and spectral dimensions.
However, both of them ignored the second-order covariance
statistics that have shown the importance on HSI-SR [31], [32].
Furthermore, the dual-path framework (DPF) is an alternative
method for improving performance. Li et al. [39] proposed a
DPF to parallelly learn spatial–spectral information and spatial
information using a spatial–spectral learning subnetwork and
a spatial reconstruction subnetwork, respectively. Although the
performance is improved, the two features are not interactive in
the middle layer resulting in the underutilization of complemen-
tary information.

The second challenge lies in how to mitigate spectral dis-
tortion. For instance, SRCNN was extended to msiSRCNN for
processing multispectral images in a band-by-band manner [30],
which resulted in severe spectral distortion since the spectral
information was ignored. To tackle this challenge, recent re-
searches have explored various methodologies, including impos-
ing constraints on the spectral domain through 3-D convolution,
spatial–spectral TV loss functions, and gradient maps. However,
despite these efforts, maintaining spectral fidelity remains an
ongoing challenge. Considering the strong correlation between
adjacent bands and the capability of 3-D convolution can extract
both spatial and spectral features, Mei et al. [37] developed a
3-D fully convolution neural network (3D-FCNN) that achieved

good performance. However, naive 3-D convolution cannot
explore the spectral correlation sufficiently and simple MSE
loss function cannot gauge spectral distortion accurately [34].
Jiang et al. [38] designed SSPSR to explore the spatial–spectral
features and focus on spectral fidelity by spatial–spectral TV loss
function. Zhao et al. [40] used the spectral gradient information
of HSI as prior information to constrain the spectrum that
achieved good result. In addition, some literatures [31], [32] have
demonstrated the vital contribution of the second-order statistics
to mine more spectral characteristics and then facilitate spectral
consistency.

The final challenge concerns the treatment of spectral bands
within general CNN architectures. Since general CNN treats
each spectral band equally, the difference between spectral bands
cannot be well distinguished, which would limit the represen-
tation ability of network [31], [32], [33], [34], [35], [36], [37].
Therefore, a preferable approach is to treat each spectral band
individually. Inspired by that human vision selectively pays at-
tention to regions with significant features [51], attention mech-
anisms have become prevalent in this field. Currently, the at-
tention mechanisms used in SR tackle two main considerations.
One is that the network focuses on high-frequency information,
which is easily lost in the propagation process and difficult to
recover. The other is that the contribution of each channel to
reconstruction is inconsistent and the weight of each channel
should be recalibrated [31], [32]. Many attention mechanisms
have been applied to the field of HSI-SR [31], [32], [33], [34],
[35]. LN-atten-CNN [35] obtained global attention informa-
tion and improved the representation ability by max pooling
in the spectral dimension and average pooling in the spatial
dimension. Dong et al. [52] proposed a CFDcagaNet to provide
more realistic spectral guidance via a content-aware attention
mechanism, which has achieved better results. Furthermore, the
representation abilities of attention mechanisms can be enhanced
by exploring the second-order statistical features [25], [32], [36],
[53], [54]. Bryan et al. [53] modeled long-term relationships
using the attention mechanism with second-order statistics,
achieving excellent performance. Dai et al. [54] proposed the
second-order channel attention to represent channel character-
istics, where the first-order pooling operation is replaced by
the second-order covariance pooling. For HSI-SR, just using
the first-order statistical feature or the second-order statistical
feature alone is not enough to express the internal feature of
images. Therefore, it is better to combine the first and second
statistical features. Hu et al. [31] combined the second-order
covariance information and the first-order statistics for HSI-SR
and achieved good results. But there is still a limitation in the
excitation step because using two 3-D convolutions for capturing
channel-wise relationships is not accurate, which would lead to
the weights of channels not recalibrating accurately.

In this article, we design an end-to-end trainable network
called a multiscale spatial–spectral network (M3SN) driven by
a hybrid spectral attention mechanism (HSAM).

First, for shallow feature extraction (SFE), a multiscale infor-
mation block (MSIB) is designed to extract multiscale shallow
spatial–spectral features. MSIB is realized by a 3-D convolution,
three parallel 2-D convolutions with different scale kernels, and
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Fig. 1. Overview of M3SN. The same-colored boxes indicate the same operation. The main components of our M3SN are: 1) MSIB extracts multiscale shallow
spatial-spectral features by a 3-D convolution, three parallel 2-D convolution operations of different size kernels, and SE-Net; 2) DMFB extracts multiscale deep
spectral–spatial features for accurate reconstruction by 2-D convolutions and 3D-Res2Net equipped with HSAM in a dual-path manner; and 3) MSFB fuses the
different hierarchical features of each DMFB.

SE-Net. Second, for deep feature extraction (DFE), multiple
dual-path multiscale spatial–spectral feature blocks (DMFBs)
are stacked in a cascaded manner to explore spatial–spectral
and spatial features. The DMFB includes two paths: spatial fea-
tures extraction (SpaFE) and multiscale spatial–spectral feature
extraction (MSFE). SpaFE consists of two 2-D convolutions.
MSFE consists of 3D-Res2Net and HSAM, 3D-Res2Net re-
places 2-D convolution in the original Res2Net with 3-D convo-
lution. HSAM combines first-order statistics and second-order
statistics to enhance the useful spectral features and suppress
the useless ones. Then, a multiscale fusion block (MSFB) is
used to aggregate different hierarchical features of each DMFB,
which can improve the reuse rate of features. Finally, the image
reconstruction (IR) is completed through deconvolution.

In conclusion, the main contributions of this article can be
summarized as follows.

1) A new CNN-based HSI-SR method, M3SN, is proposed.
To fully enhance the learning ability of spatial features us-
ing spatial–spectral features, the deep multiscale spatial–
spectral features and spatial features are explored in a
dual-path learning manner.

2) Considering the importance of shallow features, MSIB
consisting of a 3-D convolution, three parallel 2-D con-
volutions with different size of kernels, and SE-Net are
utilized to obtain rich multiscale shallow spatial–spectral
features and recalibrate the weights of spectral bands.

3) To fully use spectral information and avoid the spectral
distortion, the HSAM is designed to pay attention simul-
taneously to the first-order statistics and the second-order
covariance statistics. Then, an enhanced excitation module
makes it predict the weight of channel more accurately. It
increases the diversity of spectral features and the learning
ability of discriminative spectral features. Furthermore,
3D-Res2Net equipped with HSAM is powerful to explore
the deep multiscale spatial–spectral features and spectral
correlation.

The rest of this article is organized as follows. In Section II, we
describe the proposed method, M3SN, including the network
structure and description. Section III presents extensive

experiments and ablation analyses on four public datasets.
Finally, Section IV concludes this article.

II. PROPOSED METHOD

In this section, we specify the proposed model M3SN in detail.
It is an end-to-end model dedicated to mining and utilizing the
multiscale spatial–spectral features of HSI.

A. Network Structure

As shown in Fig. 1, M3SN mainly consists of four parts:
SFE, DFE, MSFB, and IR. For HSI, define ILR ∈ RB×W×H

and ISR ∈ RB×rW×rH as the input LR and SR HSI, respectively,
where W and H are width and height, B is the total number of
bands, and r is the scale factor.

SFE is mainly to obtain informative shallow spatial–spectral
features Fm. The input LR is reshaped into four dimensions
(1×B×W×H) to exact the initial shallow feature F0 by a 3-D
convolution layer. Then, MSIB is followed to extract the mul-
tiscale shallow spatial–spectral features Fm as shown in Fig. 2.
The aforementioned process can be formulated as

F0 = fConv3D,3 (unsqueeze (ILR)) (1)

Fm = HMSIB (F0) + F0 (2)

where unsqueeze(·) is used to expand ILR, fConv3D,3 denotes
a 3-D convolution layer, and HMSIB(·) represents a composite
operation of 3-D convolution, 2-D convolution, and SE-Net.

DFE is designed to extract deep spatial–spectral features. It
contains several DMFBs. Specifically, the output Fd of the dth

DMFB can be denoted as

Fd = HDMFB,d (HDMFB,d−1 (· · ·HDMFB,1 (Fm) · · ·)) (3)

where HDMFB,d represents the operations of the dth DMFB, a
composite operation of 3-D convolution, 2-D convolution, and
HSAM. The diagram is presented in Fig. 3. We will discuss and
analyze the impact of the number of DMFBs in the network in
Section III.
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Fig. 2. Structure of the MSIB, which is composed of M3SIM and SE-Net. M3SIM consists of a 3-D convolution layer and three 2-D convolutions with different
scale kernels.

Fig. 3. Structure of the DMFB. It consists of MSFE and SpaFE. The upper
branch is called SpaFE and the lower branch is called MSFE.

The hierarchical features from D DMFBs can be expressed as
[F1, . . . , FD] and fused by the MSFB, which will be introduced
in Section III. Then, the shallow features F0 and deep fused
features are added via long skip connection, the output Ff is
described as

Ff = HMSFB ([F1, . . . , FD]) + F0 (4)

where HMSFB represents the operations of MSFB, which is a
composite operation of 3-D convolution and SE-Net.

With respect to IR, Ff is up-sampled by a transposed 3-D
convolution according to scale factor r, which is followed by
a 3-D convolution layer. Since the input and output images
are so differently that Fn is introduced to up-sample the input
LR to narrow the gap by Nearest operation [29], which greatly
alleviated the burden on the network. After a squeeze operation,
the feature map is reshaped into three dimensions (B×W×H),
the output ISR is obtained by

ISR = squeeze (fConv3D (up (Ff ))) + Fn (5)

where up(·) is a 3-D transposed convolution layer, fConv3D(·) is
a 3D convolution layer, and squeeze(·) is squeeze function.

B. Multiscale Information Block (MSIB)

In the SGARDN [32], the idea that effective shallow fea-
tures can improve the reconstruction ability of the network is
confirmed. That is, shallow features at multiscale need to be
acquired at the early stages in the network. Furthermore, inspired
by the [6] that multiscale spatial features can be extracted by
2D convolutions with different size kernels, we design MSIB
for multiscale shallow spatial–spectral features extraction at the
early stages of the network.

As shown in Fig. 2, MSIB is divided into two parts, multiscale
shallow spatial–spectral information module (M3SIM) and SE-
Net [55].

1) Multiscale Shallow Spatial–Spectral Information Module
(M3SIM): The initial spatial–spectral feature F01 is first ex-
tracted by a 3-D convolution layer, which can be formulated as

F01 = reshape (fConv3D,3 (F0)) . (6)

Then, the multiscale shallow spatial features are extracted
by using N parallel 2-D convolutions with kernels k × k. In
M3SIM, we set N = 3 and k = 3, 5, 7, respectively. The output
feature maps Fn,k of nth can be expressed as

Fn,k = fConv2D,k (F01) (7)

where fConv2D,k(·) represents 2-D convolution with kernel
k × k. F1,3,F2,5, and F3,7 are concatenated in spectral dimen-
sion, followed by a 1×1×1 convolution layer, which can reduce
the number of feature maps. The output Fs can be denoted as

Fs = fConv2D,1 (concat (F1,3, F2,5, F3,7)) . (8)

2) SE-Net: Since CNN treats channels equally in the process
of extracting features, however, each channel contains differ-
ent spatial information and contributes inconsistently to the
network. Therefore, SE-Net is introduced to adjust the weight
of spectral bands to improve the representation of MSIB. The
SE-Net consists of two steps, squeeze and excitation. First,
the squeeze operation is utilized to obtain global distribution
of channel-wise responses through shrinking each 2-D spatial
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Fig. 4. Structure of M3SHS formed by 3D-Res2Net with HSAM.

dimension into a real number by global average pooling (GAP)

FG = fsq (Fs) =
1

H ×W

H∑
i=1

W∑
j=1

Fs (i, j) . (9)

The feature map FG is reshaped from FG ∈ RB×W×H to
FG ∈ RB×1×1.

Then, the excitation operation is used to predict the weight of
each channel via two fully connected layer and nonlinear layers.
This process can be described as

w = fex (FG, ω) = σ (μ (FG, ω)) = σ (ω2μ (ω1FG)) (10)

where μ and σ are the ReLU activation function and Sigmoid
activate function, respectively. ω1 and ω2 are the weights of two
consecutive fully connected layers.

Finally, the output feature Fse is obtained by multiplying the
learned weight w and original feature map Fs as follows:

Fse = fscale (Fs, w) = w · Fs. (11)

The output feature map Fs of MSIB is obtained by a reshape
operation and local residual learning, which can improve the
representation ability of the network.

C. Dual-Path Multiscale Spatial–Spectral Feature Block
(DMFB)

Some literatures [28], [29], [39] show that just spatial–spectral
features extraction is not conducive to the reconstruction. We
need to enhance the ability to extract features in the spatial
domain. Therefore, a DPF is used to extract spatial–spectral fea-
tures and spatial features simultaneously so that spatial–spectral
and spatial features can complement each other. As shown in
Fig. 3, Fd,1 is extracted by a 3 × 3 × 3 convolution layer

Fd,1 = fConv3D,1 (Fd−1) . (12)

Then, DFP is followed to obtain the deep feature Fd. It
includes SpaFE branch and MSFE branch.

1) Spatial Features Extraction (SpaFE): SpaFE consists of
two 2-D convolution layers, aiming to acquire spatial features.

The output Fspa is obtained by

Fspa = reshape (fConv2D,3 (fConv2D,3 (reshape (Fd,1)))) . (13)

2) Multiscale Spatial–Spectral Feature Extraction (MSFE):
MSFE consists of two M3SHSs focusing more on exploring
multiscale deep spatial–spectral features. As shown in Fig. 4,
M3SHS consists of 3D-Res2Net and HSAM, which is designed
to obtain more representative multiscale spatial–spectral fea-
tures.

3D-Res2Net [31] replaces 2-D convolution in original
Res2Net [28] with 3-D convolution, which is capable of ac-
quiring multiscale spatial–spectral features of different receptive
fields. First, Fd,1r is obtained by a 1×1×1 convolution layer

Fd,1r = fConv3D,1 (Fd,1) . (14)

Then, Fd,1r is divided into q subsets defined as xi ∈
[x1, x2, . . . , xq]. The subsets have the same size, and the number
of channels is 1/q of the input features. The multiscale feature
map yi is obtained according to

yi =

{
xi, i = 1

μ (fConv3D,3 (xi + yi−1)) , 1 < i ≤ q
. (15)

Therefore, 3D-Res2Net can obtain feature combinations with
different numbers and different receptive field sizes. Then, we
concatenate yiin spectral dimension, and a 1×1×1 3-D convo-
lution layer for dimensionality reduction is followed. The local
residual connections in 3D-Res2Net can capture both detailed
and global information. The output feature map Fd,1re can be
denoted as

Fd,1re = fConv3D,1 (concat [yi]) + Fd,1) . (16)

We mainly concern two points. First, the convolution kernel
equally treats all spectral bands that have different contributions
to the reconstruction, which limits the ability of reconstruction.
Second, just using the first-order statistics would limit the mod-
eling capability, so the second-order covariance statistics need
to be concerned to capture spectral correlation. Besides, the
insufficient exploration of spectral correlation that is usually
described via covariance would lead to spectral distortion [31],
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[32]. Therefore, for sake of considering the dependencies among
spectral channel, an enhanced HSAM based the mixed attention
in the 3-D-MSMAB [31] is proposed. In the squeeze module
of mixed attention, the first-order statistics and second-order
covariance statistics are explored. In the excitation module, two
3-D convolution layers with size of 1×1×1 are used to generate
the weight vector. However, two 3-D convolutions for capturing
channel-wise relationships are not accurate. Therefore, we re-
place the first 3-D convolution with channel-reduction-scaling
(CRS) operation. The weights among different spectral channels
are adaptively recalibrated, which can improve the learning
ability of discriminative spectral features and further enhances
the learning ability of the network.

As shown in Fig. 4, the first-order statistics and second-order
covariance statistics are explored in a dual-path learning manner.
This structure ensures the flexibility to explore new spectral
features. Specifically, for the first-order attention, in the squeeze
module, the global spatial information zs is obtained by GAP. In
the excitation module, the CRS operation and a 3-D convolution
layer with size of 1×1×1 are used to get a B-dimensional
attention vector z1

z1 = fConv3D,1 (μ (wcs (σwcd (zs)))) (17)

where wcd denotes the channel reduction layer with reduction
scale s = 16 and wcs denotes the channel scaling layer. For
the second-order covariance statistics, the spectral correlation
is explored by second-order covariance pooling. Specifically,
we compute the covariance matrix bn ∈ RB×B for the different
channels to obtain spectral correlation. Then, the mean of row
vector B is calculated to obtain the spectral descriptor zn. Finally,
the CRS operation and a 3-D convolution layer with size of
1×1×1 in the excitation module are performed to obtain the
attention vector z2 as

z2 = fConv3D,1 (μ (Wcs (σWcd (zn)))) . (18)

Then, the weight zH is obtained by integrating B-dimensional
attention vector z1 and z2, and a 1×1×1 3D convolution layer
is followed to reduce the number of feature maps

zH = σ (fConv3D,1 (concat [z1, z2])) . (19)

The weight zH is used to scale the input feature map Fd,1re

to obtain the FMSFE. Finally, Fspa and FMSFE are concatenated in
the spectral domain. A 3-D convolution layer for feature maps
reduction is followed. Through two residual learning operations,
the ability of network representation is improved. The output
feature map Fd of DMFB can be described as

Fd = (fConv3D,1 (concat ([Fspa, FMSFE])) + Fd,1) + Fd−1.
(20)

D. MSFB

In the earlier network such as MCNet [28], the output fea-
tures at each inherited feature level are directly connected by
concatenate operation, ignoring the inconsistency of features at
each level. Inspired by MSFMNet [42], we introduce channel
reduction-scaling operation to treat features at each level differ-
ently. The network structure diagram is shown in Fig. 5.

Fig. 5. Structure of the MSFB.

Suppose there are D DMFBs, the ith feature map from DMFB
is noted as Fi ∈ RB×W×H where i ∈ [1, 2, . . . , D]. First, D
feature maps are stacked in spectral dimension. A 3-D convolu-
tion layer with a size of 1×1×1 is followed for dimensionality
reduction processing to obtain Fc ∈ RB×W×H

Fc = fConv3D,1 (concat [F1, F2, . . . , FD]) . (21)

Next, a 3-D convolution layer with a size of 3×3×3 is
followed to extract spatial–spectral features, which improves
the reusability of features to obtain Fmc

Fmc = fConv3D,1 (Fc) . (22)

The weights of each channel are obtained by CRS operation
that differentiates the features of different channels. Finally, the
weights are used to scaleFmc by the channel-wise multiplication
to obtain the Fr.

E. Loss Function

General image restoration tasks mainly take L1 as loss func-
tion [28], [29], which can effectively preserve spatial informa-
tion. For HSI, the spectral constraint is also significant. A joint
L1 and spatial–spectral TV LSSTV is proposed in [38], which
can guarantee both spatial and spectral features. Therefore, we
use the same loss function as in the literature [32], which can be
described as

Ltotal = L1 + αLSSTV (23)

where α is a factor used to balance the contributions of the two
losses, and we set it to be a constant, α = 1× 10−3. The L1 loss
function can be defined as

L1 =
1

N

N∑
n=1

‖InHR −HNet (I
n
LR) ‖1 (24)

where InHR and HNet(I
n
LR) are the nth ground-truth and recon-

structed HSI, respectively. N is the number of training batches.
LSSTV can be defined as

LSSTV =
1

N

N∑
n=1

(∇h‖HNet (I
n
LR) ‖1 + (∇w‖HNet (I

n
LR) ‖1

+∇c‖HNet (I
n
LR) ‖1)

(25)
where ∇h, ∇w, and ∇c are the horizontal, vertical, and spectral
gradients of HNet(I

n
LR).
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III. EXPERIMENTS

In this section, we verify the effectiveness of M3SN qualita-
tively and quantitatively. Specifically, first, four publicly avail-
able datasets are presented. Second, the implementation details
and evaluation metrics of the experiments are described. Then,
M3SN is compared with other state-of-the-art methods. Finally,
the validity analysis of the M3SN is performed.

A. Experimental Settings

1) Datasets: We conduct experiments on four publicly avail-
able datasets, CAVE [56], Chikusei [57], Pavia Center, and
Botswana. They are collected by different camera sensors and do
not have the same properties. The CAVE contains rich synthetic
scenes but has few bands, while the Chikusei, Pavia Center, and
Botswana are real hyperspectral remote sensing scenes that have
more bands but contain a single scene.

The CAVE dataset is collected by the Cooled CCD camera
from 400 to 700 nm at 10 nm. It has 31 bands with the spatial
resolution of 512 × 512. The dataset consists of 31 scenes
covering a wide variety of real-world materials and objects.

The Chikusei dataset is gathered by Headwall Hyperspec-
VNIR-C imaging sensor over agricultural and urban areas in
Chikusei, Ibaraki, Japan, on July 29, 2014. It has 128 bands
in the spectral range from 363 to 1018 nm, which consists of
2517 × 2335 pixels and the ground sampling distance is 2.5 m.

The Pavia Center dataset is acquired by the reflective optics
system imaging spectrometer sensor over Pavia, northern Italy.
It is a hyperspectral remote sensing dataset with 1096 × 715
spatial resolution for a geometric resolution of 1.3 m and has
102 spectral bands after removing water absorption bands. The
Botswana dataset is collected by Hyperion sensor on NASA EO-
1 satellite over the Okavango Delta, Botswana in 2001–2004,
which has 30-m pixel resolution in 242 bands over 400–2500
nm. The spatial resolution is 1476 × 256. Finally, 145 bands are
remained after removing uncalibrated and noisy bands.

2) Implementation Details: For 32HSIs in CAVE with the
size of 31 × 512 × 512, we randomly select 70% of the dataset
as the training set, 20% as the validation set, and 10% as the test
set. For Chikusei dataset, due to the lack of edge information
in the original image, we crop the edge part of the image, and
the images with 128 × 2034 × 2048 are obtained. Rows 1–128
are used as test set, which is cut into 16 subimages with size
of 128 × 128 × 128. Rows 129–256 are used as the validation
set, and the rest is used as the training set. For Pavia Center
dataset, rows 1–143 are used as the test set, which is cut into
five subimages with size of 102 × 143 × 143, rows 144 – 364
are for the validation set, and the rest are used as the training set.
For Botswana dataset, rows 1 – 1034 are used as training set,
rows 1035–1347 are used as the validation set, and the rest are
test dataset with the size of 145 × 128 × 256.

Data augmentation is performed on training sets of four
datasets. For the CAVE, 24 patches are randomly selected from
each picture from the training set. For the Chikusei, Pavia
Center, and Botswana, 32 patches are randomly selected from
the training set. After obtaining patches, each patch is scaled by
1, 0.75, and 0.5. The scaled images are rotated by 270°, 180°, and

90°. Horizontal and vertical mirroring operations are performed.
We set the number of filters to 32. The Adam optimizer is
utilized in the network, where β1 = 0.9 and β2 = 0.999. A total
of 200 epochs are trained. The number of batch sizes is set to
12 for CAVE, four for Chikusei, Pavia Center, and Botswana.
We initialize the learning rate of all layers to 1×10-4 and halve
by every 35 epochs. All experiments are performed on Pytorch
framework with NVIDIA GeForce RTX 3090 GPU.

3) Evaluation Metrics: Six widely quantitative image qual-
ity assessment metrics are used to evaluate the performance of
the M3SN, including peak signal noise ratio (PSNR), structure
similarity index measurement (SSIM), spectral angle mapper
(SAM), root mean square error (RMSE), erreur relative glob-
ale adimensionnelle de synthse (ERGAS), and universal image
quality index (UIQI). PSNR, SSIM, and RMSE are commonly
used to evaluate the spatial quality of reconstructed images.
SAM, ERGAS, and UIQI are usually used to assess image fusion
quality. PSNR, SSIM, and UIQI are spatial measurements, the
higher values indicate spatial reconstruction is good. SAM is
used to measure the spectral quality, the lower the value, the less
distortion of spectral reconstruction. ERGAS and RMSE are
global measurements, the ideal value is 0. We let the referenced
HSI and reconstructed HSI be denoted as IHR ∈ RB×rW×rH and
ISR ∈ RB×rW×rH , respectively, the aforementioned metrics are
expressed as

PSNR =
1

B

B∑
b=1

10log10

(
MAX2

b

MSEb

)
(26)

MSEb =
1

WH

W∑
w=1

H∑
h=1

‖IHR − ISR‖2 (27)

SSIM

=
1

B

B∑
b=1

2μb
IHR

μb
ISR

+ c1(
μb
IHR

)2
+
(
μb
ISR

)2
+ c1

2μb
IHRISR

+ c2(
μb
IHR

)2
+
(
μb
ISR

)2
+ c2

(28)

SAM = cos−1

( 〈ISR, IHR〉
‖ISR‖2‖IHR‖2

)
(29)

RMSE =
1

B

B∑
b=1

√∑W
w=1

∑H
h=1 (IHR − ISR)

2

w × h
(30)

ERGAS = 100r

√√√√ 1

B
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)2

(31)

UIQI =
1
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)2 2σb
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)2
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(32)

where 〈, 〉 is the dot product operation, r denotes scale factor,
and μb

IHR
and μb

ISR
represent the mean of IHR and ISR for the bth

band, respectively. σb
IHR

and σb
ISR

are the variance of IHR and ISR

for the bth band, and σb
IHRISR

is the covariance of IHR and ISR for
the bth band. c1 and c2 are two constants.
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TABLE I
QUANTITATIVE EVALUATION ON THE CAVE DATASET OF STATE-OF-THE-ART ALGORITHMS BY AVERAGE PSNR /SSIM/SAM/RMSE/ERGAS/UIQI FOR SCALE

FACTORS 2, 3, AND 4

4) Competing Methods: Eight competitive methods that con-
sist of four traditional methods and four CNN-based methods
are compared with our M3SN, including Bicubic, CNMF [17],
HySure [16], LTTR [18], SRCNN [24], MCNet [28], SSPSR
[38], and ERCSR [29]. Among these, Bicubic is a classical
interpolation method. CNMF based on matrix decomposition,
HySure based on Bayesian learning, and LTTR based on rep-
resentation learning are the traditional fusion-based methods.
SRCNN is the first CNN-based SR method for natural images.
MCNet, SSPSR, and ERCSR are the state-of-the-art CNN-based
HSI-SR methods with competing performance.

It should be noted that CNMF, HySure, and LTTR belong to
the fusion-based methods that require auxiliary HR images such
as PAN or MSI. Therefore, it would be unfair to just feed them
auxiliary HR images in inference phase. To let all methods accept
the same input information, we just use the bicubic interpolation
to up-sample the ILR to the desired auxiliary HR images for
CNMF, HySure, and LTTR methods [40].

B. Comparisons to State of the Arts

We compare M3SN with eight existing methods, including
Bicubic, CNMF, HySure, LTTR, SRCNN, MCNet, SSPSR,
and ERCSR. Four benchmark datasets CAVE, Harvard, Pavia
Center, and Botswana are employed to verify the effectiveness
of the M3SN for different scale factors.

1) Experiments on the Synthesized CAVE Dataset: Table I
presents the quantitative evaluation results for scale factors 2,
3, and 4. Red represents the best result and blue represents the
second-best result. At scale factor 2, the M3SN has achieved
the best results on PSNR, SSIM, RMSE, and UIQI, while the
second-best result on SAM. As the scale factor increases, M3SN

Fig. 6. Visual results of spatial SR of sponges_ms for the 20th band on the
CAVE dataset at scale factor 4. (The parentheses indicate the PSNR value.)

has achieved the best results on PSNR, SSIM, RMSE, ERGAS,
and UIQI, while achieved the second-best result on SAM.As for
the fusion-based methods, the CNMF, HySure, and LLTR have
achieved the poor performance, mainly because there are no
auxiliary HR images. As for CNN- based methods, the SRCNN
ignores the spectral dimension, the spatial–spectral information
is not underutilization. Although MCNet considers spatial and
spectral dimensions, it does not fully utilize 2-D units just
with a simple stack. SSPSR adopts RBs that is based on 2-D
network, leading to explore spatial and spectral information
not effectively. ERCSR achieves second-best results by cross-
utilizing spatial–spectral information, the second-order spectral
correlation is not explored. In contrast, our M3SN has achieved
the best result in the spatial indexes such as PSNR and SSIM
at all scale factors, mainly because it can fully consider the
multiscale shallow and deep spatial–spectral features, explore
more effective spatial features, which is important for improving
the sharpness of reconstruction results.

Figs. 6–9 also support the quantitative results. The recon-
structed HSI of various algorithms and detailed comparison
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Fig. 7. Absolute error map of sponges_ms at scale factor 4.

Fig. 8. Spectral angle visualization map of sponges_ms at scale factor 4. (The
parentheses indicate the SAM value.)

Fig. 9. Sample spectral curves of the two pictures were selected on the CAVE
at scale factor 4. (a) Spectrum of the red point. (b) Spectrum of the yellow point.

images for the 20th band of sponges_ms at scale factor 4 is
shown in Fig. 6. The area marked with a red rectangle shows
where we select to enlarge. As can be intuitively seen from
Fig. 6, in the image restored by the M3SN model, the edges
of rectangles with different gray levels are distinct, without
any blurring, and the overall visual effect is the sharpest with
well-defined edges. To better illustrate the spatial quality of
the reconstructed images, we also calculate the absolute error
map between the reconstructed and referenced HSI by various
algorithms. The bluer the images, the smaller the absolute error,
and the better the reconstruction quality. As shown in Fig. 7,
the M3SN recovers the detailed information better and obtains
a lower absolute error. Compared with other algorithms, M3SN
has the largest blue area in the reconstructed image, especially at
the edge and character positions of the color chart rectangle. This
indicates that M3SN can well reconstruct the high-frequency

Fig. 10. Visual results of spatial SR of Test area 7 for the fifth band on the
Chikusei dataset at scale factor 4. (The parentheses indicate the PSNR value.)

Fig. 11. Absolute error map of Test area 7 band on the Chikusei dataset at
scale factor 4.

information in the image. As shown in Fig. 7, the M3SN recovers
the detailed information better and obtains a lower absolute error.
Specifically, the square-frame artifacts in LTTR demonstrated
that the fusion-based approaches have a strong dependence on
the auxiliary HR images. The reconstructed images of Bicubic,
SRCNN, MCNet, and SSPSR have blurred edges.

For HSI-SR, keeping the spectrum undistorted is also a mea-
sure of model performance. To this end, the SAM value of each
pixel is visualized more intuitively at scale factor 4 as shown
in Fig. 8. However, just using the SAM value for illustrating
the spectral distortion is limited [58]. For a better illustration,
we take the spectral curve as a supplementary description. The
spectral curve of selected pixel in the sponges_ms and super-
balls_ms are shown in Fig. 10. As seen, the spectral curve is
closer to the corresponding ground truth, which shows that the
M3SN achieves good spectral fidelity.

2) Experiments on the Real-Scenario Chikusei Dataset: To
comprehensively demonstrate the effectiveness of the M3SN,
the Chikusei dataset that belongs to hyperspectral remote sens-
ing data is used to verify the performance of real HSI. Table II
shows the quantitative evaluation results of various algorithms
at scale factors 2, 3, and 4. Compared with existing methods, our
M3SN achieves superior performance in all evaluation criteria
for the different scale factors, especially at scale factor 2, six
evaluation metrics (+ 0.226dB,+ 0.0008,− 0.0510, 0,− 0.043,
+ 0.001) are significantly better than the second performance
algorithm ERCSR. The visual results of the spatial SR of Test
area 7 are displayed in Fig. 10. The lower left area is selected
to display. It can be seen that our M3SN achieves a clearer
road edge, whereas other competing methods fail to recover
the details. The corresponding absolute error maps are shown
in Fig. 11. As seen, the M3SN has the slightest absolute error,
which indicates a better reconstruction ability. The SAM value
shown in Fig. 12 can reflect the spectral distortion of different
algorithms. The 58th, 35th, and 22nd spectral bands is used to
synthesize the pseudocolor images for Test area 1 and Test area
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TABLE II
QUANTITATIVE EVALUATION ON THE CHIKUSEI DATASET OF STATE-OF-THE-ART ALGORITHMS BY AVERAGE PSNR /SSIM/SAM/RMSE/ERGAS/UIQI FOR SCALE

FACTORS 2, 3, AND 4

Fig. 12. Spectral angle visualization map of the Test area 7 at scale factor 4.
(The parentheses indicate the SAM value.)

7 as shown in Fig. 13. We can find that our M3SN achieves the
best spectral fidelity, while other competing methods result in
some obvious spectral distortion. Besides, the spectral curve of
the selected pixel is depicted. It can be seen that M3SN has a very
low SAM, and the spectral curve is closer to the ground-truth
value, indicating that M3SN has a good advantage in maintaining
spectral fidelity.

3) Experiments on the Real-Scenario Pavia Center Dataset:
We further conduct experiments on the Pavia Center dataset to
verify our M3SN performance on different sensors. Similar to
the Chikusei dataset, Table III shows the quantitative evalu-
ation results of various algorithms for different scale factors.
Our M3SN exhibits excellent performance at all scale factors,
indicating that M3SN significantly outperforms other competing
methods in terms of spatial resolution improvement and spectral
fidelity. Figs. 14–17 show the qualitative results. Fig. 14 is a
visual representation of the reconstructed HSI of Test area 4

Fig. 13. Sample spectral curves of the two pictures were selected on the
Chikusei dataset at scale factor 4. The first line is pseudo color image which
is synthesized by the 58th, 35th, and 22nd bands. (a) Spectral curve of the red
point. (b) Spectral curve of the yellow point.

on the Pavia Center. Our M3SN achieves a clearer edge than
other algorithms. Fig. 15 shows the absolute error map where
M3SN achieves the smallest error. In Figs. 16 and 17, the
SAM is visualized and the spectral curves of selected pixels
are displayed. It can be seen that M3SN obtains a lower SAM
value, and the spectral curves are closer to ground truth. That is,
M3SN has superior spectral fidelity.

4) Experiments on the Real-Scenario Remote Sensing
Botswana Dataset: Further experiments are performed on the
Botswana dataset to verify the performance of the M3SN on
real-scenario remote sensing HSIs. The two traditional methods
(i.e., Bicubic and HySure) and two CNN-based methods (i.e.,
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TABLE III
QUANTITATIVE EVALUATION ON THE PAVIA CENTER DATASET OF STATE-OF-THE-ART ALGORITHMS BY AVERAGE PSNR /SSIM/SAM/RMSE/ERGAS/UIQI FOR

SCALE FACTORS 2, 3, AND 4

Fig. 14. Visual results of spatial SR of Test area 4 for the 20th band on the
Pavia Center dataset at scale factor 4. (The parentheses indicate the PSNR value.)

Fig. 15. Absolute error map of Test area 4 on the Pavia Center dataset at scale
factor 4.

SRCNN andERCSR) are selected for comparison. The quan-
titative results in Table IV show that the performance of our
M3SN is best in all scales. Figs. 18 and 19 show the visual
results of spatial SR and the absolute error map, respectively,
which also demonstrates that the M3SN achieves the best result.
Furthermore, in Figs. 20 and 21, our M3SN obtains lowest
spectral distortion and the spectral curves of selected pixels are
closer to the ground truth. The Bicubic, HySure, and SRCNN
have obvious spectral distortion. In all, M3SN achieved best

Fig. 16. Spectral angle visualization map of Test area 4 on the Pavia Center
dataset at scale factor 4. (The parentheses indicate the SAM value.)

Fig. 17. Sample spectral curves on the Pavia Center dataset at scale factor 4.
(a) Spectral curve of the red point. (b) Spectral curve of the yellow point.
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Fig. 18. Visual results of spatial SR of Test area 1 for the 20th band on the Botswana dataset at scale factor 3. (The parentheses indicate the PSNR value.)

Fig. 19. Absolute error map of Test area 1 on the Botswana dataset at scale factor 3.

Fig. 20. Spectral angle visualization map of Test area 1 on the Botswana dataset at scale factor 3. (The parentheses indicate the SAM value.)

TABLE IV
QUANTITATIVE EVALUATION ON THE BOTSWANA DATASET OF

STATE-OF-THE-ART ALGORITHMS BY AVERAGE PSNR
/SSIM/SAM/RMSE/ERGAS/UIQI FOR SCALE FACTORS 2, 3, AND 4

results in both spatial and spectral dimensions on the remote
sensing Botswana HSIs.

5) Sensitivity Analysis of Different Sizes Images: Our prelim-
inary analysis indicates that although we mainly focus on the SR

Fig. 21. Sample spectral curves on the Botswana dataset at scale factor 3.
(a) Spectral curve of the red dot. (b) Spectral curve of the yellow dot.

reconstruction of small image areas, the network structure can
theoretically handle input images of any size. This is because our
network structure adopts the design principle of layer-by-layer
convolution, aiming to learn the mapping relationship between
local image features. The relationship should remain consistent
across different image sizes. To verify this opinion, the exper-
imental conclusions on the Houston dataset at a scale factor
of 4 were validated. We fed the large areas and small areas
into the network for inference, the results and efficiency are
consistent with existing experimental conclusions. Specifically,
in the inference stage, we used two modes: the overall mode
and the patch mode. In the overall mode, a large image with
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TABLE V
QUANTITATIVE EVALUATION ON THE HOUSTON DATASET OF STATE-OF-THE-ART ALGORITHMS FOR TWO MODES BY AVERAGE PSNR

/SSIM/SAM/RMSE/ERGAS/UIQI AT SCALE FACTORS 4

Fig. 22. Visual results of spatial SR of subimage and the corresponding areas in the large images for the 5th band on the Houston dataset at scale factor 4. (The
parentheses indicate the PSNR value.)

the size of 512 × 512 × 50 was directly input into the network
for inference. In the patch mode, the large image was divided
into four small subimages with the size of 128 × 512 × 50
for inference, and the evaluation values were then averaged. We
compared the accuracy and error of the two modes. As shown
in Table V, � represents the relative error, the relative error of
the PSNR is between 0 and 0.006, the relative error of SSIM
is between 0.0001 and 0.0009, the relative error of SAM is
between 0 and 0.023, the relative error of RMSE is between
0.047 and 0.068, the relative error of ERGAS is between 0and
0.020, and the relative error of UIQI is between 0 and 0.002. All
the relative errors are within acceptable ranges. Therefore, the

impact of inputting the whole large image and dividing it into
small patches on image SR quality can be ignored. Besides, our
proposed method is superior or equal to the second-best method
ERCSR in six evaluation indicators, which further demonstrates
the superiority of the M3SN in improving hyperspectral image
SR tasks. In addition, we presented the visual results of spa-
tial SR of subimages (sub_M3SN.etc) with the size of 64 ×
128 × 50 and the corresponding areas in the large images
(M3SN.etc) in Fig. 22. Furthermore, the absolute error maps
are shown in Fig. 23, while the SAM visualization maps are
shown in Fig. 24. It can be seen from Fig. 22 that the M3SN
has significant advantages in preserving subtle structures in
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Fig. 23. Absolute error map of subimages and the corresponding areas in the large images on the Houston dataset at scale factor 4.

Fig. 24. Spectral angle visualization map of subimage and the corresponding areas in the large images on the Houston dataset at scale factor 4. (The parentheses
indicate the SAM value).

images, such as roads, and furthermore, M3SN has minimum
spectral distortion. Moreover, a proximate PSNR and SAM
across different input image sizes suggests that the quality
of the reconstructed image remains relatively stable regardless
of the input size. Therefore, the impact of input image size on
the inference results is minimal. In short, the proposed method
M3SN is superior to the competitors in both spatial information
recovery and spectral information preservation.

6) Time Analysis: We compare the prediction time for differ-
ent algorithms (deep-learning-based methods) on the Chikusei
test dataset at scale factor 2. The test dataset consists of 16 HSIs
with a size of 128 × 64 × 64. We calculate the mean PSNR of
the whole dataset. Fig. 25 shows the relationship between time
and PSNR.

We calculate the mean PSNR of the whole dataset. Fig. 25
shows the relationship between time and PSNR. As seen, M3SN
has obtained the highest PSNR value with acceptable time.
Because the second-order attention mechanism is introduced
into M3SN, which not only improves the learning ability of
discriminative spectral features but also increases the amount of
calculation.

Fig. 25. Time-PSNR on the Chikusei dataset at scale factor 2.

7) Study of DMFB: The DMFB is the main component of the
M3SN. Therefore, we verify the effectiveness by analyzing its
components: MSFE and SpaFE. The experiments are conducted
on the Pavia Center at scale factor 4. First, we verify the case
of just MSFE, just SpaFE, and both (MSFE+SpaFE). Table VI
details the experimental performance under the same parameter
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TABLE VI
QUANTITATIVE EVALUATION ON THE PAVIA CENTER DATASET OF ABLATION

INVESTIGATIONS BY AVERAGE PSNR /SSIM/SAM/RMSE/ERGAS/UIQI AT

SCALE FACTOR 4

TABLE VII
QUANTITATIVE EVALUATION ON THE PAVIA CENTER DATASET OF DIFFERENT

ATTENTION MECHANISM BY AVERAGE PSNR
/SSIM/SAM/RMSE/ERGAS/UIQI AT SCALE FACTOR 4

settings. In the case of MSFE, the effect worsens because the
network does not mine enough spatial information. In the case
of SpaFE, the performance becomes terrible due to SpaFE only
exploring spatial information and completely ignoring the spec-
tral information. The performance of MSFE+SpaFE is greatly
improved. That is, dual-path learning enables spatial–spectral
features and spatial features to complement each other. It also
improves the learning ability of the spatial domain at the same
time. Second, the main component M3SHS of MSFE is verified.
We verify the cases of only 3D-Res2Net (R3D) and 3D-Res2Net
with different attention mechanisms, including the first-order
attention mechanism (R3D_1), second-order attention mecha-
nism branch (R3D_2), and HSAM (R3D_H). Besides, since our
HSAM is improved from the mixed attention in the 3-D-MSMA,
we also verify the case of 3D-Res2Net and mixed attention
(R3D_M). Keeping other components of the network and pa-
rameter settings unchanged, we conduct the experiments on the
Pavia Center.

The experimental results are shown in Table VII. R3D_H
achieves the best result. Regarding SAM, R3D_2 is 0.019 lower
than R3D_1, indicating that the second-order attention mech-
anism has a stronger ability to explore spectral correlations.
R3D_H is 0.026 lower than R3D_1 and 0.007 lower than R3D_2,
indicating that HSAM has a stronger ability to improve the
learning ability of discriminative spectral features. Compared to
R3D_M, we can see that our HSAM has achieved excellent re-
sults, which demonstrated that HSAM overcomes the limitation
in the 3-D-MSMA and its ability of modeling the relationship
is enhanced.

8) Parameter Analysis: In this section, we analyze the num-
ber of parallel layers in the M3SIM on four datasets. The basic
parameters include the number of parallel layers (denote as N for
short) used in the M3SIM and the number of DMFBs (denote as
D for short) used in the DFE. First, we let N change from 2 to 5
by copying and removing the medium branch layer. We display
the curves of PSNR, SSIM, and SAM of different layers for all

Fig. 26. Curves of PSNR, SSIM, and SAM for different number of parallel
layers in the MSIM on the four datasets.

Fig. 27. Histogram of PSNR, SSIM, and SAM for different number D of
DMFBs in the DFE on the Pavia Center dataset.

TABLE VIII
QUANTITATIVE EVALUATION ON THE PAVIA CENTER DATASET OF DIFFERENT

ATTENTION MECHANISM BY AVERAGE PSNR
/SSIM/SAM/RMSE/ERGAS/UIQI AT SCALE FACTOR 4

datasets as depicted in Fig. 26. As seen, the inflection point N =
3 achieved the best performance.

In addition, we let D change from 2 to 5 for comparison. The
experimental results are shown in Fig. 27. As the number D of
DMFB increases from 2 to 4, the performance of the network
goes better. However, the performance is decreasing from 4
to 5. Increasing the number of DMFB does not improve the
performance of the network. That is, the performance of the
network tends to be saturated for D = 4 DMFBs. As a result, we
set N = 3 and D = 4 in the experiments.

9) Ablation Investigation: In this section, different compo-
nent combinations are set to analyze the performance of our
M3SN. Table VIII presents the results of the ablation investiga-
tion on the effect of DMFB, LSC, Nearest, MSIB, and MSFB.
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Through these operations, the contribution of each component to
the network performance can be drawn. The network containing
only DMFB produces the worse performance. Then, the LSC
and Nearest operation are added to the network, the value of
the PSNR is increased greatly, which means that the LSC can
improve the representative ability and the Nearest operation
can alleviate the burden of the network effectively. When we
add MSIB to the network, the performance is further improved,
which confirms the importance of obtaining multiscale shallow
spatial–spectral features at the early stage of the network. Fi-
nally, we add MSFB to the network, the PSNR gets better, that
is, MSFB effectively improves the utilization of different levels
of features.

IV. CONCLUSION

In this article, a novel HSI-SR learning network M3SN is
proposed. It integrates hybrid 3-D and 2-D convolutions, 3D-
Res2Net, and HSAM. The multiscale spectral–spatial features
can be effectively extracted by hybrid 3-D convolution and 2-D
convolutions of different sizes kernel. Guided by SE-Net, multi-
scale shallow spatial–spectral features obtained at earlier stages
are integrated to obtain more representative spatial–spectral
feature learning. The multiscale deep spatial–spectral features
and spatial features are learned separately in a dual-path learning
way, strengthening the learning ability of spatial domain. When
3D-Res2Net is equipped with HSAM simultaneously driven by
the first-order spectral statistics and the second-order covari-
ance statistics, the ability of discriminant spectral features is
learned to improve the reconstruction ability. Sufficient ablation
experiments verify the contribution of each component to the
network performance. Intensive experimental results show that
our M3SN is superior to the competitive methods on synthetic
scenes and real HSI datasets in terms of kinds of evaluation
criteria, visual effect, and spectral fidelity.
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