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ABSTRACT Assessing changes in human attention states via noninvasive physiological signals poses a
significant challenge. Research has often associated the migration of mitochondrial superoxide radicals with
electrical skin signals and physiological state. This study proposes a novel method to identify meaningful
features for discerning variations in attention states by examining skin potential (SP) signals from specific
features. This research project began with gathering SP signals. Next, Wavelet Packet Transform (WPT) and
other approaches are applied to conduct an energy analysis across various frequency bands, which allows for
the extraction of time- and frequency-domain features from the SP signals, and the potential of these features
to differentiate human attention states is then examined via regression-based classifiers. Feature selection
refinement is accomplished through statistical tests and Linear Support Vector Machines (SVM) with
Recursive Feature Elimination (RFE). The focus is on the discriminative power of a selected set of primary
features to distinguish human attention states. The designed experiment revealed significant variations in
SP signal features when the subjects experienced shifts in their attention states. These features encompass
measures such as first- and second-order derivative sequences, wavelet energy, wavelet coefficient, and
power spectral density in different frequency bands. The core significance of this research lies in its focus
on the feature selection of the SP signal, which yields a set of highly impactful features contributing to
the distinction of attention states. This study underscores the potential of classifier models to effectively
distinguish attention states, particularly through the examination of critical features, such as the wavelet
energy of SP signals within certain frequency bands. These features may be relevant to several psychological
mechanisms that reinforce the relationship between physiological signals and cognitive state. The insights
derived from this investigation deepen the comprehension of human attention states and set the groundwork
for more granular future explorations of SP signals.

INDEX TERMS Electrodermal activity, feature selection, machine learning, SP signal, attention, wavelet.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Attention is one of the most intricate mechanisms within
approving it for publication was Sotirios Goudos . the human cognitive system [1], and plays a crucial role

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
100832 For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024


https://orcid.org/0009-0005-1800-0134
https://orcid.org/0009-0007-2144-3782
https://orcid.org/0000-0003-1029-7357
https://orcid.org/0000-0002-1147-0900
https://orcid.org/0000-0001-5981-5683

Y. Huang et al.: Exploring Skin Potential Signals in Electrodermal Activity

IEEE Access

in an individual’s capacity to concentrate and engage in
purposeful tasks over an extended period [2]. It is widely
recognized as indispensable for accurately comprehending
human activities, and research has consistently demon-
strated that lower attention significantly undermines learning
effectiveness [3], [4]. Consequently, the detection of shifts
in attention state has become vital, particularly in fields
like training programs to improve concentration, reducing
accidents caused by driver fatigue, and managing attention
deficits in children. [5]. However, traditional methods, such
as direct observation, surveys, and interviews, are hindered
by credibility, lack of objectivity, inefficiency, and resource
wastage [6], [7]. Consequently, their limitations restrict
the development of broader applications, rendering them
impractical for implementation.

In the quest for more reliable, convenient, and instan-
taneous methods for identifying attention, the exploration
of diverse attention detection strategies has been inspired,
especially non-contact methods [8]. Predominantly reliant
on facial recognition technologies, these approaches have
made significant progress in attention analysis [9], [10].
Although numerous non-contact methods for determining
attention levels exist, they face challenges in maintaining
accuracy, coping with artificial expressions, and handling
environmental interference. These methods often struggle
with feature extraction owing to variability in scale, angle,
and occlusion in facial images, thereby compromising their
accuracy [11]. Coupled with high computational costs and
slow detection speeds, real-time applications have become
problematic. Further, reliance on handcrafted features in
traditional face detectors results in lower flexibility and relia-
bility, thus underperforming in unpredictable scenarios [11].
So there is a pressing demand for a more robust and less
disruption-prone method. This has led researchers towards
contact methods that pivot physiological signals, such as
electroencephalography (EEG) patterns, heart rate variability,
eye movements, and skin conductance responses [12]. For
neurological measures like EEG, functional magnetic reso-
nance imaging (fMRI), and positron emission tomography
(PET), despite their effectiveness in assessing brain activity,
they are often hampered by invasiveness, high costs, suscep-
tibility to motion artifacts, complexity of data interpretation,
variable resolution, individual differences, lack of portability,
and setup inconvenience. Among physiological signals,
electrodermal activity (EDA) has emerged as a promising
avenue because of its positive correlation with attention levels
and its ability to provide real-time data with a quicker and
more sensitive indication of changes in attention states [13],
[14].

The basis of EDA signals corresponds to the activity of the
autonomic nervous system (ANS), intricately reflecting the
sympathetic ““fight or flight” and parasympathetic ‘“‘rest and
digest” responses [15]. EDA data can be acquired through
two primary methodologies: skin resistance (SR) and skin
potential (SP). Although both SP and SR changes exhibit a
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correlation, this interrelationship undergoes variations under
different conditions, such as individual sex and the nature
of stimulation received [16], [17], [18]. A unique feature
of SP signals is the complexity of their waveforms, which
may have additional psychological implications [19], [20].
This complexity, alongside the sensitivity of SP to the
activity of superoxide free radicals produced during cellular
metabolic processes in the skin, potentially renders SP a more
valuable tool than SR for psychophysiological research [21],
[22]. SP not only reflects sweat gland activity, such as
SR, but also provides a wider snapshot of physiological
responses [23]. This broad spectrum of captured responses
becomes particularly noticeable during periods of intense
mental activity, where increases in sympathetic nervous
system activity correspond to observable changes in SP [24].
The advantages of SP over SR can be further demonstrated in
practical applications. For instance, the measurement of SP
involves a simpler setup and does not require the injection
of current into the body. Additionally, SP signals display
less sensitivity to variations in both electrode and skin
impedance, and respond more swiftly to stress stimuli [25],
[26]. The sensitivity of SP to cellular metabolic processes
and the influence of the neurotransmitter acetylcholine
offers a comprehensive representation of ANS activity and
serves as an effective measure of an individual’s attention
level [21], [27], [28]. Various pathways, such as hypothalamic
control, contralateral and basal ganglion influences, and
reticular formation in the brainstem integrate multiple central
mechanisms into the EDA signal. This integration provides
SP signals with a uniquely holistic view of an individual’s
attention state [22], [28], [29].

The intricacy and multidimensionality of SP signals make
machine learning (ML) classification models an indispens-
able tool in attention recognition and feature selection [30].
ML models excel in dissecting high-dimensional, nonlinear
data and unearthing complex patterns that often elude
traditional statistical methods [31]. This exceptional ability
allows ML models to offer a comprehensive understanding
of an individual’s attention state by concurrently processing
diverse features of SP signals, including features from the
time, frequency, and time-frequency domains. ML models
are instrumental in feature selection, helping identify and
select the most relevant features for attention detection
from a sea of possible candidates. This process reduces
the data dimensionality, prevents model overfitting, and
enhances model interpretability. Moreover, the capability of
ML models for real-time responses is invaluable in situations
requiring immediate feedback, such as learning environments
or fatigue prevention systems [14], [32]. In addition, it can
inherently benefit from an iterative learning process, which
increases the accuracy and reliability of attention detection
with increased exposure to data over time.

Our study proceeds to a detailed examination of the
construction of classifiers, selection of features, and refine-
ment of an effective machine learning model for practical
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applications. This approach aligns with our research’s core
methodology, in which we utilize Random Forest (RF),
Gradient Boosting Decision Trees (GBDT), and XGBoost
classifiers for more than just data classification. These classi-
fiers are also used to evaluate and select SP features, thereby
enhancing our understanding of the inherent patterns in the
data and enabling us to create a streamlined, efficient model
suitable for real-world use. This is particularly important in
wearable devices, where computational resources are limited.
Thus, our methodological approach focuses on developing
a model that balances accuracy and practical feasibility,
ensuring that our findings are theoretically significant and
applicable in real-world situations. The result is a lean, potent
Support Vector Machine (SVM) classifier that utilizes a
carefully chosen set of key features to differentiate between
attention states. This model represents a significant advance-
ment in wearable technology applications and provides a
scalable and accessible solution for continuous real-time
attention monitoring.

Building on the groundwork laid by Li’s group on emotion
recognition through SP signals [19], this study leverages
the effectiveness of ML classification models for extracting,
analyzing, and interpreting the multifaceted features within
SP signals and the deeper meaning of the selected main
features in human physiological signals. The objective is
to promptly and efficiently differentiate between diverse
attention periods through a specific useful feature from SP
signals. In addressing the complex problem of differentiating
attention states, our study only focuses on attention concen-
tration, which means that attention would be simplified into
lower dimensions for presented different states. Our approach
does not emphasize the precise score at a specific point but
rather the overall tendency towards one of these two ends
of the attention spectrum. This perspective aligns with the
cognitive understanding of attention as a crucial aspect of
human engagement in tasks and activities, as highlighted
in the introduction [1], [2]. With the idea of simplified
attention, the feature exploration from SP for attention
shifting and the classification model based on machine
learning for distinguishing shifting attention can be found.
By simplifying the complex nature of attention evaluation
into a binary classification model, we aim to overcome the
challenges faced by non-contact methods, such as accuracy
issues owing to variability in facial recognition [11], and
establish a foundation for more efficient and reliable attention
state detection.

This approach underscores the versatility and adaptability
of ML models in feature selection and attention state
differentiation, thereby demonstrating the potential of SP
signals to unravel the intricacies of human attention states.
We developed a robust methodology that addresses special
features and classification results of SP signals suitable for
wearable technology. This approach significantly enhances
the detection of attention states, providing a precise, efficient
alternative to existing methods. Additionally, our research
lays a foundational framework for future explorations into
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the physiological aspects of attention, potentially improving
real-time monitoring and management of attention-related
disorders. This integration of machine learning and feature
selection marks a notable advancement in applying physio-
logical signal analysis to practical settings.

Il. MATERIALS AND METHODS

A. PARTICIPANTS

Participants were selected based on specific inclusion criteria:
they were between the ages of 18 and 65 years, in a good
mental state, and had no diagnosis of Palmar Hyperhidrosis.
Our study involved attention state monitoring experiments
conducted on qualified participants, resulting in 97 sets of
valid data. This study was conducted in strict accordance
with the principles of the Declaration of Helsinki and the
protocol was approved by the Clinical Ethics Committee
of the First Affiliated Hospital of Zhejiang University. All
participants provided written informed consent before trial
commencement.

The participants were placed in a bright, quiet environ-
ment, with the temperature maintained at approximately
26 °C to ensure comfort. A proper seating posture was
ensured to facilitate focus and reduce potential discomfort.
To aid the participants during the experiment, a guide was
presented at the site to direct them step-by-step through
various stages of the experiment. This systematic approach
ensured the validity of the collected data and maintained the
integrity of the experiments.

B. SP SIGNAL ACQUISITION DEVICE

For SP data collection, we utilized a portable hardware device
measuring 10 cm in length, 6 cm in width, and 3 cm in height,
designed and developed by Li et al. using emotion recognition
with equipment similar to that in a previous study [19]. This
compact design allowed for easy transport and unobtrusive
applications during the experiment. The device is connected
via Bluetooth to transmit the collected data from the human
body directly to a smartphone terminal.

Equipped with a high impedance and a high common-mode
rejection ratio, the device effectively reduces the interference
caused by the instability of the human body resistance. The
device has two channels, a measurement channel (red) and
a reference channel (white), connected to the inside of the
wrist and the fingertip of the middle finger using electrode
patches [19], [21]. The SP signals from the human body were
amplified through a differential amplifier module and input
into an active low-pass filter module for low-pass filtering,
reducing the interference caused by the power frequency.
In the main control module, the digital signal is adjusted
by subtracting the changed amplitude and dividing it by the
differential amplification multiple to obtain the desired SP
signal.

Furthermore, a custom mobile application developed in
our lab facilitates the interface between the hardware device
and data collection. It connects to the hardware device via
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Bluetooth, and records and displays the changes in the body’s
SP signals in real time. As the SP signals were recorded,
the app presented a real-time waveform diagram showing
signal changes over time (see Figure 1), providing an intuitive
visual interface for data collection. After data collection was
concluded, the data were saved locally on the smartphone in
CSV format for easy extraction and further analysis.

Measurement‘———e

] m— Signal Trend

is @—4—— Record of Time

o1— Function

FIGURE 1. Device and app interface.

C. SIGNAL PROCESSING TOOLS

Data analysis for this study was conducted using a com-
bination of software tools to ensure a robust and accurate
interpretation of our findings.

The primary programming environment was Python
3.9.12, a versatile platform offering a myriad of libraries
renowned for their applications in data science and signal
processing, particularly utilizing scikit-learn (sklearn) for the
implementation of ML algorithms [33], [34]. Additionally,
HeartPy is a specialized library for heart rate variability
analysis, with a particular emphasis on its time-domain and
frequency-domain modules for EDA signal processing [34].
These modules facilitate data preprocessing, feature extrac-
tion, model construction, and validation.

We used MATLAB R2022a’s Signal Processing and
Wavelet Toolbox for analyzing [35], preprocessing, and
extracting features from our data, especially facilitating
the decomposition and reconstruction of signals using
wavelet techniques, aiding in the extraction of time-frequency
features. GraphPad Prism version 9.5.0 was also used as a
tool for creating scientific graphs and conducting statistical
analyses [36].

Together, these software tools form an integrated environ-
ment for signal processing, ML, and statistical analysis to
uncover the complex patterns present in the SP data.

D. EXPERIMENT
Participants were situated in a bright, quiet environment with
the temperature controlled at approximately 26 °C to ensure
optimal comfort and concentration. Each participant was
seated comfortably with the experimenter at hand to guide
them through each step of the experiment.

The flow of the experiment, depicted in Figure 2, involves
four main steps.

1. The participants were equipped with Bluetooth noise-
canceling headphones, and two electrode patches were
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FIGURE 2. Block diagram of experimental procedures.

attached: one to the pulp of the middle finger and the other to
the inner right side of the left wrist. Our Bluetooth hardware
device was connected physically to the two electrode
patches and via Bluetooth to the smartphone application.
At this stage, a live waveform graph of the participant’s
physiological electrical signal is visible on the smartphone
screen. Participants were instructed to sit quietly for 5 min
while the experimenter clicked on the “Start Test” button
on the app interface, initiating music playback through the
headphones.

2. A 60-second strong music segment was continuously
played to the participants, who were instructed to immerse
themselves as much as possible in the strong rhythm
of the music. Simultaneously, the smartphone application
continuously recorded participants’ SP signals.

3. After the 60-second music segment, the experimenter
paused the music playback. The participants were then
asked to solve mental arithmetic problems on the screen
for continuous three minutes. Participants were required to
concentrate fully on solving these calculations.

4. At the end of three minutes, the experimenter signaled
the participants to stop the test and pressed the “End Test”
button on the app. Subsequently, the participants were asked
to complete a post-test questionnaire.

The questionnaire required participants to self-assess their
state of attention during the experiment, rating it on a scale of
1 to 5. A score of 1 indicated a state of inattention, whereas
a score of 5 represented a state of full attention. Participants
were asked to evaluate their attention level during both phases
of the experiment: the music-listening phase and arithmetic
arithmetic-solving phase. The self-evaluation scores provided
a subjective gauge of the participants’ attention level during
the different phases of the experiment, supplementing the
objective physiological data collected.

E. DATA PREPROCESSING AND DATASET CONSTRUCTION
The transmission of SP signals via Bluetooth can occa-
sionally deviate from the 20 Hz sampling rate, although
such instances are infrequent (probability less than 0.1%).
To compensate for this, we employed the cubic spline inter-
polation method for data completion [37]. Previous studies
have often normalized the data during signal preprocessing
to account for variations in the amplitude range among
different participants’ physiological signals [38]. However,
considering that normalization can potentially affect the
data’s extreme value distribution, certain frequency domain
features, and the correlation study of individual SP signals,
we opted for selective normalization treatment during the
time- and frequency-domain feature analysis phase based on
the characteristic properties of the features.
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Each test was conducted over a span of four minutes (97
samples in total), and at a sampling rate of 20 Hz, we obtained
4800 sampling points of the SP signal for each trial. During
the single test, the moments when the music started and
stopped were annotated with time tags using the mobile
app. This procedure effectively divided the entire process
into two distinct regions: one minute of music disturbance
and three minutes of calculation tasks. From Figure 3,
which depicts the initial SP signal (a) and the magnitude
scalogram of the wavelet transform (WT) (b), it can be
inferred that there may be discernible differences between
the two stages according to our initial observations. In this
study, a fixed-length segmentation strategy for processing
physiological signals was employed, which is consistent with
previous research [39], [40]. To capture the representative
signal features from each stage, we chose to use a 50-second
signal segment (1000 sampling points) to strike a balance
between obtaining a view of the signal characteristics within
each stage and ensuring the precision of our analysis. This
structured approach helps isolate and analyze the distinct
phases of the experiment, allowing for a reliable comparison
across different periods and participants.

SP Signal

Music Disturbance Calculation Tasks

Voltage(mV)
=

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30
Time (HH:MM from start)

()

Magnitude Scalogram

Music Disturbance Calculation Tasks

=
—

0 00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30
Time (HH:MM from start)

(®)
FIGURE 3. (a) Initial SP signal (b) Magnitude scalogram of WT.

Frequency(Hz)

5

F. FEATURE EXTRACTION
According to previous research and analysis [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
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TABLE 1. 29 features extracted.

Domain Feature Category
Time Mean, Median, Standard Deviation, First
domain Derivative of Mean, Standard Deviation of First
Derivative, Second Derivative of Mean,
Standard Deviation of Second Derivative,
Minimum Ratio, Maximum Ratio
Frequency | Signal Energy, Spectral Power [0-0.625Hz] § =
domain %, Minimum Spectral Power, Maximum
Spectral Power, Variance of Spectral Power
Time- Mean Wavelet Coefficient,
frequency Standard Deviation of Wavelet Coefficient,
domain Relative Wavelet Energy

[28], [29], a total of 29 features were extracted in this study
for music disturbance and calculating parts, which include
9 time domain features, eight frequency-domain features, and
12 time-frequency domain features listed in Table 1.

1) TIME DOMAIN FEATURES

A predominant observation throughout the course of the
experiment was that the SP signals of most participants
demonstrated a pronounced downward trend when transi-
tioning from music disturbance to performing an arithmetic
calculation task. The consistent pattern was characterized by
either steady reductions in SP over time or fluctuations with
an overall declining trend, approximating the characteristics
of a first-order function. This empirical finding informed
the selection of parameters for the time-domain feature
analysis, including the median, mean, standard deviation,
variance, and root mean square of the amplitude. The
minimum and maximum ratios of the sample were also
considered (Equations 4.1, 4.2), where Xmin and Xmax
denote the peak and trough positions within the sample
frequency band signal, respectively, and Xjengn represents the
number of data segment sampling points. Considering the
relatively pronounced declining trajectory of the potential
signal, the first- and second-order derivative sequences
of the sample were also computed, along with their
corresponding means, medians, and standard deviations,
augmenting the suite of time-domain features. The specific
contributions of these time-domain features are elaborated in
Chapter 3.

Xmin

Ratiopiy = —2" .1)
Xlength
X

Ratiog, = —= 4.2)
Xlength

2) FREQUENCY DOMAIN FEATURES
Following time-domain feature extraction, frequency-domain
features were obtained using Welch’s method (Figure 4),
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which is an approach that enhances signal analysis in
noisy environments. Welch’s method involves segmenting
the signal into overlapping segments, applying a Fourier
Transform to each, and then averaging the power spectra
of these segments. This procedure effectively reduces noise,
leading to a more stable and accurate estimation of the power
spectral density of the signal, thereby providing a reliable
foundation for our frequency-domain feature analysis [41].
In Figure 4, the left part of the x-axis is extracted from a
dataset window of one-minute (00:00 — 01:00) length during
the music disturbance stage, and the right part is extracted
from a dataset window of one-minute (02:30 — 03:30) length
during the calculation stage within a sample.

PSD - Welch’s Method

0.468 Hz

0.312Hz

Frequency [Hz]

0.156 Hz

PSD [s"2/Hz]

FIGURE 4. Power spectral density of different frequency bands.

The dataset window from 2:30 to 3:30 during the
calculation stage was selected for analysis to represent a
typical period within the longer calculating phase, assuming
that it reflects the sustained attention state characteristic of
this stage, following the initial adaptation period post-music-
disturbance stage. In accordance with the bandwidth par-
titioning in Wavelet Packet Decomposition (WPD) (2.6.3),
the frequency spectrum was divided into four segments:
0-5/32 Hz, 5/32-5/16 Hz, 5/16-15/32 Hz, and 15/32—5/8 Hz.
Figure 5 is a typical WPD method akin to bisection to
meticulously divide the frequency spectrum. The visual
representation in the figure clarifies the segmentation process
and showcases the unique energy patterns within each band.
Signals under 5/32-5/16 Hz and 15/32—5/8 Hz are taken out
as visualization examples. Differences in the power distri-
bution across these spectral bands were evident between the
music disturbance and calculation stages. Spectral analysis
indicated relatively minimal power beyond 0.625 Hz, which
is likely attributed to noise [20]. Furthermore, the extracted
frequency-domain features included the spectral power of
each band, minimum and maximum spectral powers, total
energy within the 0-0.625 Hz range, and variance of spectral
band powers, offering a capture of the frequency-domain
characteristics of SP signals to distinguish and comprehend
attention states.
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3) TIME-FREQUENCY DOMAIN FEATURES

Time-frequency domain feature analysis of physiological
signals has been emphasized in many related studies [42].
Emphasizing time-frequency domain analysis through WPD
can achieve a multidimensional perspective of the complex
dynamics of attention levels within SP signals. This refined
wavelet transformation method optimizes the frequency
spectrum representation for precise feature extraction [43].
This is pivotal because of the non-stationary nature of SP
signals, providing high-resolution analysis in both the time
and frequency domains, and enhancing classification perfor-
mance through detailed signal representation. The features
we especially focused on were the relative wavelet energy
percentage and statistical measures of wavelet coefficients
across various frequency bands (0-5/32 Hz, 5/32-5/16 Hz,
5/16-15/32 Hz, and 15/32-5/8 Hz).

Given the criticality of WPD in elucidating SP signals,
selection of an appropriate mother wavelet for feature
extraction is paramount. The Daubechies wavelet of order
five (DB5) was used in this study, given its successful
applications in various recent physiological signal studies
employing WT [44]. The impact of using different mother
wavelets is discussed in Section IV. Figure 5 shows two of
the four nodes used in this study as time-frequency domain
features.

G. CLASSIFIER CONSTRUCTION

Three different classifiers-Random Forest (RF), Gradient
Boosting Decision Tree (GBDT), and Extreme Gradient
Boosting (XGBoost)-were employed in this study to con-
struct attention state models [45]. RF is an ensemble
learning method that offers robustness through decision-tree
aggregation. GBDT is a powerful ML technique that creates
a model in the form of an ensemble of weak prediction
models, typically, decision trees. XGBoost is a more
advanced implementation of the GBDT algorithm optimized
for both computational speed and model performance [46].
Each classifier is particularly adept at handling the high
dimensionality of features, making them well-suited for the
task of complex attention state classification based on SP
signals. The parameters are listed in Table 2.

Special considerations were given to data division and
validation to maintain the integrity and reliability of the
study. A total of 97 samples and 194 data slices were
collected from the 37 participants. These were divided into
training and testing sets in a ratio of 7:3. Importantly,
to avoid data dependence that could stem from individual
participant SP signal characteristics, the original data from
each participant were divided proportionally. This measure
aimed to minimize the occurrence of the same participant’s
data in both the training and testing sets, thereby establishing
a relatively participant-independent physiological state clas-
sification model.

Furthering the accuracy of the model [47]. This step
ensured that the model was not only trained but also
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FIGURE 5. Wavelet packet decomposition.

validated on multiple subsets of data, offering a more
robust estimation of the model’s generalizability. These
methodological choices help guarantee a comprehensive
evaluation of the classifiers’ ability to differentiate attention
states using SP signals, contributing significantly to the
ongoing research on attention state differentiation.

H. FEATURE SELECTION

Our feature selection process aims to accurately distinguish
attention states from SP signals. It incorporates a multi-tiered
approach that synergies statistical and machine learning
methodologies for a holistic analysis.

Initially, tree-based models, including RF, GBDT, and
XGBoost, were employed to assess the importance of various
features. This step served as the cornerstone of our feature
selection strategy, leveraging the intrinsic capability of
these models to rank features based on their contribution
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to classification accuracy. The output from these models
provided a preliminary yet robust indication of feature
significance, setting the stage for further validation.

Subsequently, a paired t-test was applied to statistically
validate the importance of features identified by the tree-
based models [31], [48]. This statistical evaluation, ideal for
within-subject designs, allowed us to account for individual
differences across participants by focusing on mean feature
differences between attention states. The selection of features
with statistically significant differences ensured that our
subsequent analyses were grounded in features with proven
discriminative power.

The final refinement of our feature set was accomplished
through the use of a Support Vector Machine (SVM) with a
linear kernel, incorporating a Recursive Feature Elimination
(RFE) strategy [49], [50]. This phase involved iteratively
eliminating the least significant features and retraining the
SVM to identify a concise set of features with the highest
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TABLE 2. Results for nine selected features.

Feature P value | Significantly
different

Time-domain Standard Deviation 0.0054 Yes
(feature 2)
First-order Differentiation in Time | 0.0897 | No
Domain (feature 3)
Standard Deviation of First-order | 0.3636 No
Differentiation (feature 4)
Wavelet Energy in 0 - 0.15625 Hz | 0.0189 | Yes
(feature 11)
Mean Wavelet Coefficient in 0.15625 | 0.2420 | No
—0.3125 Hz (feature 12)
Wavelet Energy in 0.15625 — 0.3125 | <0.0001 | Yes
Hz (feature 14)
Mean Wavelet Coefficient in 0.3125 | 0.1574 | No
—0.46785 Hz (feature 15)
Wavelet Energy in 0.3125—-0.46785 | <0.0001 | Yes
Hz (feature 17)
Standard Deviation of Wavelet <0.0001 | Yes
Coefficient in 0.46785 — 0.625 Hz
(feature 19)

predictive value for attention states [51], [52]. The RFE
method, bolstered by the preliminary feature ranking from
tree-based models and statistical validation through paired
t-tests, allowed for a meticulous distillation of the most
informative features.

This comprehensive approach to feature selection—
beginning with tree-based model evaluations, validated
through statistical analysis, and finalized with SVM and
RFE—ensures that our model is based on features with
high predictive power and statistical significance. The
fusion of machine learning insights and statistical validation
underscores the robustness of our method in identifying key
SP signal features for attention state differentiation.

I. EFFICIENT ML MODEI FOR PRACTICE

The culmination of our study led to the development of
an efficient ML model designed for real-world application,
especially within the domain of wearable technology. The
linear SVM was chosen for its proficiency in binary classi-
fication tasks and unparalleled feature selection efficiency.
This model utilizes a refined set of significant features—
primarily features 11 and 17—to unlock the potential of
SP signal analysis for attentive state monitoring in everyday
settings.

The model’s development was guided by a rigorous
feature selection process, as outlined in Section H, aim-
ing to craft a tool that is both rapid in training and
lightweight enough for deployment on wearable devices.
These devices, characterized by their limited computational
capacities, necessitate models that promise swift diagnostic
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capabilities and maintain high accuracy with minimal feature
requirements. Such a model is ideal for integration into
wearable technology, enabling real-time, on-the-go attention
state monitoring without taxing the device’s processing
power.

Emphasizing a targeted feature set, the model sets a
precedent for deploying sophisticated ML techniques in
wearable technologies for attention monitoring. Its practical
application is further accentuated by a 2D graphical repre-
sentation, which elucidates the decision boundaries between
features 11 and 17, reinforcing the model’s operational
viability and ease of interpretation.

In essence, this model represents a significant stride
towards integrating SP signal analysis into wearable tech-
nologies, paving the way for innovative attention monitoring
solutions. It epitomizes a judicious combination of advanced
feature selection and model efficiency, offering a blueprint for
future explorations in the domain of real-time physiological
monitoring.

IIl. RESULTS

In exploring distinguishing attention states, this study metic-
ulously unfolds through a sequence of pivotal analytical
stages, which is crucial for understanding our methodology
and subsequent insights. Despite the established correlation
between SP signals and attention shifts, the underlying
physiological mechanisms remain largely uncharted. This
gap underscores the importance of our exploration into the
SP feature space as a pioneering step towards laying the
foundational work for understanding how specific features
of SP signals correlate with attention states [14], [16].
Initially, the evaluation of three sophisticated classifiers, RF,
GBDT, and XGBoost, via a rigorous ten-fold cross-validation
process, established the groundwork. This stage assesses their
capacity to differentiate attention states based on SP signals,
setting the stage for a deeper dive into the essence of feature
selection. Following this, we leveraged the importance of the
permutation feature as a cornerstone for our feature selection
phase, underpinning our analysis with a paired t-test for
statistical validation of the selected features. This approach
not only sharpens our focus on the most indicative features
of attention states but also seamlessly integrates into the
subsequent refinement using an SVM. The RFE method
plays a critical role in streamlining the feature set to the
most impactful elements. This meticulous process culminates
in the development of a highly efficient SVM model
that encapsulates our findings into a pragmatic classifier
designed for real-world applications. This progression from
classifier evaluation through strategic feature selection to the
crafting of an efficient machine learning model for practice
illustrates our methodological approach. It emphasizes the
balance between computational efficiency and the complex
analysis required for real-time attention monitoring, which
is particularly relevant for developing wearable devices.
Through this structured narrative of our results, we aimed
to provide a comprehensive overview of our methodological
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rigor and the significant strides made in differentiating
attention states.

A. CLASSIFIER PERFORMANCE

We first evaluated the performance of three classifiers,
RF, GBDT, and XGBoost, each validated through a ten-
fold cross-validation. The three classifiers, RF, GBDT, and
XGBoost, play a distinctive role in feature selection from SP
signals [53]. RF, an ensemble of decision trees, provides a
robust assessment of feature importance through the decrease
in average impurity across trees, favoring universally infor-
mative features [54]. GBDT, which leverages boosting
techniques, iteratively corrects ensemble errors, with feature
importance emerging from each feature’s contribution to
the overall model performance [55]. XGBoost, a refined
gradient boosting library, highlights feature splitting near
tree roots, thus identifying key contributors to predictive
outcomes. These classifiers were tested for their ability to
differentiate attention states using features selected from
SP signals.

This new clarity in feature identification led us to compare
multiple algorithms to ensure the robustness and reliability
of our findings. The RF classifier achieved an accuracy
of 0.7339 and an AUC score of 0.85, demonstrating its
robustness for classifying different attention states. GBDT
followed, with an accuracy of 0.7096 and an AUC of
0.8, showing reasonable efficacy. XGBoost outperformed
both, with the highest accuracy of 0.7506 and AUC of
0.87, indicating its superior capability in discerning attention
states.

0.85
0.80

0.75 0.73 B

0.71
0.70
0.65 RF
0.60 W GBDT
XGBoost

Accuracy

0.55
0.50
0.45

0.40

FIGURE 6. Accuracy of three classifiers.

To assess these models further, Receiver Operating Char-
acteristic (ROC) curves and Area Under Curve (AUC) values
were employed as performance metrics [56]. These metrics
provide a comprehensive evaluation of the classifiers, with
ROC curves visualizing the performance and AUC values
quantifying the overall predictive capacity. The combined
analysis of these metrics reaffirmed the effectiveness of
our models in accurately identifying the different attention
states. Further discussions on a detailed comparison of
the models’ performances are provided in the subsequent
subsections.
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FIGURE 7. ROC curve and AUC value.

B. FEATURE SELECTION DETAILS

The permutation feature importance was the chosen method
for feature ranking because of its model-agnostic nature.
This technique evaluates the decrease in performance after
shuffling each feature, thereby measuring the importance of
each feature based on the deterioration of the model’s per-
formance [57]. Unlike GINI importance, or Mean Decrease
Impurity, which is biased towards preferring variables
with more categories, permutation importance provides a
fair comparison for both continuous and high-cardinality
categorical variables, making it suitable for our study [58].
The top five features for each of the three models based
on permutation importance are illustrated in Figure 8, with
each column representing a unique feature and its relative
importance demonstrated through the corresponding bar
length. Nine features were selected for their prominence:
feature 2 (time-domain standard deviation), feature 3 (first-
order differentiation in the time domain), feature 4 (standard
deviation of first-order differentiation), feature 11 (wavelet
energy between 0-0.15625 Hz), feature 12 (mean wavelet
coefficient between 0.15625 — 0.3125 Hz), feature 14
(wavelet energy between 0.15625 — 0.3125 Hz), feature 15
(mean wavelet coefficient between 0.3125 — 0.46785 Hz),
feature 17 (wavelet energy between 0.3125 and 0.46785 Hz),
and feature 19 (standard deviation of wavelet coefficient
between 0.46785 and 0.625 Hz).

The statistical method paired t-test results indicated
that out of the nine features initially selected, five
of them-std_time (feature 2), wavelet energy in the
0-0.15625 Hz band (feature 11), wavelet energy in the
0.15625 — 0.3125 Hz band (feature 14), wavelet energy in
the 0.3125-0.46785 Hz band (feature 17), and std_wavelet
in the 0.46785-0.625 Hz band (feature 19)-presented p-
values less than 0.05, thereby deeming them statistically
significant, solidifying the robustness of our feature selection
approach [31], [48]. Each p-valve is listed in Table 2.

To further refine our feature selection, we employed an
SVM, a renowned and robust classifier widely utilized in
physiological signal research, especially binary classifica-
tion [49]. To conduct feature selection, an RFE strategy with
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FIGURE 9. Paired t-test of each feature.

an SVM was utilized [51]. The final set of features was
deemed to be the most informative for the classification
task.

C. SVM PERFORMANCE

Beginning with features 19, 2, 14, 11, and 17, an SVM model
was trained, yielding a mean validation score of 0.772436.
The feature with the least weight is then removed iteratively,
and the SVM model is retrained. After removing Feature
19, the remaining features 2, 14, 11, and 17 yielded a score
of 0.773718. Upon further pruning of the features, sets 14,
11, and 17 gave a score of 0.78141, while features 11
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weights for each iteration are listed in Table 3. An effective
feature selection procedure was established to show that the
most crucial features from SP signals necessary to differ-
entiate attention states are wavelet energy at 0-0.15625 Hz
(feature 11) and wavelet energy at 0.3125 — 0.46785 Hz
(feature 17).

Following diligent iterative refinement using SVM’s RFE
strategy, two salient features, features 11 and 17, were
identified (wavelet energy in 0-0.15625 Hz (feature 11)
and wavelet energy in 0.3125 — 0.46785 Hz (feature 17)).
These features display the most robust discriminative power
in differentiating attention states, as affirmed by the SVM
model’s performance. To further illustrate the potent discrim-
inative ability of these features, a visualization showing the
decision boundaries of the SVM model in the space defined
by features 11 and 17 was provided. Figure 11 visually
demonstrates the classification performance of the SVM with
a linear kernel applied to differentiate between two distinct
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TABLE 3. Results for nine selected features.

Feature 19 2 14 11 17 Sl:t;erres

Literation -0.3371 0.1273 0.7126 1.4172 4.3063 5
1

Literation -0.0266 0.5292 1.3001 4.0983 4
2

Literation 0.4617 1.4601 4.2059 3
3

Literation 1.3217 4.7520 2
4

Literation 4.5950 1
5

SVM with linear kernel

Music Disturbance
15

00

Ewavelet in 0.3125 - 0.46785 Hz (feature 17)

-05

Calculation Tasks

-05

o 0s
let in 0 - 0.15625 Hz (fea

15

10
ture 11)

o
Ewavel

FIGURE 11. SVM results with linear kernel and features 11&17.

attention states: music disturbance and calculation tasks. The
x-axis represents the feature derived from the wavelet energy
within the 0 - 0.15625 Hz band (Feature 11), while the
y-axis corresponds to the wavelet energy within the 0.3125
- 0.46785 Hz band (Feature 17). Each red dot within the red
region indicates a correct prediction of the music disturbance
stage, whereas blue dots in the blue region accurately classify
instances of the calculation tasks. The decision boundary,
represented by a solid straight line, clearly demarcates the
separation between the two attention states, underscoring
the SVM’s efficacy in utilizing these features for robust
discrimination. This delineation highlights the model’s ability
to leverage subtle variations in SP signal characteristics to
effectively distinguish between the cognitive demands of
listening to music and engaging in calculation tasks. This
vivid depiction not only underscores the robustness of these
features in segregating attention states but also powerfully
illustrates how a simple linear model can effectively classify
different attention states with high efficiency and accuracy
using just two key extracted features. This presentation
highlights the model’s capability to provide clear and intuitive
insights into the classification task, demonstrating its practi-
cal applicability in distinguishing between complex cognitive
states.
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IV. DISCUSSION

A. INSIGHTS ON SPECIFIC SP FEATURES

The two most informative features identified from the WPD
of SP signals, the wavelet energy in the frequency bands
of 0-0.15625 Hz (feature 11) and 0.3125 — 0.46875 Hz
(feature 17), potentially reflect the specific physiological or
psychological mechanisms underlying attention states. These
features occupy distinct non-overlapping frequency bands,
suggesting that they capture different facets of the attention
state.

The wavelet energy from 0-0.15625 Hz (feature 11), situ-
ated in the very low-frequency band, potentially corresponds
to slower tonic changes in EDA, which are associated with
underlying states, such as stress or arousal [59]. The tonic
shifts in signals are linked to overall arousal, cognitive, and
emotional states, and are generally influenced by factors
causing a long-term alteration in an individual’s physiological
arousal level [60]. Within the scope of attention, these factors
might include sustained focus on a specific task or stimulus
or overall levels of alertness or engagement. The prominence
of this feature in classifying attention states indicates that
the tonic aspects of SP, as represented by low-frequency
fluctuations in SP, are critical in distinguishing between
different levels of attention.

In contrast, the wavelet energy from 0.3125 — 0.46875 Hz
(feature 17), encompassing a higher frequency band, may
correspond to rapid phasic shifts in SP that are associated
with immediate reactions to specific stimuli or events. Phasic
fluctuations in SP signals might be linked to immediate
changes in arousal caused by discrete events, stimuli,
or tasks [59]. These changes tend to be more rapid and
transient, reflecting an individual’s immediate response to
specific attention-demanding events or tasks. Consequently,
the wavelet energy from 0.3125 — 0.46875 Hz (Feature 17)
could capture the variability in these immediate event-related
responses across different attention states. The significance of
this feature in classifying attention states suggests that these
rapid event-related changes in SP play a substantial role in
the physiological differentiation of attention states.

However, the specific physiological or psychological
mechanisms that these two features reflect remain speculative
at this point and should be a focus for future research.
Nonetheless, the fact that these frequency-based features
were selected as the most informative for classifying attention
states highlights the potential of the WPD of SP signals
as a promising approach for attention state analysis. This
provides additional evidence supporting the hypothesis that
specific frequency bands of the SP signal can have distinctive
relevance to attention states, thus opening novel avenues for
future investigations in this field.

In summary, the identification of these two informative
features in the specific frequency bands of the SP signal
represents a significant step forward in the quest to differ-
entiate attention states based on physiological signals. It also
underscores the potential of ML methods for feature selection
in physiological signal analysis given their ability to sift
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through complex, multidimensional datasets and identify the
most informative patterns [30].

B. CLASSIFIER PERFORMANCE DISCUSSION

The efficacy of the three classifiers, RF, GBDT, and
XGBoost, in accurately differentiating attention states using
SP signals sheds light on their inherent operational strengths.
Remarkably, all three classifiers achieved accuracy scores
above (.73 after a ten-fold cross-validation, indicating their
performance in this complex task [47].

RF, known for its ensemble nature, is particularly
robust [61]. The creation of multiple decision trees and the
subsequent aggregation of their outputs effectively mitigated
the risk of overfitting, a crucial aspect when dealing with
small sample sizes [62]. RF’s inherent randomness of RF in
the feature selection for individual trees may have contributed
to its substantial performance, thereby delivering an AUC
of 0.85. The more advanced gradient boosting methods
GBDT and XGBoost also presented substantial results. These
algorithms operate by learning from their predecessors in
an iterative fashion, continually introducing new trees to
correct the mistakes of those that came before. While
this methodology has the potential to result in overfitting,
particularly when dealing with limited datasets, our study
showed consistency across all ten cross-validations, which
suggests that this overfitting concern was managed to
some extent [63]. Specifically, GBDT and XGBoost posted
accuracy scores of 0.7906 and 0.7506, respectively, and
XGBoost exhibited a particularly commendable AUC of
0.87, indicating strong model performance in differentiating
between attention states.

Notably, the feature-selection process was executed using
a linear SVM. SVM, known for its robustness, was instru-
mental in fine-tuning our feature selection, particularly
in the high-dimensional context of physiological signals.
The two most relevant features (11 and 17) identified
through the iterative feature elimination process using SVM
aligned with the performance results of our classifiers. This
synergy further attests to the robustness of our approach and
generalizability of our results, despite the relatively small
sample size.

However, it is important to bear in mind that each classifier
has its unique strengths and limitations. These insights should
guide future research efforts, particularly when dealing with
limited datasets. By acknowledging and learning from the
limitations of this study, future studies can strive to assemble
larger sample sizes and explore other potential classifiers to
further bolster the reliability and generalizability of attention
state classification based on SP signals.

C. WAVELET CHOICE AND ITS IMPACT ON
CLASSIFICATION ACCURACY

The selection of mother wavelets is a critical component in
WPD and plays a substantial role in the efficiency of the
subsequent classification. For this study, the exploration was
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conducted on mother wavelets, including Daubechies 5 (db5),
Haar, Symlet 5 (sym5), and Coiflet 1 (coifl).

The Daubechies 5 (db5) wavelet achieved the highest
accuracy of 78.9% in 10-fold cross-validation, underscoring
its effectiveness among the selected mother wavelets. This
can be attributed to its approximation of real-world signals
and superior localization in both the time and frequency
domains. In contrast, Haar, Symlet 5 (sym5), and Coiflet 1
(coifl) wavelets resulted in accuracies of 77.4%, 75.8%,
and 72.7%, respectively. Despite their lower accuracy, these
wavelets still presented satisfactory results. They possess
unique properties, such as Haar’s clear delineation between
signal details and a good balance between the time and
frequency localization offered by sym5 and coifl. However,
the Discrete Meyer (dmey) wavelet is not suitable for
this specific application, possibly because of its unique
characteristics, including infinite support, which may not
be in harmony with the nature of the studied physiological
signals.

Based on these results, db5 was selected as the preferred
mother wavelet. The relatively high classification accuracy
and its ability to closely approximate real-world signals
make it an optimal choice for the SP signal’s time-
frequency domain features [64]. These findings highlight
the importance of careful wavelet selection, emphasizing
that it is not only application-specific, but also data-specific.
The correct choice of mother wavelet also plays a critical
role in harnessing the full potential of wavelet-based feature
extraction and applications.

D. CONSIDERATION OF NEURAL NETWORK MODELS
VERSUS FEATURE-BASED ANALYSIS

In our study, although the use of neural network models
with raw SP signals was considered, we opted for a
feature-based approach using machine learning classifiers.
This decision was based on several key considerations. First,
neural networks, particularly deep learning models, often
function as a ‘black box,” providing limited interpretability
regarding underlying connections or principles. This aspect
conflicts with our objective, not just to build a high-accuracy
model, but also to identify and understand specific features
of SP signals and their potential link to physiological
states.

Moreover, owing to their complexity and representational
learning capacity, deep learning models are more susceptible
to overfitting, especially when working with a relatively
limited dataset, as in our case. In contrast, our chosen method
allows for a more transparent analysis, in which each feature’s
contribution to the model can be quantitatively assessed and
understood. The feature-based approach of machine-learning
classifiers inherently emphasizes the identification and
evaluation of distinct signal characteristics, directly linking
observable features to varying attention states. By leveraging
the principles of machine learning, such as feature importance
and model interpretability, we can systematically isolate and
understand which aspects of SP signals are most influential
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TABLE 4. Average and standard deviation of self-evaluated scores for
predicted phase 1 & 2.

Predicted Results
Corrected Incorrected p-value
Phase 1 2.12 (0.68) 2.21(0.73) 0.6644
Phase 2 4.20 (0.70) 3.79 (0.80) 0.0952
p-value <0.0001 <0.0001

in distinguishing attentional shifts. This not only enhances
the model’s accuracy but also provides a clearer, more
direct pathway to correlate specific signal features with
underlying physiological mechanisms. This approach aligns
better with our goal of elucidating the physiological relevance
of specific SP signal features, facilitating a more insightful
and interpretable connection to attentional states.

Thus, although neural network models offer signifi-
cant power in pattern recognition and classification tasks,
their lack of transparency and potential for overfitting
led us to favor a feature-based approach in this specific
context.

E. DIFFERENTIATING LEVELS OF ATTENTION

To explore subjective attention awareness, the self-evaluation
scores were regrouped into a confusion matrix, depending
on the best-model prediction (Table 4). The self-evaluation
score of Phase 2 was significantly higher than that of
Phase 1 in corrected predictions, which were 4.20 and 2.12
(p< 0.05), respectively. In this comparison, the predicted
target “‘phase 2”” corresponds to a higher subjective attention
level. Moreover, the average self-evaluation score of the
incorrect prediction tends to be higher than that of the
corrected prediction in phase 1, which is 2.21 versus 2.12.
Higher subjective attention awareness also makes model
misjudgment easier. A similar condition was found in phase 2,
in which the corrected prediction was higher than the
incorrect prediction (4.20 vs 3.79). Although there were no
significant differences between the corrected and incorrect
phases, the trend for the misjudgment of the model is the same
as subjective attention awareness, which is higher in phase 1,
would make the model easily predict it to phase 2, and for
someone who gave lower self-evaluation scores in phase 2,
would make the model predict the results to phase 1. This
finding implies that the attention level in phase two might
have a higher concentration status.

In the other aspect, the attention level is also correlated
with the model-selected features (Table 5), especially for the
feature 14, 17, and 19. The energy of the wavelet between
0.15625 Hz and 0.46785 Hz and the standard deviation in
the 0.46785 — 0.625 Hz range were correlated with self-
evaluation scores. This is an important finding that has not
been reported in previous studies. Although the physiological
meaning of this bandwidth is still unknown, this result implies
that the SP signal might be an easier evaluation tool for
measuring attention level. Further research on SP signals
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TABLE 5. Spearman’s correlation between self-evaluation scores and
model-selective features.

Correlation p-value
std_time (feature 2) * 0.1569 0.033
Ewavelet in 0 - 0.15625 Hz
. 0.1828 0.013
(feature 11)
Ewavelet in  0.15625 —
” 0.5072 <0.0001
0.3125 Hz (feature 14)
Ewavelet in 0.3125 - 0.5330 <0.0001
0.46785 Hz (feature 17) ™ ’ '
std_wavelet in 0.46785 —
- 0.2812 0.0001

0.625 Hz (feature 19) ™
* p-value < 0.001

" p-value < 0.05

and attention levels, such as EEG performance and clinical
assessment of attention, should be conducted.

F. LIMITATION AND FUTURE STUDY
Although our research provides valuable insights into differ-
entiating attention states using SP signals and discovering
features with significant discriminatory power, it is important
to acknowledge certain limitations. First, the sample size
of our study, although adequate for preliminary analysis,
is relatively small and lacks diversity in terms of racial
representation. This limitation may affect the generalizability
of our findings to a broader population. In addition, our
study primarily focused on distinguishing between the two
attention states within a one-dimensional model. However,
this approach does not utilize traditional definitions or
methods to measure the depth of attention states, such as
explicitly defining what constitutes high or low attention.
The conceptual framework of our study was designed to
investigate the presence of differing attention states, rather
than to provide a comprehensive measurement of attention
levels. Consequently, our findings should be interpreted as a
foundational step in understanding attentional states through
physiological signals. In future studies, we aim to expand
our sample size and include a more diverse population
with more specifically designed experiments to enhance the
representativeness and applicability of our results. Moreover,
we plan to delve deeper into the quantification and definition
of attention states, exploring traditional and novel methods
to measure and categorize the levels of attention. This
proposition opens up a promising avenue for future research
and applications, such as education, cognitive science, and
user experience design, where understanding and adapting
to different levels of attention can be pivotal. Future work is
anticipated to build upon our current findings, offering a more
nuanced and detailed understanding of attentional states and
their physiological markers.

V. CONCLUSION

The study achieved an impressive overall accuracy exceed-
ing 75% in effectively classifying varying attention states
from music disturbance to calculation. It provides valuable
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insights into distinguishing human attention states with SP
signals, with a particular emphasis on unique features within
specific frequency bands. Notably, the wavelet energy at 0—
0.15625 Hz and 0.3125 — 0.46875 Hz emerged as the most
informative, suggesting the potential biological relevance of
these frequencies to attentional states.

To arrive at these key findings, the research process
embarked on an extensive set of 30 features derived from
the time, frequency, and time-frequency domains via WPD.
A sequence of feature selection methods, including REF,
GBDT, and XGBoost for Permutation Feature Importance,
were applied, leading to the identification of nine significant
features. The subsequent utilization of statistical methods
further streamlined the feature set to five, and the final phase
engaged RFE in conjunction with a linear SVM. The latter
was pivotal in identifying the two outstanding features, the
wavelet energy in the 0-0.15625 Hz range (Feature 11)
and the wavelet energy in the 0.3125 — 0.46875 Hz range
(Feature 17). The efficacy of the feature selection process,
coupled with the robustness of the SVM in managing high-
dimensional data, emphasizes the reliability of the results.

The insights gained through this research significantly
augment the understanding of human attention states and
underline the potential of SP signals as promising tools for
attention state differentiation. The identification of specific
frequency bands of importance in SP signals coupled with the
robustness of the employed classifiers and feature selection
methods paves the way for more precise and intricate future
studies in this domain.

The implications of these findings extend to neurophys-
iology research, with promising applications in real-world
scenarios such as attention-based human-computer interac-
tion, mental state monitoring, and the clinical diagnosis
of attention-related disorders. In conclusion, this study
presents a novel and promising approach for attention state
differentiation, providing a solid foundation for further
exploration in this evolving field.

ACKNOWLEDGMENT
The authors extend their heartfelt gratitude to all the
volunteers who participated in the experiment.

REFERENCES

[1] M.I Posnerand S. E. Petersen, ““The attention system of the human brain,”
Annu. Rev. Neurosci., vol. 13, no. 1, pp. 25-42, 1990.

[2] C.M. Tennessen and B. Cimprich, ““Views to nature: Effects on attention,”
J. Environ. Psychol., vol. 15, no. 1, pp. 77-85, 1995.

[3] T. V. Gelder, “Teaching critical thinking: Some lessons from cognitive
science,” College Teaching, vol. 53, no. 1, pp. 41-48, Jan. 2005.

[4] S. Freeman, D. Haak, and M. P. Wenderoth, “Increased course structure
improves performance in introductory biology,” CBE-Life Sci. Educ.,
vol. 10, no. 2, pp. 175-186, 2011.

[5] Y.-Y. Tang and M. I. Posner, “Attention training and attention state
training,” Trends Cogn. Sci., vol. 13, no. 5, pp. 222-227, 2009.

[6] A. Bhattacherjee, “Social science research: Principles, methods, and
practices,” USF Tampa Library Open Access Collections, Univ. of South
Florida, Tampa, FL, USA, Tech. Rep., 2012.

[71 K. Yamada, “Attention prediction in egocentric video using motion
and visual saliency,” in Proc. Pacific-Rim Symp. Image Video Tech-
nol., Gwangju, South Korea. Cham, Switzerland: Springer, Nov. 2011,
pp. 277-288.

VOLUME 12, 2024

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]
(31]

(32]

(33]

(34]

W. Wang, J. Shen, and J. De, “Review of visual attention detection,” J.
Softw., vol. 30, no. 2, pp. 416439, 2019.

K. Ahuja, “EduSense: Practical classroom sensing at scale,” ACM
Interact., Mobile, Wearable Ubiquitous Technol., vol. 3, no. 3, pp. 1-26,
2019.

D. Kahneman, W. S. Peavler, and L. Onuska, “Effects of verbalization and
incentive on the pupil response to mental activity,” Can. J. Psychol./Revue
Canadienne de Psychologie, vol. 22, no. 3, p. 186, 1968.

Q. Liu, S. Lu, and L. Lan, “YOLOV3 attention face detector with
high accuracy and efficiency,” Comput. Syst. Sci. Eng., vol. 37, no. 2,
pp. 283-295, 2021.

W. Klimesch, “Induced alpha band power changes in the human EEG and
attention,” Neurosci. Lett., vol. 244, no. 2, pp. 73-76, 1998.

A. Greco, G. Valenza, and E. P. Scilingo, Advances in Electrodermal Activ-
ity Processing With Applications for Mental Health. Cham, Switzerland:
Springer, 2016.

A. Affanni, “Driver’s stress detection using skin potential response
signals,” Measurement, vol. 122, pp. 264-274, Jul. 2018.

R. Amin and R. T. Faghih, “Physiological characterization of elec-
trodermal activity enables scalable near real-time autonomic nervous
system activation inference,” PLoS Comput. Biol., vol. 18, no. 7, 2022,
Art. no. e1010275.

A. Jabbari, “Simultaneous measurement of skin potential and conductance
in electrodermal response monitoring,” J. Phys., Conf. Ser., vol. 224, no. 1,
2010, Art. no. 012091.

B. Gaviria, L. Coyne, and P. E. Thetford, ““Correlation of skin potential and
skin resistance measures,” Psychophysiology, vol. 5, no. 5, pp. 465477,
Mar. 1969.

D. T. Lykken, R. D. Miller, and R. F. Strahan, “Some properties of skin
conductance and potential,” Psychophysiology, vol. 5, no. 3, pp. 253-268,
Nov. 1968.

S. Chen, “Emotion recognition based on skin potential signals with a
portable wireless device,” Sensors, vol. 21, no. 3, p. 1018, 2021.

H. F. Posada-Quintero and K. H. Chon, “Innovations in electrodermal
activity data collection and signal processing: A systematic review,”
Sensors, vol. 20, no. 2, p. 479, 2020.

M. J. Christie, “Electrodermal activity in the 1980s: A review,” J. Roy. Soc.
Med., vol. 74, no. 8, pp. 616-622, 1981.

H. Sequeira and J.-C. Roy, “Cortical and hypothalamo-limbic control of
electrodermal responses,” Prog. Electrodermal Res., vol. 249, pp. 93-114,
1993.

R. Wilcott, C. Darrow, and A. Siegel, ‘‘Uniphasic and diphasic wave forms
of the skin potential response,” J. Comparative Physiological Psychol.,
vol. 50, no. 3, p. 217, 1957.

M. R. Amin and R. T. Faghih, “Identification of sympathetic nervous
system activation from skin conductance: A sparse decomposition
approach with physiological priors,” IEEE Trans. Biomed. Eng., vol. 68,
no. 5, pp. 1726-1736, May 2021.

A. Affanni and G. Chiorboli, “‘Design and characterization of a real-time,
wearable, endosomatic electrodermal system,” Measurement, vol. 75,
pp. 111-121, Mar. 2015.

D. Bari, “Electrodermal responses to discrete stimuli measured by skin
conductance, skin potential, and skin susceptance,” Skin Res. Technol.,
vol. 24, no. 1, pp. 108-116, 2018.

S. A. Shields, “Is mediation of sweating cholinergic, adrenergic, or both? A
comment on the literature,” Psychophysiology, vol. 24, no. 3, pp. 312-319,
1987.

H. F. Posada-Quintero, “Electrodermal activity: What it can contribute to
the assessment of the autonomic nervous system,” Tech. Rep., 2016.
J.-C. Roy, H. Sequeira, and B. Delerm, ‘“Neural control of electrodermal
activity: Spinal and reticular mechanisms,” in Progress in Electrodermal
Research, 1993, pp. 73-92.

B. Mahesh, “Machine learning algorithms—A review,” Int. J. Sci. Res.,
vol. 9, pp. 381-386, Jan. 2020.

H. Ij, “Statistics versus machine learning,” Nat. Methods, vol. 15, no. 4,
p. 233, 2018.

D. Xin, “Accelerating human-in-the-loop machine learning: Challenges
and opportunities,” in Proc. 2nd Workshop Data Manag. End End Mach.
Learn., 2018, pp. 1-4.

F. Pedregosa, ““Scikit-learn: Machine learning in Python,” J. Mach. Learn.
Res., vol. 12, pp. 2825-2830, Nov. 2011.

D. Makowski, “NeuroKit2: A Python toolbox for neurophysiological sig-
nal processing,” Behav. Res. Methods, vol. 53, pp. 1689-1696, Feb. 2021.

100845



IEEE Access

Y. Huang et al.: Exploring Skin Potential Signals in Electrodermal Activity

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]

[61]

M. Misiti, Wavelet Toolbox. Natick, MA, USA: MathWorks, 1996, p. 21.
R. Mavrevski, “Approaches to modeling of biological experimental data
with GraphPad Prism software,” WSEAS Trans. Syst. Control, vol. 13,
no. 1, pp. 242-247, 2018.

S. McKinley and M. Levine, “Cubic spline interpolation,” College
Redwoods, vol. 45, no. 1, pp. 1049-1060, 1998.

G. J. Lehman and S. M. McGill, “The importance of normalization in
the interpretation of surface electromyography: A proof of principle,”
J. Manipulative Physiological Therapeutics, vol. 22, no. 7, pp. 444-446,
1999.

K. H. Kim, S. W. Bang, and S. R. Kim, “Emotion recognition system
using short-term monitoring of physiological signals,” Med. Biolog. Eng.
Comput., vol. 42, pp. 419-427, May 2004.

Y.-L. Hsu, J.-S. Wang, W.-C. Chiang, and C.-H. Hung, “Automatic
ECG-based emotion recognition in music listening,” IEEE Trans. Affect.
Comput., vol. 11, no. 1, pp. 85-99, Jan. 2020.

Barbe, K., R. Pintelon, and J. Schoukens, “Welch method revisited:
Nonparametric power spectrum estimation via circular overlap,” IEEE
Trans. Signal Process., vol. 58, no. 2, pp. 553-565, Sep. 2009.

H. Feng, H. M. Golshan, and M. H. Mahoor, “A wavelet-based approach
to emotion classification using EDA signals,” Expert Syst. With Appl.,
vol. 112, pp. 77-86, Dec. 2018.

S. Lahmiri and M. Boukadoum, “Physiological signal denoising with
variational mode decomposition and weighted reconstruction after DWT
thresholding,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015,
pp. 806-809.

S. Mahmoodabadi, A. Ahmadian, and M. Abolhasani, “ECG feature
extraction using Daubechies wavelets,” in Proc. 5th IASTED Int. Conf.
Vis., Imag. Image Process., Sep. 2005, pp. 1-6.

W. Liang, “Predicting hard rock pillar stability using GBDT, XGBoost,
and LightGBM algorithms,” Mathematics, vol. 8, no. 5, p. 765, 2020.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 785-794.

D. Berrar, “Cross-validation,” Open Univ., Milton Keynes, U.K.,
Tech. Rep., 2019, pp. 542-545.

T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural Comput., vol. 10, no. 7,
pp. 1895-1923, Oct. 1998.

L. Shu, “A review of emotion recognition using physiological signals,”
Sensors, vol. 18, no. 7, p. 2074, 2018.

C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local
SVM approach,” in Proc. 17th Int. Conf. Pattern Recognit., Aug. 2004,
pp. 32-36.

K. Yan and D. Zhang, “Feature selection and analysis on correlated gas
sensor data with recursive feature elimination,” Sens. Actuators B, Chem.,
vol. 212, pp. 353-363, Jun. 2015.

B. F. Darst, K. C. Malecki, and C. D. Engelman, “Using recursive feature
elimination in random forest to account for correlated variables in high
dimensional data,” BMC Genet., vol. 19, no. 1, pp. 1-6, 2018.

H. Zheng, J. Yuan, and L. Chen, ‘““Short-term load forecasting using EMD-
LSTM neural networks with a Xgboost algorithm for feature importance
evaluation,” Energies, vol. 10, no. 8, p. 1168, 2017.

B. H. Menze, “A comparison of random forest and its Gini importance with
standard chemometric methods for the feature selection and classification
of spectral data,” BMC Bioinf., vol. 10, pp. 1-16, Dec. 2009.

X. Ji, “Prediction model of hypertension complications based on
GBDT and LightGBM,” J. Phys., Conf. Ser., vol. 1813, Feb. 2021,
Art. no. 012008.

V. Bewick, L. Cheek, and J. Ball, “Statistics review 13: Receiver operating
characteristic curves,” Critical Care, vol. 8, no. 6, pp. 1-5, 2004.

A. Altmann, “Permutation importance: A corrected feature importance
measure,” Bioinformatics, vol. 26, no. 10, pp. 1340-1347, 2010.

S. Nembrini, I. R. Konig, and M. N. Wright, “The revival of the Gini
importance,” Bioinformatics, vol. 34, no. 21, pp. 3711-3718, 2018.

C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Troster, and U. Ehlert,
“Discriminating stress from cognitive load using a wearable EDA device,”
IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 410-417, Mar. 2010.
Katsis, C.D., G. Ganiatsas, and D.I. Fotiadis, “An integrated telemedicine
platform for the assessment of affective physiological states,” Diagnostic
pathology, 2006. vol. 1, pp. 1-9.

M. B. Kursa, “Robustness of Random Forest-based gene selection
methods,” BMC Bioinf., vol. 15, pp. 1-8, Dec. 2014.

100846

[62] G.Biauand E. Scornet, ‘A random forest guided tour,” 7est, 2016. vol. 25,
pp. 197-227, Jun. 2016.

[63] X. Ying, “An overview of overfitting and its solutions,” J. Phys., Conf.
Ser., vol. 1168, Feb. 2019, Art. no. 022022.

[64] W.K. Ngui, “Wavelet analysis: Mother wavelet selection methods,” Appl.
Mech. Mater., vol. 393, pp. 953-958, Nov. 2013.

YIYANG HUANG was born in Hangzhou, Zhe-
jiang, China. He is currently pursuing the dual B.S.
degree in mechanical engineering from the Uni-
versity of Illinois at Urbana—Champaign (UTUC),
Urbana, IL, USA, and Zhejiang University (ZJU),
China. He will continue the graduate studies at
Stanford University.

From 2021 to 2023, he was an Undergradu-
ate Researcher at several prestigious institutions.
At the UIUC’s Human Dynamics and Controls
Laboratory (HDCL), he crafted data-driven algorithms to track anxiety
using multimodal health data. Prof. Manuel Hernandez’s Group, UIUC,
significantly contributed to employing the Koopman Framework for mental
health change detection. At ZJU, Prof. Yubo Li’s group specialized in
electrodermal activity signal analysis. His notable contributions include
spearheading analytics for postpartum pain management after cesarean
termination, delving into pediatric pain triggers, and studying ADHD
and anxiety in children. His collaborative efforts with esteemed medical
institutions, such as Zhejiang University’s affiliated hospitals, underscored
advanced signal processing techniques.

Mr. Huang has been recognized for his outstanding academic achieve-
ments, including the consecutive Merit Scholarship, from 2020 to 2022,
and placement on the UIUC Dean’s List, from 2022 to 2023. He aspired
to continue blending engineering with clinical research, leveraging the tools
of data science to drive innovations in patient care.

ZHICONG ZHANG was born in Hangzhou,
Zhejiang, China. He is currently pursuing the
dual B.S. degree in mechanical engineering from
the University of Illinois at Urbana—Champaign
(UIUC), Urbana, IL, USA, and Zhejiang Univer-
sity (ZJU), China. He will continue the graduate
studies at Stanford University.

From 2021 to 2023, he was an Undergraduate
Researcher and participated in several research
projects at Zhejiang University. Since 2022, he has
been an Assistant Researcher in the robot vision for garbage sorting
project. He developed optimized algorithms, implemented deep learning
models to categorize garbage, and used Matlab and ROS systems to
validate the performance. Since 2023, he participated in the project named
“State Anxiety and Stress Detection and Monitoring using Multimodal
Wearable,” which used multiple wearable devices and physiological sensors
to monitor the state of anxiety for humans. His current research interests
include electrodermal activity, machine learning, signal processing, and
control systems.

.

YANBIN YANG received the Ph.D. degree in
circuit and systems from South China University
of Technology, Guangzhou, China, in 2010. He has
been a Senior Research Engineer with Sichuan
Tourism University, China, since 2019. His current
research interests include IC analysis and system
integrity.

VOLUME 12, 2024



Y. Huang et al.: Exploring Skin Potential Signals in Electrodermal Activity

IEEE Access

PU-CHUN MO was born in Kaohsiung, Taiwan,
in 1991. He received the B.S. and M.S. degrees in
occupational therapy from National Cheng Kung
University, in 2015, where he is currently pursuing
i the Ph.D. degree in biomedical engineering with
~— Prof. Fong-Chin Su. From 2013 to 2015, he was
y a Research Assistant with the Rehabilitation
Technology and Biomechanics Laboratory with
k Prof. Li-Chieh Kuo. From 2015 to 2017, he was
a Research Assistant with the Human Dynamics
Laboratory. From 2017 to 2019, he was the Engineering Group Leader
with the Medical Device Innovation Center, to develop a long-term care
Al system. In 2021, he received a scholarship to work with the University
of Illinois at Urbana—Champaign for two years. He was the author of
seven articles. His research interests include human motion movement,
rehabilitation science, medical device development, machine learning,
and deep learning applications in the medical field. He was in the top
5 conference papers in the International Society of Biomechanics, in 2017.

ZHENGHAO ZHANG was born in Hangzhou,
Zhejiang, China, in 2001. He is currently pursuing
the B.S. degree in mechanical engineering with
the University of Illinois at Urbana—Champaign,
Champaign, IL, USA.

His academic accomplishments have earned
him accolades, such as the consecutive Merit
Scholarship, from 2020 to 2021, and inclusion in
the UIUC Dean’s List, from 2022 to 2023.

JIADONG HE was born in Ningbo, Zhejiang,
China. He received the bachelor’s degree in
electronic science and technology from Zhejiang

— - University (ZJU), in 2022, where he is currently
(. pursuing the master’s degree in electronic science
. and technology.

o E At ZJU, within Prof. Yubo Li’s Group, he has

a strong passion for skin potential signal data

processing and has dedicated his research efforts

to the intelligent identification of pain in children
and the electrical characteristics of depressive emotions. He continues his
studies and research at Zhejiang University, he remains focused on expanding
his knowledge and making meaningful contributions to the field.

VOLUME 12, 2024

SHAOHUA HU received the B.S. degree in
clinical medicine, the M.S. degree in psychiatry
and mental health, and the Ph.D. degree in medical
imaging and nuclear medicine from Zhejiang
University, in 2000, 2006, and 2013, respectively.

He is currently the Director of the Psychiatry
Department, The First Affiliated Hospital, Zhe-
jiang University School of Medicine (ZJUSM).
He graduated from ZJUSM and finished a clinical
training program at First Affiliated Hospital,
ZJUSM. He visited the University of California, Los Angeles (UCLA), and
studied the Problem-Based Learning (PBL) Program, in 2008. As a research
visitor, he studied with the Psychiatry Department, Columbia University,
in 2012. He has undertaken several national research projects and has
published more than 60 papers in journals, such as The Lancet Psychiatry,
Trends in Neuroscience, Advanced Science, and JAMA Network Open.

Dr. Hu is an Editor of many journals, such as The Lancet Psychiatry,
Frontiers in Psychiatry, Neuroscience Bulletin, and BMC Psychiatry.

XIAOZHI WANG was born in 1982. He received
the Ph.D. degree in electronic engineering from
the University of Cambridge, U.K., in 2009. He is
currently a Ph.D. Supervisor and an Associate
Professor with the College of Information Science
and Electronic Engineering, Zhejiang University.
His current research interests include in-situ ana-
lytical devices and methods, electronics materials
and devices, medical devices, MEMS, sensors,
and micro and nano chemical analysis sensing
systems.

YUBO LI was born in 1977. He received the Ph.D.
degree in electronic engineering from the College
of Information Science and Electronic Engi-
neering, Zhejiang University, Hangzhou, China,
in 2007. His research interests include bioelec-
tronic sensors, including fabrication, Al analysis,
and sensing techniques. Especially human connec-
tive tissue potential Al sense and modeling.

100847



