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ABSTRACT Accurately segmenting thyroid nodules in ultrasound images is crucial for computer-aided
diagnosis. Despite the success of Convolutional Neural Networks (CNNs) and Transformers in natural
images processing, they struggle with precise boundaries and small-object segmentation in ultrasound
images. To address this, a novel BFG&MSF-Net model is proposed in this paper, utilizing four newly
designed modules: (1) a Boundary Feature Guidance Module (BFGM) for improving the edge details
capturing; (2) a Multi-Scale Perception Fusion Module (MSPFM) for enhancing the information capture
by combining a novel Positional Blended Attention (PBA) with the Pyramid Squeeze Attention (PSA); (3)
a Depthwise Separable Atrous Spatial Pyramid Pooling Module (DSASPPM), used in the bottleneck to
improve the contextual information capturing; and (4) a Refinement Module (RM) optimizing the low-level
features for better organ and boundary identification. Evaluated on the TN3K and DDTI open-access
datasets, BFG&MSF-Net demonstrates effective reduction of boundary segmentation errors and superior
segmentation performance compared to commonly used segmentation models and state-of-the-art models,
which makes it a promising solution for accurate thyroid nodule segmentation in ultrasound images.

INDEX TERMS Ultrasound image, thyroid nodule, segmentation, deep learning, boundary feature guidance,
multi-scale fusion.

I. INTRODUCTION
The thyroid, a vital endocrine organ, plays an indispensable
role in maintaining normal physiological functions of the
human body [1], [2]. Among various nodular lesions, thyroid
nodules are highly prevalent endocrine disorders growing
within the thyroid. Moreover, they represent one of the most
commonly diagnosed abnormalities, necessitating regular
thyroid examinations due to their potential malignancy [3],
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[4]. Utilizing ultrasound imaging, with its distinct advan-
tages such as non-invasiveness, user-friendliness, and cost-
effectiveness, has become the predominant method for
thyroid examinations [5].

Inmedical practice, the interpretation of thyroid ultrasound
images involves experienced clinicians who must assess mul-
tiple critical features, including shape, edges, composition,
echogenicity, and abnormal lesions [6], [7]. However, this
subjective diagnostic process introduces variability among
observers and heavily relies on the clinician’s years of exper-
tise. Challenges such as low contrast and speckle noise
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in ultrasound images further complicate the accurate diag-
nosis and decision-making process. Therefore, there is an
urgent need for artificial intelligence (AI)-based computer-
aided diagnostic systems, which to assist in thyroid disease
diagnosis [8], [9], [10]. Automated segmentation of thyroid
nodules is a fundamental component in developing intel-
ligent diagnostic systems and holds significant value for
ultrasound-guided thyroid fine-needle aspiration or nodule
excision procedures [11].

Currently, image segmentation technology has sparked
widespread research interest in the field of medical imag-
ing [12], [13]. Unlike natural image segmentation, medical
images often come with speckle noise, and the lesion areas
typically have fuzzy boundaries, making it challenging for
traditional models to accurately identify and segment the
lesions based on low-level features [14]. Due to the lack of
detailed information in the images, relying solely on semantic
features usually struggles to obtain accurate boundary infor-
mation [15]. Convolutional Neural Networks (CNNs) can
fully analyze and extract complex texture features in medical
image processing tasks [16], and can achieve satisfactory
results in improving processing accuracy and generalization
ability, which provides strong support for clinical diagnosis
and treatment [17], [18].

Zhou et al. [19] cleverly combined Conditional Random
Fields (CRFs) with graph-cut methods and refined segmen-
tation by integrating spatial correlations. Subsequently, Fully
Convolutional Networks (FCNs) replace the fully connected
layer behind the traditional CNN with a convolutional layer,
so that the output of the network is a thermal map rather than
a category.

Chen et al. [22] proposed DeepLab, which uses an
extended convolution and the Atlas Spatial Pyramid Pool-
ing (ASPP) architecture to capture multi-scale contextual
information [23].

In recent years, researchers have made many attempts and
explorations in the use of CNNs for thyroid nodule seg-
mentation of ultrasound images. Ying et al. [24] proposed
a thyroid nodule segmentation model based on a cascaded
CNN for more accurate localization of the thyroid nodules
in images. Kumar et al. [25] proposed a multi-prong CNN
to enlarge the receptive field and improve the accuracy of
thyroid nodule segmentation by expanding the convolutional
layer. Pan et al. [26] proposed a Semantic Guided U-Net
(SGUNET) network to solve the problem of shallow features
in the decoder being susceptible to noise interference from
ultrasound images. Zhang et al. [27] proposed a method for
thyroid nodule segmentation using a cascaded U-Net archi-
tecture. The network initially employs U-Net [28] for rough
nodule localization and then performs fine segmentation
through a second U-Net to obtain the final result. Considering
that most researchers designed models for the location, size,
and susceptibility to noise of thyroid nodules, but ignored the
blurred boundaries of thyroid nodules in ultrasound images
which made it difficult to distinguish the background from
the target region, the existing thyroid nodules segmentation

networks could not describe the contour of nodules
well.

To address the shortcomings of the current models for thy-
roid nodule segmentation, we propose a novel segmentation
model, named BFG&MSF-Net, based on boundary-guided
multi-scale fusion. By means of boundary guidance, the edge
details are mainly captured, so that the network training pays
attention to the edge division in the segmentation process, and
the influence of background on the segmentation of thyroid
nodules is reduced to a greater extent. The proposed model
is built on U-Net [28] by adopting ConvNeXt [29], [30] as a
backbone.

To address the limitations of traditional U-Net based
models in feature extraction and information fusion, the pro-
posed BFG&MSF-Net model introduces the following novel
designs:

1) To cope with the issue of edge detail loss during fea-
ture extraction due to downsampling, a newly designed
Boundary Feature Guidance Module (BFGM) is intro-
duced for cleverly combining local edge information
and global positional semantic information. By enhanc-
ing the edge feature extraction, BFGM effectively
improves the model’s ability to capture edge details.

2) A newly designedMulti-Scale Perception FusionMod-
ule (MSPFM) is proposed as a replacement of tra-
ditional feature fusion modules. Its innovative design
significantly improves the model’s ability to extract
thyroid feature information of different scales in the
images by combining a novel Positional Blended
Attention (PBA) with the Pyramid Squeeze Attention
(PSA) [31], allowing the model to outperform state-of-
the-art models in image-processing tasks.

3) In the intermediate bottleneck, a novel Depthwise
Separable Atrous Spatial Pyramid Pooling Module
(DSASPPM) is incorporated to expand the receptive
field of the convolutional layer, fully capture contextual
information of thyroid nodules of different scales, and
integrate higher-level semantic information.

4) Finally, a newly designed Refinement Module (RM) is
introduced as the last feature extractor in the model,
aiming to optimize low-level features for better identi-
fication of thyroid glands and their boundaries.

Experimental results, obtained on two open-access
datasets, demonstrate that the proposed BFG&MSF-Net
model outperforms all similar models considered and allows
to effectively reduce the boundary segmentation errors in
thyroid nodule image segmentation tasks.

The rest of this paper is organized as follows. Section II
introduces related work. Section III provides a detailed
description of the overall architecture of the proposed model,
along with the design of its novel modules. Section IV
presents performance evaluation of the proposed model
in comparison to other popular models, based on two
open-access thyroid nodule datasets using standard evalua-
tionmetrics. Finally, Section V summarizes themain findings
of this paper and suggests directions for future research work.
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II. RELATED WORK
With the continuous development of image segmentation
technology, numerous works have emerged in the field
of medical image segmentation, contributing major break-
throughs. Methods for thyroid nodule segmentation in med-
ical images can generally be classified into two categories:
non-CNN and CNN based segmentation methods [32].

A. NON-CNN BASED MEDICAL IMAGE SEGMENTATION
Non-CNN based segmentation includes methods rooted
in computer vision and image processing technologies,
designed to delineate structures or targets in medical images
for subsequent analysis and diagnosis. Thesemethods include
region-based [33], threshold-based [34], and deformable
model based decomposition [35], each offering unique advan-
tages and applicability.

Region-based segmentation involves a gradual expansion
or reduction of the segmented area. This type of methods
starts operating on a specific image region and incrementally
adds pixels that adhere to predefined rules to the target area or
removes pixels that deviate from the rules, thus achieving the
purpose of combining other pixels of similar quality. From a
global point of view, this type of methods divides the whole
image into different sub-regions.

The threshold-based methods are suitable for images with
different grayscale of the background and target. The basic
idea is to calculate one or more grayscale thresholds accord-
ing to the grayscale features of the image. The pixel gray
value obtained from the image is compared with the cal-
culated threshold one by one, and the pixels are divided
into appropriate categories according to the comparison
results.

The deformable model based decomposition is based on
the classification and geometric shape of the point cloud
data. It is a method of comparing point clouds with known
geometric shapes (cylinders, cones, spheres, etc.), classify-
ing points with the same mathematical characteristics into
one group, and dividing the known geometric shapes within
the point clouds. In addition to being less affected by
noise, the computation speed is also higher than splitting by
edge information. This adjustment process considers various
pixel characteristics such as brightness, texture, gradient,
and so on.

Although non-CNN based segmentationmethods have cer-
tain practicability in medical image processing, especially in
scenarios requiring low computational complexity and fast
processing, these methods still have certain limitations in
dealing with scenarios involving complex computation and
poor image quality. However, the advent of CNN technology
has led to an increasing preference for deep learning methods
in modern medical image segmentation. These methods excel
in handling complex medical images and irregular structures
by automatically extracting features and training on large
datasets, consequently yielding more accurate segmentation
results.

B. CNN BASED MEDICAL IMAGE SEGMENTATION
Non-CNN based segmentation methods typically rely on
prior medical knowledge and necessitate manual interven-
tion by experienced doctors, which may introduce subjective
differences and consequently lead to errors. Therefore,
addressing this issue has become increasingly urgent. With
the continuous advancement of large-scale data collection
and computer technology, deep learning CNNs have exhib-
ited strong potential in the field of computer vision and have
been extensively employed in practical projects [36].
In the medical domain, deep learning technology has found

widespread application in tasks such as cancer- and tumor
detection, classification, and segmentation. Deep learning
methods yield highly accurate results and significantly con-
tribute to assisting doctors in making precise diagnoses [37].
Research indicates that employing deep learning for automat-
ing tumor tissue segmentation not only enhances work effi-
ciency but also aids doctors in making accurate judgments.
Consequently, this technology holds promising application
prospects in the medical field.

The U-Net model proposed by Ronneberger et al. [28]
represents an image segmentation network grounded on
deep learning principles, achieving precise image seg-
mentation through an encoder-decoder architecture and
skip connections. U-Net has demonstrated outstanding
performance across various medical image segmentation
tasks. Zhou et al. [20] introduced UNet++, comprising a
series of U-Nets and decoders of varying depths. These
decoders are densely interconnected at the same resolu-
tion through redesigned skip connections [21]. Despite
its enhanced performance, the UNet++ model is char-
acterized by complexity, necessitates additional learnable
parameters, and includes redundant components for specific
tasks.

Oktay et al. [38] introduced an additional focusing gate
into a U-shaped structure for medical image segmentation,
coupled with an attention gate (AG) mechanism to implicitly
generate soft region proposals. The resultant model, called
Att U-Net, accentuates salient features beneficial for specific
tasks, allowing it to focus on crucial aspects during medical
image segmentation by selectively fusing information during
the feature fusion stage. Diakogiannis et al. [39] proposed
deep residual U-Net (Res-Unet) model, still grounded on
the U-Net architecture. A series of stacked residual units
replace ordinary neural units as basic blocks to construct a
deep Res-Unet, effectively increasing the number of network
training layers. However, as the network depth increases, the
training time extends significantly.

ResNet (Residual Neural Network) is a deep convolutional
neural network, proposed by He et al. [40], which performs
well in image recognition tasks. The core idea is to intro-
duce residual blocks that pass input directly into later layers
through skip connections. This design solves the problem of
gradient disappearance and gradient explosion in deep neural
networks, allowing the network to be trained more stably
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FIGURE 1. The proposed BFG&MSF-Net model.

and be stacked with more layers as to extract more complex
features.

Researchers also explore integrating a self-attention
mechanism into CNNs to enhance network performance.
Rajakumar et al. [41] introduced the Seg-Net model with
a lightweight and convenient network structure, which
improves the training speed, but sacrifices accuracy to a
considerable extent.

CNN-based medical image segmentation methods excel
in learning image features, effectively integrating low-level
and high-level semantic information, and autonomously
and accurately obtaining segmentation results. This reduces
manual intervention, saves doctors’ time, and provides a
foundation for further tumor analysis. Facilitating the for-
mulation of subsequent surgical plans, the adoption of deep
learning methods for medical image segmentation signifi-
cantly advances computer-aided diagnosis and furnishes a
robust framework for clinical application.

III. PROPOSED MODEL: BFG&MSF-NET
In the context of image segmentation tasks performed by
deep learning models, edges are often considered to occupy a
relatively small proportion due to their smaller area. How-
ever, this paper takes a different perspective, emphasizing
the crucial role of edge features in the decoding process
of deep learning models. In contrast to traditional views,
we argue that by fully leveraging edge features and positional

information to constrain the decoding process, the accuracy
of thyroid nodule image segmentation can be effectively
improved.

We propose a multi-scale fusion segmentation network
model, named BFG&MSF-Net, based on boundary features.
The importance of edge features is fully considered in the
design of the model, whereby more accurate image seg-
mentation is realized by combining local edge information
with global positional semantic information. Experiments
show that BFG&MSF-Net is superior to existing models in
reducing boundary segmentation errors and improving the
performance of segmentation tasks.

A. OVERALL ARCHITECTURE
The overall architecture of the proposed BFG&MSF-Net
model, shown in Figure 1, consists of six main modules:
an encoder, a decoder, a novel Boundary Feature Guidance
Module (BFGM), a newly designed Multi-Scale Perception
Fusion Module (MSPFM), a novel Depthwise Separable
Atrous Spatial Pyramid Pooling Module (DSASPPM), and
a newly designed Refinement Module (RM). Taking full
advantage of ConvNeXt’s powerful ability to extract spatial
features, texture features, and global context information,
we use the most advanced ConvNeXt as a backbone of
BFG&MSF-Net for different levels of image feature extrac-
tion. BFGM fuses local edge information extracted by
the encoder with global positional semantic information to
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FIGURE 2. The ConvNeXt [29], utilized as a backbone network in the
encoder of the proposed BFG&MSF-Net model.

acquire unit-specific edge features. MSPFM enhances the
model’s ability to capture important information in images.
DSASPPM expands the receptive field of the convolu-
tional layer, fully captures contextual information of thyroid
nodules of different scales, and integrates higher-level seman-
tic information. RM augments internal learning to capture
lower-level hidden features.

B. ENCODER
To enhance the model’s performance in thyroid nodule seg-
mentation, we chose ConvNeXt as a backbone network for
the encoder. This decision was based on the fact that Con-
vNeXt is pretrained on a large-scale image dataset, allowing
it to learn generic image feature representations and better
generalize to the relatively smaller thyroid nodule datasets.
The use of ConvNeXt provides our model with robust feature
extraction capabilities and establishes a solid foundation for
the thyroid nodule segmentation task. Illustrated in Figure 2,
ConvNeXt is an advanced CNN, inspired by the hierarchical
architecture of the Swin Transformer. The ConvNeXt output
Y is obtained as follows:

X2
= Conv1×1(GELU(Conv1×1(LN(DWConv7×7(X1)))))

(1)

Y = X1
+ X2 (2)

where X1 denotes the input feature map. First, a 7× 7 depth-
wise (DW) convolution is used, aiming to preserve the
global receptive field and emphasize the understanding of
the entire image, rather than focusing solely on local feature
information, [41]. Then, a LayerNorm (LN) is applied for
normalization processing to solve the problem of excessive
statistical deviation. After that, two 1 × 1 ordinary convo-
lutions are used to refine the extracted features. A GELU
activation function is utilized between these two convolutions
to accelerate the model convergence. Finally, the obtained
feature map X2 is fused with the input feature map X1,

by adding their elements one by one, to get the output feature
map Y .

C. BOUNDARY FEATURE GUIDANCE MODULE (BFGM)
To address the issue of edge detail loss caused by down-
sampling in image segmentation tasks, a newly designed
Boundary Feature Guidance Module (BFGM) is introduced
here. BFGM ingeniously combines local edge information
with global positional semantic information to enhance the
model’s ability to capture edge features. The design philos-
ophy of BFGM is based on our belief that leveraging edge
features and positional information to constrain the decoding
process in deep learning models contributes to improving
the accuracy of image segmentation. By guiding the model’s
attention to the image boundaries, BFGM helps enhance the
model’s segmentation performance in edge regions.

From the visualization studies of neural networks [19],
it is evident that shallow features extracted by a network
model largely preserve the edge information of images.
However, these edge details are acquired solely through
local information, lacking a comprehensive understanding of
advanced semantics and positional information. In contrast,
deep-layer features of the network, owing to their larger
receptive field, encompass richer semantic and positional
information. Therefore, BFGM integrates shallow features
M (1) containing local edge information and advanced fea-
tures M (5) containing semantic and positional information.
On top of this integration, edge features are extracted using a
convolutional layer with a kernel size of 3 × 3. The specific
computational process is described below.

First, a 1 × 1 convolution is applied to transform the
channel dimensions of M (5). Subsequently, after performing
Batch Normalization (BN) and Rectified Linear Unit (ReLU)
activation, upsampling is applied. Following this, the feature
fusion withM (1) results in O(1), as shown below:

O(1)
= M (1)

+ Upsample(ReLU(BN(Conv1×1(M (5))))) (3)

where Conv1×1 denotes a 1 × 1 convolution, aimed at
adjusting the channel dimension of M (5) to match that of
M (1); BN denotes Batch Normalization, which accelerates
training convergence and enhances generalization capabil-
ity; ReLU represents the activation function, introducing a
non-linear factor while effectively avoiding the issue of van-
ishing gradients;Upsample employs bilinear interpolation for
upsampling, intending to adjust the image dimensions ofM (5)

to match those ofM (1).
Next, the fused result is upsampled, followed by the

extraction of edge information using a 3 × 3 convolutional
kernel, thereby obtaining the edge prediction result O(Edge),
as follows:

O(Edge)
= ReLU(BN(Conv3×3(Upsample(O

(1))))) (4)

Finally, the Binary Cross-Entropy with Logits Loss (BCE-
WithLogitsLoss) function [44] is employed as a loss function
to calculate the error loss (Loss1) between the predicted result
O(Edge) and the true edge information Y (Edge).
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FIGURE 3. The newly designed Positional Blended Attention (PBA)
submodule of MSPFM, utilized by the proposed model.

D. MULTI-SCALE PERCEPTION FUSION MODULE (MSPFM)
The innovative work and novel strategy of using a multi-scale
perception fusion (MSPF) to replace the traditional feature
fusion allows to achieve significant progress in enhancing
the performance of image processing tasks by leveraging
the synergistic action of two key components of the newly
designed MSPF module (MSPFM), namely a novel Posi-
tional Blended Attention (PBA) and the Pyramid Squeeze
Attention (PSA) [31].

Initially, features from adjacent layers in the encoder
are fused to explore relationships between channel dimen-
sions. Subsequently, PBA is employed to enhance long-range
dependency relationships between deep semantic features.
This allows the model to effectively focus on information
from different positions in the images. The hybrid atten-
tion mechanism combines spatial and channel information to
enable the model to focus on the importance of a specific
location in the images, thereby enhancing the perception of
key information. The output is fused with the corresponding
output of the decoding layer for a second round of feature
fusion, and then a new decoding layer is formed by the PSA
convolutional blocks.

1) POSITIONAL BLENDED ATTENTION (PBA) SUBMODULE
The main function of the PBA submodule of MSPFM is to
integrate channel attention and spatial positional information.
PBA can selectively emphasize the importance of different
positions in images by applying channel attention weight to
the encoder feature map and introducing spatial positional
information. This mixed attention mechanism makes the
model more flexible and accurate in learning image semantic
information and optimizes the perception of local buildings.
The PBA architecture is shown in Figure 3.
First, a channel-wise transformation of the input X is

performed through a 1 × 1 convolution. Subsequently, a Sig-
moid activation function is applied to map the result into

the range [0,1], obtaining channel attention weights. Finally,
an element-wise multiplication is used to multiply the origi-
nal input with the channel attention weights, yielding refined
feature X1, emphasizing important information along the
channel dimension, as specified in (5).

Simultaneously, the input X undergoes pooling through a
MaxPool operation to capture some spatial information. After
that, a 1 × 1 convolution is applied to the pooled result along
the channel dimension. Next, non-linearity is introduced
through a ReLU activation function, and finally, a Sigmoid
activation function maps the result into the range [0,1],
obtaining spatial attention weights. Ultimately, an element-
wise multiplication is employed to multiply the original input
X with the spatial attention weights, producing refined fea-
ture X2, emphasizing important information along the spatial
dimension, as specified in (6):

X1
= X ⊙ Sig(Conv1×1(X )) (5)

X2
= X ⊙ Conv1×1(Sig

(
ReLU(Conv1×1(MaxPool(X))

)
))
(6)

where Sig represents the Sigmoid function, ⊙ denotes an
element-wise multiplication, MaxPool represents maximum
pooling, and ReLU represents the activation function intro-
ducing a non-linear factor while effectively avoiding the
problem of gradient vanishing. It is noteworthy that these two
steps are performed simultaneously.

Finally, the refined features X1 and X2 are added to the
original features X in the form of a residual connection to
obtain the final output Y , as follows:

Y = X + X1
+ X2 (7)

2) PYRAMID SQUEEZE ATTENTION (PSA) SUBMODULE
In PSA [31], channel splitting is performed first as to extract
multi-scale features for spatial information on each channel
feature map. Then, a SEWeight module is utilized to extract
channel attention for different scale feature maps, obtaining
channel attention vectors for each scale. Next, a SoftMax
function is applied to themulti-scale channel attention vectors
for feature recalibration, yielding newweights for multi-scale
channel interaction. Finally, the recalibrated weights are
element-wise multiplied with the corresponding feature maps
to output a feature map where multi-scale feature informa-
tion is attentively weighted. As a result, the output feature
map exhibits richer multi-scale information representation
capability.

E. DEPTHWISE SEPARABLE ATROUS SPATIAL PYRAMID
POOLING MODULE (DSASPPM)
Introducing a novel Depthwise Separable Atrous Spatial
Pyramid Pooling Module (DSASPPM) into the bottleneck
of the proposed model allows it to simultaneously fuse
global and local information in specific dimensions. Shown
in Figure 4, DSASPPM significantly enhances the perception
of the model at different scales through dilated convolutions
and pooling operations, which is crucial for handling the
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FIGURE 4. The novel Depthwise Separable Atrous Spatial Pyramid
Pooling Module (DSASPPM), utilized by the proposed model.

FIGURE 5. The novel Refinement Module (RM), utilized by the proposed
model.

diversity and complexity of thyroid nodules. Additionally,
since the bottleneck layer is typically a critical position in the
network where feature dimensions are reduced, introducing
DSASPPM helps maintain feature richness within a rela-
tively small space. This strategy enables powerful integration
of multi-scale features under more efficient computational
conditions.

The multi-scale information fusion of DSASPPM con-
tributes to more accurately capturing crucial information in
images, thereby enhancing the model’s segmentation accu-
racy. In thyroid segmentation tasks, considering both local
and global information is crucial for accurately extracting
details such as nodule edges. This comprehensive multi-scale
perception makes the model more adaptable to different nod-
ule features, thereby improving the overall performance of
thyroid nodule segmentation.

F. REFINEMENT MODULE
Image segmentation faces a series of challenges, including
dealing with boundary blurriness and irregular shapes, and
the inability to detect small organs. The newly designed
Refinement Module (RM) is located after the decoder of the
proposed model, with the main function to capture spatial
and channel information so as to locate pixels more accu-
rately. RM enhances internal learning to effectively capture
low-level hidden features, thereby improving the accuracy
of medical image segmentation. This module helps address
complex image characteristics, providing more refined and
accurate results for segmentation tasks. The RM architecture
is shown in Figure 5.

The input X is first introduced with non-linearity through
a 1 × 1 convolution, followed by capturing more spatial fea-
tures through a 3 × 3 convolution. Afterwards, a residual
fusion is performed to aid in smooth gradient propagation,
avoiding gradient vanishing or exploding issues. Subse-
quently, channel attention weighting is applied through a
Convolutional Block Attention Module (CBAM), making
the network focus more on crucial channel information and
enhancing the weight of effective features. This part of RM
processing is detailed as follows:

X1
= X + Conv3×3(ReLU(BN(Conv1×1(X )))) (8)

X2
= CBAM

(
X1

)
(9)

Afterwards, a series of asymmetric convolution operations
are employed to capture directional features, enhancing the
model’s ability to perceive information in different directions.
Finally, the original features are added in the form of residual
connections to produce X3 and output Y , as follows:

X3
= X2

+ Conv1×3(Conv3×1(Conv1×1(X2))) (10)

Y = X3
+ X (11)

In summary, the entire module strengthens the connection
between channel and spatial features, enhancing the weight
of effective features, and is conducive to extracting effective
features of organs in medical images. RM can capture hidden
features between pixels, thus achieving finer segmentation
and improving the model segmentation accuracy.

G. LOSS FUNCTION
The Combo loss [45], a combination of the Dice loss and the
Binary Cross-Entropy (BCE) loss, was used as a loss function
in the experiments, defined as follows:

Lcombo = 0.5 ∗ Lbce + Ldice (12)

where Lbce denotes the BCE loss [46], calculated as follows:

Lbce = −

∑N

i=1
[SGT ln(Spred ) + (1 − SGT )ln(1 − Spred )]

(13)

and Ldice represents the result of the edge loss (Loss1) and
the global loss (Loss2), based on the Dice loss function [47],
calculated as follows:

Ldice = 0.2 ∗ Loss1 + 0.8 ∗ Loss2 (14)

Loss1 = 1 − 2

∑N
i=1 SGTbSpredb∑N

i=1 S
2
GT b +

∑N
i=1 S

2
predb

(15)

Loss2 = 1 − 2

∑N
i=1 SGT Spred∑N

i=1 S
2
GT +

∑N
i=1 S

2
pred

(16)

Loss1 represents the difference between the boundary key
point prediction Spredb and the boundary point label SGTb ,
whereas Loss2 represents the difference between the segmen-
tation prediction Spred and the real segmentation map SGT .
The use of Loss1 and Loss2 is depicted in Figure 1.
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TABLE 1. Summary of thyroid ultrasound image datasets used in the
experiments.

The Combo loss is designed to address both the pixel-level
classification loss and region-level overlap loss simultane-
ously, providing a comprehensive evaluation of segmentation
performance. This approach effectively handles the chal-
lenge of imbalanced positive and negative samples, reduc-
ing sensitivity to sample imbalances and enhancing the
model’s generalization ability. Furthermore, it minimizes dif-
ferences not only between segmentation predictions Spred and
ground-truth segmentation maps SGT but also those between
boundary keypoint predictions Spredb and boundary point
labels SGTb .

IV. EXPERIMENTS AND RESULTS
A. DATASETS
To evaluate the proposed model in comparison to other
existing models used for the same purpose, two open-access
datasets, containing thyroid ultrasound images, were utilized
in the experiments – the Thyroid Nodule 3493 (TN3K)
dataset and the DDTI dataset (Table 1).

The TN3K dataset was made public by Gong et al. [48] in
order to drive advancements in the field of thyroid nodule
segmentation. This dataset focuses on images of thyroid
nodules and includes 3,493 ultrasound images of 2,421
patients. These images have been converted to grayscale
form and are accompanied by high-resolution mask labels
indicating the positions of thyroid nodules in the images.
For the experiments, 2,303 images were selected for model
training, 576 images for model validation, and 614 images
for model testing. The size of all input images was set to
256 × 256 pixels.
The DDTI dataset, introduced by Pedraza et al. [49],

consists of a moderate collection of 637 images, each with
pixel-level lesion masks. For the experiments, 511 images
were selected for model training, 63 images for model val-
idation, and 63 images for model testing.

B. EVALUATION METRICS
The proposed model was compared with other existing mod-
els using four popular metrics, namely the Intersection over
Union (IoU), Dice Similarity Coefficient (DSC), recall, and
precision.

IoU calculates the overlap rate between the candidate
bound and the ground truth bound, whereby a ratio of 1 of
their intersection to their union represents exact overlapping.

TABLE 2. Quantitative evaluation of the proposed BFG&MSF-Net model
in comparison to other segmentation models.

FIGURE 6. Visualization of the quantitative evaluation of the proposed
BFG&MSF-Net model in comparison to other segmentation models.

IoU is commonly used for tasks such as object detection and
semantic segmentation. It is calculated as follows:

IoU =
TP

FN + TP + FP
(17)

where TP represents the number of cases correctly classified
as positive, FP represents the number of cases incorrectly
classified as positive, and FN represents the number of cases
incorrectly classified as negative.

DSC describes the similarity between predicted and
ground-truth values. It yields a result of 0 when there is
no intersection between them, and 1 when both values are
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FIGURE 7. Qualitative evaluation of the proposed BFG&MSF-Net model in comparison to other segmentation models, based on TN3K dataset.

FIGURE 8. Qualitative evaluation of the proposed BFG&MSF-Net model in comparison to other segmentation models, based on DDTI dataset.

identical. It is calculated, as follows:

DSC =
2TP

2TP + FP + FN
(18)

Recall, also known as sensitivity or true positive rate, refers
to the proportion of relevant samples that were correctly
retrieved by a model among all samples that should have been
retrieved. It is calculated, as follows:

Recall =
TP

TP+FN
(19)

Precision, also known as positive predictive value, refers to
the proportion of correctly predicted positive samples among

all samples predicted as positive by a model. It is calculated,
as follows:

Precision =
TP

TP + FP
(20)

C. EXPERIMENTAL ENVIRONMENT
The hardware configuration used in the experiments included
an Intel Core i5-12490 processor with a clock speed of
3.0 GHz and a single NVIDIA RTX3060 graphics card
with 12 GB of VRAM. Based on the server configuration,
and to ensure normal model training, the hyperparameters for
the neural network during the training process were set as
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TABLE 3. Ablation study experimental results, obtained on TN3K dataset.

TABLE 4. Ablation study experimental results, obtained on DDTI dataset.

follows: the batch size was set to 4, the number of epochs
was set to 100, validation was performed on every epoch,
and the Adam optimizer was used for training. The initial
learning rate was set to 1 × 10−4, with a decay factor of
1 × 10−4 to prevent overfitting, a momentum of 0.9, and a
minimum learning rate of 1×10−5. The network architecture
was implemented using PyTorch.

D. PERFORMANCE COMPARISON WITH COMMONLY
USED SEGMENTATION MODELS
In order to validate the superiority of the proposed model
in performing thyroid nodule segmentation, it was com-
pared with commonly used segmentation models such as
U-Net [28], UNet++ [20], ResNet-18 [40], Att U-Net [38],
and Seg-Net [41]. The obtained quantitative results of dif-
ferent models are shown in Table 2 and Figure 6, presented
separately for each of the two datasets used – TN3K
and DDTI. These results demonstrate that the proposed
BFG&MSF-Net model outperforms all other segmentation
models on both datasets according to all evaluation metrics,
except for recall on TN3K.

In addition to the quantitative evaluation demonstrating
the outstanding performance of the proposed BFG&MSF-Net
model, Figures 7 and 8 contain some illustrative examples
confirming that it works indeed better than other models in
segmenting thyroid nodules, based on both TN3K and DDTI
datasets. Specifically, Figure 7 illustrates three different cases
of thyroid nodules of different sizes (i.e., large, double, and

small nodules), whereas Figure 8 shows the presence of
thyroid nodules of different shapes and sizes.

In the case of large nodules (first row in Figure 7), the
segmentation results of the other models deviate significantly
from reality, while BFG&MSF-Net, due to its ability to cap-
ture global contextual information, can accurately segment
the nodules’ contours and maintain good regional continuity.
In addition, BFG&MSF-Net achieves better segmentation
results than other models in segmenting double nodules (sec-
ond row in Figure 7) and small nodules (third row in Figure 7).
In Figure 8, one can clearly see that the proposed model

can accurately distinguish thyroid nodules from the blurred
background, along with distinguishing their edges from the
surrounding background. The visual results of other models
include edge partition errors and inaccurate target locations.

On both datasets, the fuzzy area of the renderings of the
five compared models (U-Net, UNet++, ResNet-18, Att
U-Net, and Seg-Net) is obviously larger than that of the
proposed model.

E. ABLATION STUDY
To assess the performance of different components of the
proposedmodel, we conducted ablation study experiments on
both datasets, utilizing U-Net as a baseline.

Tables 3 and 4 provide a detailed classification of the
various component compositions resulting in different model
versions, as well as their segmentation performance results on
the TN3K and DDTI datasets, respectively (the best results
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TABLE 5. Segmentation performance comparison of the proposed
BFG&MSF-Net model with state-of-the-art models.

are shown in bold). The presented results indicate that the
newly designed modules, presented in the previous section,
all contribute positively to enhancing the segmentation per-
formance of the proposed model. As shown in Table 3, the
addition of these modules (one after the other) to the baseline
resulted in a gradual increase in all metrics on the TN3K
dataset, except for few cases of, recall (w.r.t. v5) and precision
(w.r.t. v3). Similarly, as illustrated in Table 4, the incre-
mental inclusion of these modules in the baseline resulted
in a progressive enhancement in all metrics on the DDTI
dataset, except for precision (w.r.t. v4). After integrating all
designed modules, the sixth model version (v6), i.e., the
proposed BFG&MSF-Net model, demonstrated an increase
of 12.03 percentage points in IoU, 11.26 percentage points in
DSC, 4.85 percentage points in recall, and 10.05 percentage
points in precision, compared to the baseline (U-Net) on the
TN3K dataset. On the DDTI dataset, the sixth model version
demonstrated an increase of 8.12 percentage points in IoU,
6.92 percentage points in DSC, 3.93 percentage points in
recall, and 8.22 percentage points in precision, compared
to the baseline. These results demonstrate the effective-
ness of each designed module in helping the proposed
BFG&MSF-Net model to effectively perform the thyroid
nodule segmentation task.

F. PERFORMANCE COMPARISON WITH
STATE-OF-THE-ART MODELS
In addition, we conducted a comparison of the segmentation
performance of the proposed BFG&MSF-Net model with
that of state-of-the-art models, based on their reported in
relevant literature. The comparative results on both datasets,
presented in Table 5, demonstrate that BFG&MSF-Net
exhibits superior performance compared to all other models.
In this comparison, the decision to focus on DSC as a primary
evaluation metric was intentional, given its widespread usage
in the field of image segmentation and its recognition as a key
metric there.

V. CONCLUSION AND FUTURE DIRECTIONS
This paper has proposed a Boundary Feature Guidance
and Multi-Scale Fusion Network (BFG&MSF-Net) model

for thyroid nodule segmentation. The incorporation of
the well-known backbone network, ConvNeXt, along with
the newly designed Boundary Feature Guidance Module
(BFGM), Multi-Scale Perception Fusion Module (MSPFM),
Depthwise Separable Atrous Spatial Pyramid Pooling Mod-
ule (DSASPPM), and Refinement Module (RM), allows
to effectively enhance the model’s ability to capture edge
details and comprehensively perceive image information,
leading to more accurate thyroid nodule segmentation.
The obtained experimental results have demonstrated that
the proposed model outperforms all existing models, used
for similar purposes, thus providing an improved assis-
tance for doctors in early disease diagnostics and treatment
planning.

However, a limitation of the presented research lies
in the experimental validation being conducted solely on
ultrasound thyroid images. The generalizability of the pro-
posed model to ultrasound images of other organs, such as
breast and prostate, or different types of medical images,
such as CT, Positron Emission Computed Tomography
(PET), or Magnetic Resonance Imaging (MRI), has not
been verified due to lack of access to such images. In the
future, we aim to validate the performance of the proposed
BFG&MSF-Net model across a broader spectrum of med-
ical images and, in addition, will continually refine and
iterate it.
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