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ABSTRACT In recent years, there has been a strong focus on the stability and control of stochastic networks,
particularly single-layer networks. However, with the emergence of multi-layer networks, the research in this
area has expanded significantly. Multi-layer networks have gained much attention due to their relevance in
network science. In this paper, we address the synchronization of stochastic multi-layer networks (SMLNs)
using finite-time (FnT) and fixed-time (FxT)methods with pinning control. Firstly, we provide the conditions
for achieving FxT synchronization in SMLNs. Secondly, we present the conditions for FnT synchronization
in SMLNs. Additionally, two kinds of finite-time convergent values of the system are given, which can
be any given time. Furthermore, we discuss the relationship between the coupling matrix and the network
layers, particularly in the context of minimum convergence time. This analysis has practical implications for
real-world applications. Finally, we present numerical simulations to demonstrate the effectiveness of our
proposed method.

INDEX TERMS Stochastic multi-layer networks, synchronization, finite-time control, fixed-time control.

I. INTRODUCTION
As is well known, synchronization, as a very common natural
phenomenon, has been widely applied in many fields dur-
ing its evolution and development [1], [2]. Although many
important achievements have been made in various studies
and applications of complex networks, most of the research
results are mainly based on achieving a single structure and
function of a single network (also known as a single-layer
network) [3], [4], [5], [6], [7], [8], [9]. Among them, the
complex system in reality was abstracted as a single-layer net-
work, ignoring its possible multiple structures and functions:
the coupling or overlapping interaction of multiple networks
such as transportation networks between cities, commodity
trade networks between countries and regions, and so on.
Various multilayer networks have become ubiquitous. Funk
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and Jansen pointed out that studying MLNs as single-layer
networks and ignored their multilayer nature would lead to
erroneous conclusions [10]. Therefore, in order to meet the
research needs of real complex systems coupled by different
structures and functions, significant changes had taken place
in complex networks and related research fields, with the
focus shifting from singular-layer networks to multi-layer
networks (MLNs).

At present, the study of MLNs has become one of the
most popular research directions in the field of complex
networks. Scholars obtained many meaningful results on the
structure and properties of MLNs, such as Domenico et al.
discussion of the physical properties of diffusion processes
in MLNs [11]. Gao et al. studied the robustness of a net-
work [12]. Pang et al. showed that the edge dynamics of
MLNs were structurally more controllable than single-layer
networks of the same size [13]. Boccaletti et al. discussed the
structure and dynamics of MLN [14]. Mucha et al. discussed
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community structures in time-varying, multi-scale, and mul-
tiple networks [15]. However, some excellent results had also
emerged in the research on the stability and synchronisa-
tion of MLN [16]. For example, Suykens et al. derived the
robust local stability conditions of multi-layer recurrent neu-
ral networks through the robustness analysis of linear system
under matrix inequalities and nonlinear disturbances [17].
Rakshit et al. used the principal stability function method to
explore the synchronization of neurons within and between
layers of multi-layer hypernetworks, and obtained the sta-
bility conditions for synchronization and the robustness of
synchronization states to initial conditions [18]. Yao et al.
designed a nonlinear hydraulic system controller based on
a MLNs to achieve asymptotic tracking of various distur-
bances. Theoretical analysis showed that the controller has
semi global asymptotic stability [19]. Liu et al. conducted
a study on an encryption scheme that relies on the syn-
chronization of a two-layer complex dynamic network [20].
Similarly, He et al. explored the synchronization control of
nonlinear multi-agent systems using the MLN approach [21].
Additionally, Wei et al. delved into the synchronization of
double-layer networks that were affected by delayed nodes
and noise disturbances [22]. Sevilla-Escoboza et al. stud-
ied the problem of synchronising MLNs across layers [23].
Wang et al. discussed how inter-node synchronisation and
full synchronisation could be achieved in MLNs under a
directed-switched communication topology with Lur’e-type
dynamics [24]. Blaha et al. deliberated the clustering syn-
chronization of multi-layer Colpitts oscillator networks in
their experiments [25].
It is expensive and unnecessary that controllers are applied

to all nodes in practical engineering. By selectively apply-
ing control to a small number of nodes in the network, the
entire network exhibits the desired behavior. Compared to
controlling all nodes, applying local feedback control to a
small number of nodes in the network can be more attrac-
tive and desirable due to its lower cost. Therefore, we can
use the method of pinning control for SMLNs, and achieve
control of the entire SMLNs by controlling a few nodes.
At present, there were few research results on MLNs con-
tainment control. For example, Lu et al. studied the network
synchronization problem of networks using pinning control
methods [26]. Zhou et al. further investigated the clustering
synchronisation of multiple stochastic subnets based on a
pinning control approach [27]. Ning et al. studied the general-
ized synchronization of two-layer networks based on pinning
control methods [28]. Wang et al. studied the mean square
synchronization of random MLNs by pinning control meth-
ods [29]. Of course, the majority of these research findings
are predicated on the assumption that the control time tending
towards infinity. However, in engineering, it is often neces-
sary to realise control of the network in a limited period of
time, which has led the researchers to pay more attention to
the theory of FnT control in the study of MLNs. For example,
Sun et al. conducted a study on the FxT event-triggered

FIGURE 1. The schematic diagram of the four-layer SMLNs with five node.

synchronous control of multi-layer Kuramoto oscillator net-
works [30]. Zhang et al. conducted a study on a specific
type of multilayer nonlinear coupled complex networks that
exhibited intermittent feedback FnT synchronization [31].
Tan et al. provided a detailed analysis of a synchronization
control method for two-layer dynamic networks that incor-
porates FxT stochastic mean square synchronization [32].
Tang et al. discussed the concept of adaptive FnT mixed inter
layer synchronization for time-varying coupled delay two-
layer complex networks [33].

In addition, in reality, due to the uncertainty of the envi-
ronment, nodes are usually affected by random disturbances,
such as infectious disease epidemics in turbulent biology in
social networks, and Stochastic resonance systems in chem-
istry. The existence of stochastic term generally exacerbates
the instability of the system, so in the synchronization control
of the system, it is necessary to design appropriate controllers
to ensure system stability. It is not difficult to see that studying
the FnT time constraint control of SMLNs will be a more
meaningful topic. For example, a four-layer network struc-
ture diagram is shown in Figure 1. Different colors indicate
different layers. In this paper we assume that each layer has
the same random disturbance.

The primary objective of this note is to establish criteria
for FnT/FxT synchronization in SMLNs. The main work and
contributions of this study are outlined as follows: 1) Based
on FxT/FnT stable theorems of stochastic nonlinear system,
the sufficient conditions for FxT/FnT synchronization of
SMLNs are given. At the same time, the concrete expressions
of the finite settling time of two kinds of convergence time
are also given. 2) At present, there is little literature on the
relationship among the finite-time convergence ofmulti-layer
networks, the number of pinningcontrol nodes and system
structure. Under the condition of achieving minimum con-
vergence time, this paper provides the relationship among
finite-time convergence, the number of pinningcontrol nodes
and system structure, which will help to optimize the control
of MLNs, for example, how to select the number of control
nodes under the minimum control time according to the
network structure.

The structure of this paper is as follows. In Section II,
the model and several lemmas are provided. In Section III,
some FnT pth moment quasi-synchronization conditions for
SNNs are introduced. An illustrative example is showcased
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in Section IV. In the last part of the paper, the conclusions
from the research are summarized.

II. MODEL STATEMENT AND PRELIMINARIES
In this paper, we shall consider (�, ℑ,P) as a complete prob-
ability space, accompanied by a filtration denoted as {ℑt }t≥0,
which meets the standard conditions. Let ω = {ω(t), t ≥ 0}
be an m-dimensional ℑt -adapted Brownian motion. The
space Rn refers to the real n-dimensional space, while R+

represents all nonnegative real numbers. The space Rn×m,
on the other hand, denotes the space of n×m matrices. For a
given vector or matrix y ∈ Rn, |y| denotes the Euclidean norm
|y| =

(∑n
i=1 y

2
i

)1/2
. The transpose of a vector or a matrix A

is denoted by AT . ε denotes mathematical expectation.
Consider the following SMLNs,

µ̇i(t) = f (µi(t)) + c
∑m

k=1

∑N

j=1
B(k)ij 0kµj(t)

+

∑m

k=1
σi (t, µi(t)) ω̇i(t), (1)

where µi(t) = (µi1(t), µi2(t), · · · , µin(t))T ∈ Rn, f (·) are

nonlinear functions; B(k) =

(
B(k)ij

)
N×N

(k = 1, 2, · · · ,m) is
the couplingmatrix describing topological structure of the kth
layer and satisfies B(k)ii = −

∑N
j=1,j̸=i B

(k)
ij , i = 1, 2, · · · ,N .

0k represents the inner coupling matrix of the kth layer.
ωi(t) = (ωi1(t), · · · , ωin(t))T ∈ Rn are n-dimensional Brow-
nian motions, σ (t) =

(
σij(t, µi(t))

)
n×n : R+

× Rn × Rn →

Rn×n is the noise intensitymatrix, and it is linear, c is coupling
strength.

For SMLNs (1), a response SMLNs can be constructed as
follows:

ϑ̇i(t) = f (ϑi(t)) + c
∑m

k=1

∑N

j=1
B(k)ij 0kϑj(t)

+

∑m

k=1
σi (t, ϑi(t)) ω̇i(t) + ui(t), (2)

where ϑi = (ϑi1, ϑi2, · · · , ϑin)
T

∈ Rn, ui(t) =

(ui1(t), ui2(t), · · · , uin(t))T ∈ Rn is the controller.
Letϖi(t) = ϑi(t)−µi(t), the error system can be illustrated

in the following manner:

dϖ (t)

=

[
F (ϑ(t))−F (µ(t))+c

∑m

k=1

(
B(k) ⊗ 0k

)
ϖ (t)+u(t)

]
dt

+

∑m

k=1
ϕ(k)(t)dω(t), (3)

where ϖ (t) =
(
ϖ T

1 (t), ϖ
T
2 (t), · · · , ϖ T

N (t)
)T , F (µ(t)) =(

(f (µ1(t)))T , (f (µ2(t)))T , · · · , (f (µN (t)))T
)T
, u(t) =(

uT1 (t), u
T
2 (t), · · · , uTN (t)

)T , ϖi(t) = (ϖi1(t), · · · , ϖin(t))T .
To arrive at the primary outcome, the following preliminar-

ies are given.
(A1): Suppose f (·) satisfies the following Lipschitz

condition

|f (ϑi(t)) −f (µi(t))| ≤ η1ϖi(t), η1 ∈ R+.

(A2): The noise intensity matrix satisfies the following
conditions

trace
(
σ T (t, ϖ (t)) σ (t, ϖ (t))

)
≤ η2

∑n

i=1
|ϖi(t)|2, η2 ∈ R+.

Consider the following stochastic nonlinear system (SNS)

dϑ(t) = f1 (ϑ(t)) dt + f2 (ϑ(t)) dω(t), (4)

where ϑ(t) ∈ Rn is the state vector, f1 (·) : Rn → Rn and
f2 (·) : Rn → Rn×m are continuous functions, ω (·) is an
m-dimensional Brown moment. f1(0) = 0, f2(0) = 0, it is
granted that the SNS (4) has a unique global solution denoted
by ϑ (t, ϑ0), 0 ≤ t < ∞, where ϑ0 is the initial state.
For each υ(t) ∈ C2,1

(
Rn × R+,R+

)
, the operator Lυ(t)

relative to the SNS (4) is

Lυ(t) =
∂υ(t)
∂ϑ(t)

·f1 +
1
2
trace

(
f T2 ·

∂2υ(t)
∂ϑ2(t)

·f2

)
,

where (∂υ(t)/∂ϑ(t)) = ((∂υ(t)/∂ϑ1(t)) , · · · , (∂υ(t)/∂ϑn(t))) ,(
∂2υ/∂ϑ2

)
=

((
∂2υ/∂ϑj∂ϑk

))
n×n (j, k = 1, 2, · · · , n) .

Definition 1 [33]: The equilibrium ϑ(t) = 0 of the
SNS (4) is FnT stable if

lim
t→T (ϑ(0))

ε |ϑ(t)| = 0, ∀ϑ(0) ∈ Rn,

where T (ϑ(0)) > 0 is associated with the initial condition of
the system.
Definition 2 [34]: The equilibrium ϑ(t) = 0 of the

SNS (4) is FxT stable if

lim
t→T

ε |ϑ(t)| = 0, ∀ϑ(0) ∈ Rn,

where T > 0 is a constant.
Lemma 1 [35]: If α ∈ Rn, β ∈ Rn, then ∀φ > 0,

α
′

β + β
′

α ≤ φα
′

α + φ−1β
′

β.

Lemma 2 [36]: If χi ≥ 0, i = 1, 2, · · · ,N , 0 < δ ≤

1, γ > 1, then∑N

i=1
χ δ
i

≥

(∑N

i=1
χi

)δ

,
∑N

i=1
χ

γ

i ≥ N1−γ

(∑N

i=1
χi

)γ

.

Lemma 3 [37]: The linear matrix inequality (LMI) H =(
H11 H12
HT
12 H22

)
< 0 is synonymous with either of the following

two conditions:

(1) H11 < 0,H22−HT
12H

−1
11 H12 < 0,

(2) H22 < 0,H11−H12H
−1
22 H

T
12 < 0,

where H11 = HT
11 and H22 = HT

22.

Lemma 4 [38]: Consider the SNS (4), if there exists a
function υ (ϑ(t)) = ϑ2(t) that is regular, positive definite and
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radically unbounded, as well as real numbers κ1 > 0, 0 <

p < 1, such that

Lυ (ϑ(t)) ≤ −κ1υ
p (ϑ(t)) , (5)

then the origin of the SNS (4) is FnT stochastic stable, and

ε [T ] ≤
υ(0)
κ1

1
1−p

.

Lemma 5 [39]: For the SNS (4), if there exists a con-
tinuous and positive-definite function υ (ϑ(t)) = ϑ2(t) that
fulfills the following condition satisfies:

Lυ (ϑ(t)) ≤ −ϕ1υ
p (ϑ(t)) −ϕ2υ

q (ϑ(t)) , (6)

then the SNS (4) is FnT stochastic stable, and

ε [T ] ≤
1

1−p
1
ϕ1

+
1

q−1
1
ϕ2

,

where ϕ1 > 0, ϕ2 > 0, q > 1, 0 < p < 1.
Remark 1: At present, the stability concepts related to

convergence speedmainly include exponential stability, finite
time stability, and fixed time stability. For example, for the
dynamic system ẋ(t) = u(x(t)), to ensure its exponential
stability, proportional control is generally used u(x(t)) =

−kx, to ensure its finite time stability, low power control is
generally used u(x(t)) = −|x|asign(x(t)), 0 ≤ a < 1 to
ensure its fixed time stability, double power control is gen-
erally used u(x(t)) = −|x|asign(x(t))−|x(t)|bsign(x(t)), 0 ≤

a < 1, b > 1. Our system is FxT and FnT stable.

III. FNT/FXT SYNCHRONIZATION OF SMLNS
Theorem 1: Under (A1)-(A2), if λmax(B(k) ⊗ 0k )N−l <

−
1
cm

(
η1 +

1
2η2

)
, k∗ > λmax

(
H11−H12H

−1
N−lH

T
12

)
, then the

error system (3) is FxT stability by the controller

ui(t) =


−kiϖi(t)−k̂iϖ

q
i (t)−kiϖ

p
i (t),

i = 1, 2, · · · , l,
0, i = l + 1, l + 2, · · · ,N ,

(7)

where λmin
(
KN ⊗ IN

)
≥

2
(1−p)T ∗

2
1−p
2 , λmin

(
K̂N ⊗ IN

)
≥

2
(q−1)T ∗

2
1−q
2 (Nn)

q−1
2 ,KN = diag(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0),

K̂N = diag(

l︷ ︸︸ ︷
k̂1, · · · , k̂l,

N−l︷ ︸︸ ︷
0, · · · , 0),KN = diag

(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0), k∗ = min1≤i≤l (ki) , ki is a positive

numbers which is to be determined, and

ε [T ] ≤ T ∗ ,

where T ∗ > 0 is any given time.
Proof: Let

υ(t) =
1
2

∑N

i=1
ϖ T
i (t)ϖi(t), (8)

the time derivative of υ(t) along the trajectory of system (8)
can be calculated as a random differential using the Itô’s
formula

dυ(t) = Lυ(t)dt + ϖ T (t)σ (t, ϖ (t)) dω(t),

where the differential operator

Lυ(t)

=

∑N

i=1
ϖi(t)

[
f (ϑi(t)) −f (µi(t)) + c

∑m

k=1

∑N

j=1

×B(k)ij 0kϖj(t) + ui(t)
]

+
1
2
trace

(
(ϕ(t))Tϕ(t)

)
. (9)

By using (A1)-(A2) , yields

Lυ(t)

≤

∑N

i=1

[
η1ϖ

T
i (t)ϖi(t) + c

∑m

k=1

∑N

j=1
B(k)ij

× 0kϖ
T
i (t)ϖj(t)−kiϖ T

i (t)

× ϖi(t)−k̂iϖ T
i (t)ϖ

q
i (t)−kiϖ

T
i (t)ϖ

p
i (t)

]
+

1
2
η2

∑N

i=1
ϖ T
i (t)ϖi(t)

≤

∑N

i=1

[
η1ϖ

T
i (t)ϖi(t) + c

∑m

k=1

∑N

j=1
B(k)ij

× 0kϖ
T
i (t)ϖj(t)

]
−

∑l

i=1

[
kiϖ T

i (t)ϖi(t)
]
−

∑l

i=1

[
k̂iϖ T

i (t)ϖ
q
i (t)

]
−

∑l

i=1

[
kiϖ T

i (t)ϖ
p
i (t)

]
+

1
2
η2

∑N

i=1
ϖ T
i (t)ϖi(t)

≤ ϖ T (t)
[((

η1 +
1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k−KN

)
⊗IN ]

× ϖ (t)−λmin

(
K̂N ⊗ IN

)
ϖ T (t)ϖ q(t)

−λmin
(
KN ⊗ IN

)
ϖ T (t)ϖ p(t) (10)

Let � =

(
η1 +

1
2η2

)
IN + c

m∑
k=1

B(k) ⊗ 0k−KN , KN =

diag(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0), K̂N = diag(

l︷ ︸︸ ︷
k̂1, · · · , k̂l,

N−l︷ ︸︸ ︷
0, · · · , 0), KN = diag(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0), H =(

η1 +
1
2η2

)
IN + c

m∑
k=1

B(k), then � = H−KN . From

Lemma 3, H−KN =

[
H11−Kl H12
HT
12 HN−l

]
< 0 where Kl =

diag (k1, · · · , kl) .

For

λ(H )N−l

= λ

((
η1 +

1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k

)
N−l

≤ η1 +
1
2
η2 + cmλmax

(
B(k) ⊗ 0k

)
N−l

.
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If λmax
(
B(k) ⊗ 0k

)
N−l < −

1
cm

(
η1 +

1
2η2

)
, then HN−l < 0.

From Lemma 3, if S < 0, then (H11−Kl) −H12H
−1
N−lH

T
12 <

0, which means k∗ > λmax

(
H11−H12H

−1
N−lH

T
12

)
. Thus,

by choosing a suitable k∗ to make � < 0, that is((
η1 +

1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k−KN

)
⊗ IN < 0.

So,

Lυ(t)

≤ ϖ T (t)
[((

η1 +
1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k−KN

)
⊗IN ]ϖ (t)−λmin

(
K̂N ⊗ IN

)
ϖ T (t)ϖ q(t)

−λmin
(
KN ⊗ IN

)
ϖ T (t)ϖ p(t)

≤ −λmin

(
K̂N ⊗ IN

)
ϖ T (t)ϖ q(t)

−λmin
(
KN ⊗ IN

)
ϖ T (t)ϖ p(t).

When 0 < p < 1, ϖ T (t)ϖ p(t) ≥ 2
p+1
2 (υ(t))

p+1
2 , and q >

1, ϖ T (t)ϖ q(t) ≥ 2
q+1
2 (Nn)

1−q
2 (υ(t))

q+1
2 , so it has

Lυ(t) ≤ −λmin
(
KN ⊗ IN

)
2
p+1
2 (υ(t))

p+1
2

−λmin

(
K̂N ⊗ IN

)
2
q+1
2 (Nn)

1−q
2 (υ(t))

q+1
2 .

From Lemma 5, the origin of the SNS (3) is FxT stochastic
stable, and

ε [T ] ≤
1

1− p+1
2

1

2
p+1
2 λmin

(
KN ⊗ IN

)
+

1
q+1
2 −1

1

λmin

(
K̂N ⊗ IN

)
2
q+1
2 (Nn)

1−q
2

,

when λmin
(
KN ⊗ IN

)
≥

2
(1−p)T ∗

2
1−p
2 , λmin

(
K̂N ⊗ IN

)
≥

2
(q−1)T ∗

2
1−q
2 (Nn)

q−1
2 ,

ε [T ] ≤ T ∗ .

Remark 2: In theorem 1, ε [T ] ≤ T ∗ is obviously indepen-
dent of the initial value of the system, so the error system (3)
converges in FxT.
Theorem 2: Under (A1)-(A2), if λmax

(
B(k) ⊗ 0k

)
N−l <

−
1
cm

(
η1 +

1
2η2

)
, k∗ > λmax

(
H11−H12H

−1
N−lH

T
12

)
, then the

error system (3) is FnT stability by the controller

ui(t) =

{
−kiϖi(t)−kiϖ

p
i (t), i = 1, 2, · · · , l

0, i = l + 1, l + 2, · · · ,N

(11)

where λmin
(
KN ⊗ IN

)
≥

1
(1−p)T ∗

N∑
i=1

ϖ T
i (0)ϖ (0), KN =

diag(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0), KN = diag(

l︷ ︸︸ ︷
k1, · · · , kl,

N−l︷ ︸︸ ︷
0, · · · , 0), k∗ = min1≤i≤l (ki) , ki is a positive numbers
which are to be determined, and

ε [T ] ≤ T ∗ ,

where T ∗ > 0 is any given time.
Proof: Let

υ(t)

=
1
2

∑N

i=1
ϖ T
i (t)ϖi(t).Lυ(t) ≤

∑N

i=1

[
η1ϖ

T
i (t)ϖi(t)

+c
∑m

k=1

∑N

j=1
B(k)ij 0kϖ

T
i (t)ϖj(t)−kiϖ T

i (t)ϖi(t)

−kiϖ T
i (t)ϖ

p
i (t)

]
+

1
2
η2

∑N

i=1
ϖ T
i (t)ϖi(t)

≤

∑N

i=1

[
η1ϖ

T
i (t)ϖi(t) + c

∑m

k=1

∑N

j=1
B(k)ij

×0kϖ
T
i (t)ϖj(t)

]
−

∑l

i=1

[
kiϖ T

i (t)ϖi(t)
]

−

∑l

i=1

[
kiϖ T

i (t)ϖ
p
i (t)

]
+

1
2
η2

∑N

i=1
ϖ T
i (t)ϖi(t)

≤ ϖ T (t)
[((

η1 +
1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k−KN

)
⊗IN ]ϖ (t)−λmin

(
KN ⊗ IN

)
ϖ T (t)ϖ p(t). (12)

Similar to the process of proving Theorem 1, by choosing
a suitable k∗ = min1≤i≤l (ki) to make((

η1 +
1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k−KN

)
⊗ IN < 0.

So,

Lυ(t) ≤ ϖ T (t)
[((

η1 +
1
2
η2

)
IN + c

∑m

k=1
B(k) ⊗ 0k

−KN ) ⊗ IN ]ϖ (t)−λmin
(
KN ⊗ IN

)
ϖ T (t)ϖ p(t)

≤ −λmin
(
KN ⊗ IN

)
ϖ T (t)ϖ p(t)

≤ −λmin
(
KN ⊗ IN

)
υ(t)

p+1
2 .

From Lemma 4, the origin of the SNS (3) is FnT stochastic
stable, and

ε [T ] ≤
υ(0)

λmin
(
KN ⊗ IN

) ×
1

1− p+1
2

,

when λmin
(
KN ⊗ IN

)
≥

1
(1−p)T ∗

∑N
i=1 ϖ T

i (0)ϖi(0),

ε [T ] ≤
υ(0)

1
(1−p)T ∗

∑N
i=1 ϖ T

i (0)ϖi(0)
×

1

1− p+1
2

,

so

ε [T ] ≤ T ∗ .

Remark 3: In Theorem 2,there is ε [T ] ≤ T ∗ only when
λmin

(
KN ⊗ IN

)
≥

1
(1−p)T ∗

∑N
i=1 ϖ T

i (0)ϖi(0), so the conver-
gence time of the system is still dependent on the initial value
of the system.
Remark 4: FnTcontrol generally means that the settling

time of the system convergence is related to the initial value
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FIGURE 2. Synchronous evolution curve.

FIGURE 3. The controller evolution curve.

FIGURE 4. Synchronous evolution curve.

of the system, while the FxTcontrol means that the settling
time of the system convergence is unrelated to the initial
value of the system, but only related to the parameters of the
system. Therefore, theorem 1 shows that the error system (3)
is FxTstable fromRemark 2, while theorem 2 shows that the
error system (3) is FnT stable from Remark 3.
Remark 5: It can be seen from theorems 1-2 that the

upper bound of the settling time can be any value. However,
in theorem 1, once the settling time T ∗ is fixed, it will
correspondingly affect the control intensity KN and K̂N .
In particular, in theorem 2, the control intensityKN is not only
related to the settling time T ∗ , but also to the initial value of
the system.
Remark 6: According to theorems 1-2, in numerical sim-

ulation, after the settling time T ∗ is given, the values of
other parameters can be determined by the conditions of
theorems 1-2.
Remark 7: From the conditions of theorems 1-2, it can be

seen that under the condition of achieving minimum conver-
gence time in multi-layer networks, Theorems 1-2 provides
the connection among FnT, the number of constrained con-
trol nodes and the system structure, which will help further
optimize the control of multi-layer networks.
Remark 8: In [40] and [41], the FnT control of multi-layer

networks is discussed, but the pinning control method is

FIGURE 5. The controller evolution curve.

ignored. In [42] and [43] the pinning control of multi-layer
networks is discussed, but the FnT control method is ignored.
In [40], [44], [45], [46], [47], [48], and [49], the connection
between the FnT, the number of pinning control nodes, and
the structure of the network is also not discussed.

IV. ILLUSTRATIVE EXAMPLE
The network node is assumed to be the Rossler system, i.e,

ṡi1 = − (si2 + si3)
ṡi2 = si1 + 0.2si2
ṡi3 = 0.2−5.7si3 + si1si3,

considering the boundedness of the above system and based
on numerical simulations, one can obtain η1 = 38.1. If
σ (t, ϖ) = 0.1diag {ϖi1, ϖi2, ϖi3} , η2 = 0.1, N =

10, n = 3, 0k = I , m = 2 and as shown in the equation
at the top of the next page. If all initial values are rand
[0,1], let ki = 12, k̂i = 8, ki = 9, c = 4.5,T∗ =

1.5, p = 0.6, q = 1.5. Base on the conditions of Theorem 1,
by simple calculation, let the number of pinning controlling
nodes be l = 5, one has λmax(B(k) ⊗ 0k )N−l = −5.4821 <

−
1

4.5×2

(
38.1 +

1
2 × 0.1

)
= −4.2389, λmin

(
K̂N ⊗ IN

)
≥

2
(q−1)T ∗

2
1−q
2 (Nn)

q−1
2 = 5.2480, λmin

(
KN ⊗ IN

)
≥

2
(1−p)T ∗

2
1−p
2 = 3.8290, which are satisfying. Fig.2 shows

synchronization error convergence time is approximately 1.4,
less than 1.5. Clearly, the synchroniza-tion error (3) is sta-
ble at zero under the pinning controllers (7) with l = 5.
Fig.3 shows that the controller evolution curve asymptotically
approaches 0. The validity of Theorem 1 is verified by the
implementation of numerical simulations.

For the simulation of theorem 2, if all initial values are rand
[0,1], let ki = 15, ki = 12, c = 4.5, T∗ = 1.5, p = 0.6.
Similar to the calculation of theorem 1, let the number of
pinning controlling nodes be l = 5, which satisfies the
conditions of Theorem 2. Fig.4 shows synchronization error
convergence time is approximately 1.3, less than 1.5. So the
synchronization error (3) is stable at zero by the pinning
controllers (11) with l = 5. Fig.5 shows that the controller
evolution curve asymptotically approaches 0. The validity of
Theorem 2 is verified by the implementation of numerical
simulations.
Remark 9: The numerical simulation in this paper only

verifies the FnT/FxTstability of multi-layer networks. For the
asymptotic or exponential stability of multi-layer networks,
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B(1)
= B(2)

=



−6
2

1
−1

1
0

0
2

0
1

2
−7

1
0

1
2

0
2

0
−1

1
1

−5
1

2
2

0
0

−2
2

−1
0

1
−6

0
1

2
2

1
0

1
1

2
0

−4
−2

0
1

1
0

0
2

1
1

−2
−4

−1
1

1
0

0
0

0
2

0
−1

−3
0

2
0

2
2

0
2

1
1

0
−7

0
−1

0
0

−2
1

1
1

2
0

−5
2

1
−1

1
0

0
0

0
−1

2
−3



.

we need to further study the asymptotic or exponential sta-
bility conditions of multi-layer networks, and then complete
the numerical simulation according to the asymptotic or
exponential stability conditions, and compare the stable types
from the simulation diagram, which will be our next research
work.

V. CONCLUSION
This paper specifically concentrated on the synchronization
of FnT/FxT in SMLNs using pinning control. It successfully
derived new criteria for achieving FnT/FxT synchronization
of SMLNs with pinning control. In addition, the paper also
explored the correlation between the intensity of control and
the different layers of the network, taking into account the
minimum convergence time. This analysis will be of great
value for practical application. Finally, the theoretical find-
ings presented in the paper were validated through numerical
simulations. How to find an optimal pinning control strategy
among the number of pinning control nodes, feedback again
and FnT convergence rate, which will be our future work.
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