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ABSTRACT Industrial robots are prone to failure due to harsh working environments, which affects
movement accuracy. The fault diagnosis of industrial robots has become an indispensable part of robot
collaborative maintenance in intelligent manufacturing. Most existing diagnostic methods only use a single
data source, and the diagnostic accuracy will be affected due to signal acquisition errors and noise inter-
ference. This paper proposes a multi-source data fusion and channel attention convolutional neural network
(MD-CA-CNN) for fault diagnosis of multi-joint industrial robots. The network takes the time domain data
and time-frequency domain data of the vibration signal, torque signal, and current signal of the six joints of
the robot as input. Then, we realize the diagnosis of the faults by using a Softmax Classifier layer after the
two parts of feature extraction and feature fusion. In addition, a channel attention mechanism is developed.
It acts on the two parts of feature extraction and feature fusion, respectively. It assigns weights to different
source data and weights to time-domain and time-frequency domain features. Finally, we established a test
bench to compare the proposed method with the deep learning algorithm that only uses multi-data source
fusion, the deep learning algorithm that only uses a single data source, and the commonly used machine
learning algorithm. The results show that the MD-CA-CNN model proposed in this paper has the highest
accuracy and stability, reaching 95.8% ± 0.39%, which verifies the method’s effectiveness.

INDEX TERMS Industrial robots, fault diagnosis, multi-source data fusion, convolutional neural networks,
channel attention mechanisms.

I. INTRODUCTION
Industrial robots have long been used to automate man-
ufacturing processes to improve productivity, quality, and
safety [1]. Due to their advantages of high flexibility, high-
cost efficiency, ample working space, high repeatability,
and multiple functions, they have been widely used in
modern manufacturing industries such as automobile assem-
bly, chemical industry, and aerospace [2]. The transmission
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system is the core of an industrial robot. In actual indus-
trial production, the motor, reducer, and other components
in the industrial robot transmission system may fail due to
overload, long-term work, or long-term non-maintenance,
affecting the joint stability of the industrial robot. If it is
severe, the robot will not be able to continue the task, inter-
rupting the production task. Condition monitoring and fault
diagnosis of industrial robots can reduce unplanned down-
time on highly automated production lines, saving associated
costs [3]. Therefore, it is meaningful to study a highly accu-
rate fault diagnosis method for industrial robots to arrange
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appropriate maintenance strategies and reduce maintenance
costs.

In the industrial field, there are three main ways to diag-
nose equipment faults: knowledge-based, model-based, and
data-driven [4]. Knowledge-based diagnostics require expert
experience to identify the status of the device. Chen et al.
realized the composite fault identification of rolling bear-
ings by adaptive extraction of resonant frequency bands [5].
Anouar et al. applied wavelet analysis to rotating machin-
ery monitoring [6]. However, fault detection is a real-time
process, and this approach requires one or more special-
ized personnel to assess machine performance, which is
impractical in modern industrial production [7]. Model-based
diagnostic methods typically analyze the correct behavior of
each component in a robotic system, build a mathematical
or physical model, and then identify faults by comparing
the model’s expected output with the actual output of the
robotic system [4]. Kim et al. proposed a new phase-based
time-domain averaging (PTDA) method to detect industrial
robot reducer faults [8]. Sun et al. realized the fault diagnosis
of actuators based on constructing six free-space motion
equations mathematical models of autonomous underwater
vehicles [9]. Sabry et al. propose an energy model-based
method for monitoring industrial robots [10]. Muradore and
Fiorini proposed a fault detection and isolation method
based on industrial robot models and signal processing [11].
Although model-based diagnostic methods have been widely
researched in fault diagnosis, complex nonlinear character-
istics and extremely variable operating conditions limit the
fault diagnosis of industrial robots with complex structures.
With the development of sensing technology, data-driven
robot fault diagnosismethods have emerged in large numbers.
No detailed mechanistic knowledge is required only fault
diagnosis by analyzing and extracting different features of
sensor signals collected from different health states [12].
Machine learning (ML) has been widely used to diagnose
equipment failures. Guo et al. propose an improved ran-
dom forest (IRF) algorithm to reselect and weight highly
accurate and heterogeneous decision trees through hierarchi-
cal clustering. They used digital twin and transfer learning
technology to diagnose faults on the physical production
line. They verified the algorithm through a case study of
an automobile rear axle assembly line [13]. Xu et al. pro-
posed a bolt-loosening detection method for industrial robot
joints based on electromechanical modeling and motor cur-
rent signature analysis (MCSA). They established the kinetic
equations coupling the motor current and bolt loosening,
extracted the time-frequency characteristics of the motor
current, and then used SVM to recognize the bolt loosen-
ing [14]. Izagirre et al. proposed a method and practical
implementation of a network architecture for industrial robot
data acquisition and predictive maintenance. They use SVR
or ELM to detect degraded states of Robot joints. The archi-
tecture is implemented by extracting torque signals from a
PLC on a real automotive assembly line [1]. Raouf et al.

used statistical analysis of three-phase current signals for
feature engineering to detect and diagnose six faults in the
transmission mechanisms of industrial robots. They inves-
tigated a variety of algorithms. The accuracy assessment
showed that the SVM model was the most accurate [15].
Pan et al. use vibration signals to detect gap failures in indus-
trial robot joints. The Wigner-Vile distribution (WVD) of the
vibration signal is used to extract healthy features and use
the features as inputs to an artificial neural network (ANN)
algorithm [16].

As a particular data-driven method, the deep learning
(DL) model has demonstrated superior capabilities in adap-
tive feature extraction and fault classification for multilayer
nonlinear transformations [17]. With the advent of the artifi-
cial intelligence era and powerful computing power support,
deep learning methods have become a research hotspot in
industrial robot fault diagnosis [18]. Zhi et al. designed a
convolutional neural network and long short-term memory
(CNN-LSTM) to diagnose harmonic reducer faults in indus-
trial robots [19]. Yildirim et al. captured sound signals of
various faults in an industrial robot. They used wavelet anal-
ysis to process and remove noise from the captured sound
signals, extract relevant features, and train five neural net-
works for noise analysis and classification [20]. He et al.
proposed the multi-scale hybrid convolutional neural net-
work (MSMCNN). They used the vibration signals of robot
joints for adaptive feature extraction, effectively extracted
comprehensive and complementary weak fault features, and
realized the diagnosis of the harmonic reducer of multiple
robot joints [21]. Park et al. proposed a fault detection model
for edge computing. They built an edge device that integrates
data collection, processing, storage, and analysis. Then, they
detected six types of faults in IR based on the LSTM
network [22].
In recent years, multi-source information fusion has

emerged in fault diagnosis. Due to signal acquisition errors
and noise interference, we may need more than a single
data source in some cases. In addition, since each different
type of signal can perceive the environment from different
aspects, multi-source data fusion can provide more useful
and accurate information compared with a single data source
approach, especially for complex systems [23]. For exam-
ple, Miao et al. proposed a new channel-based convolutional
neural network (CWNN-FA) with feature enhancement for
fault diagnosis of wheeled mobile robots. This structure uses
multi-heterogeneous sensor data such as IMUs and encoders
as input [24]. Gültekin et al. proposed a data fusion method
based on a convolutional neural network, using the sound
and vibration signals of the motor to detect operational faults
occurring in automatic vehicles (ATVs) [25]. Liu et al. pro-
posed a fault diagnosis method for a chain jack hydraulic
system based on multi-source sensor data fusion. The pro-
posed method utilized pressure, temperature, and flow data
under different operating conditions [26]. Cui et al. proposed
a new multi-task multi-sensor fusion network (M2FN) to
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improve fault diagnosis performance. The method used con-
volutional neural networks to extract and fuse features from
raw vibration and current signals [27]. The above methods
have all been proved through experiments that using multiple
data sources has higher diagnostic accuracy than using a
single data source.

Attention mechanism is a method of imitating the human
visual and cognitive system. In recent years, the applica-
tion of attention mechanisms in deep learning, especially
in convolutional neural networks, has been proposed in
many works. For example, Du et al. used an efficient
channel-attentive deep dense convolutional neural network
to achieve automatic classification of esophageal diseases
in gastroscopy images [28]. In the field of fault diag-
nosis, Huang et al. proposed a Multi-scale Convolutional
Neural Network with Channel Attention (CA-MCNN).
In CA-MCNN, the maximum pooling and average pool-
ing layers are used to extract the multi-scale information
of the bearing signals, which increases the dimensions of
input. The channel attention mechanism is introduced to
increase the convolutional layer feature learning ability by
adaptively scoring and assigning weights to the learned
features [29]. Di et al. proposed a machine tool fault diagno-
sis method based on Multiscale-Channel Attention Network
(MSCANet). MSCANet effectively integrates the vibration
signal characteristics of machine tool spindles in different
directions and extracts different hierarchical features of vibra-
tion signals using multi-scale structures. Adaptive fusion
of features at different scales through Channel Attention
(CA) mechanism. Thus improving the accuracy of tool wear
status diagnosis [30]. Huang et al. proposed a multi-scale
convolutional neural network for bearing fault diagnosis.
This network structure will obtain time-frequency represen-
tations from vibration time-domain signals as inputs to the
model. And use convolution kernels of different sizes to
extract multi-scale information from time-frequency images.
In addition, an attention mechanism has been established to
more effectively adaptively select features of different scales
for classification, emphasizing key features and weakening
redundant features [31]. Tong et al. also proposed a coor-
dinated attention (CA) model suitable for one-dimensional
vibration signals and established a lightweight coordinated
attention convolutional neural network model ACNN, which
takes data frommultiple vibration sensors as input. Secondly,
a kurtosis weighted fusion strategywas designed. Then, based
on ACNN and weighted fusion strategy, a rolling bearing
fault diagnosis method based on Multi sensor ACNN was
proposed [32]. The above methods all demonstrate that the
application of attention mechanism can improve the per-
formance and generalization ability of convolutional neural
networks. However, these fault diagnosis methods still only
utilize the time-domain or time-frequency domain signals of
a single vibration data, and the attentionmechanism is limited
to different scales of a single data source.

Although various industrial robot fault diagnosis meth-
ods have improved the diagnosis accuracy, they only use

a single data source, such as vibration, torque, or current.
Extracting discriminative features from multi-source data
to provide accurate and reliable diagnosis is still challeng-
ing [27]. Therefore, this paper proposes an industrial robot
fault diagnosis method based on multi-source data fusion
and channel-attention convolutional neural networks. It can
detect and diagnose industrial robot drive train faults. The
time-domain signals contain original feature information,
and the time-frequency domain signals contain time-domain
and frequency-domain information. The industrial robot is
a coupled system, so each joint’s change causes the other
joints’ response. Thus, we input the time-domain and time-
frequency domain signals of each joint’s original vibration,
current, and torque signals. 1D-CNN and 2D-CNN extract
deep features, and we realize multi-source data fusion
through channel connection. At the same time, we add a chan-
nel attention module to adaptively assign weights to different
source data and time domain and time-frequency domain fea-
tures. Finally, we concatenate together the extracted features
of each joint, and then the diagnosis result is obtained through
a fully connected layer. Because this approach leverages
multiple data sources, it can more accurately and robustly
diagnose the condition of industrial robots. The innovation of
using the channel attention mechanism in convolutional neu-
ral networks in this paper is to combine it with multi-source
information fusion, which is used twice consecutively to
assign different weights to different source data as well as
to assign weights to time domain and time-frequency domain
data, respectively. This study uses a 6-axis industrial robot
as the experimental object. Comparison with other advanced
fault diagnosis methods demonstrates the superiority of the
MD-CA-CNN proposed in this paper. In summary, the main
contribution of this paper:

1) We realize the fusion of robot joints’ vibration, current,
and torque data by adopting CNN channel superposition.
We obtain the time-frequency domain image of the signal
using CWT and extract the depth features of the original
time-domain signal and the time-frequency domain signal
using 1D-CNN and 2D-CNN simultaneously. It avoids the
problem of a single data source being susceptible to noise and
can provide more comprehensive information about the fault
characteristics.

2) We propose a CNN structure based on multi-source
data and channel attention mechanism, namely MD-CA-
CNN. A channel attention mechanism is developed and
added to the CNN input port and deep feature channel
fusion. It can adaptively assign weights to different source
data and time-domain and time-frequency-domain features
to improve the contribution of essential channels to fault
diagnosis.

The rest of the paper is organized as follows: Section II
details the overall framework of the fault diagnosis system
for industrial robots and the proposed diagnostic approach.
Section III describes the details of the experimental setup and
the collected experimental data used to evaluate the proposed
methodology, and Section IV gives the experimental results
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and comprehensive analysis. Finally, Section V summarizes
the study.

II. PROPOSED METHODOLOGY
A. FRAMEWORK OF THE DIAGNOSTIC SYSTEM
This study first proposes a general architecture of an indus-
trial robot fault diagnosis method. As shown in Fig. 1, the
proposed method has four phases. In the fault data acquisition
phase, vibration, current, and torque signals are collected
from each joint of the six-axis industrial robot.

FIGURE 1. The overall diagnostic framework of MD-CA-CNN.

In the data preprocessing stage, a sliding window method
segments the data along the time dimension. The sliding win-
dowmethod is a commonly used data enhancementmethod in
fault diagnosis, which can significantly increase the number
of training samples. As shown in Fig. 2, a time window of
length w is used to segment the data, the step size is set to s,
and the total number of data points is T . The formula for the
number of training samples N is shown in (1), and the result
is rounded down to the nearest integer.

N =
T − w
s

+ 1 (1)

The signals acquired in each time window are then con-
verted into time-frequency images using the continuous
wavelet transform (CWT), which reduces the noise effect
and reveals fault-related features. The time-frequency images
generated by CWT contain rich time-domain and frequency-
domain information. The original time-domain signals also
contain the most essential fault characterization information.
Both are helpful for diagnosing robot faults, so both the
time-domain and time-frequency-domain signals are used as
input samples for model training.

In the model training stage, the processed data are ran-
domly divided into three independent datasets, i.e., training
set, validation set, and testing set, in the ratio of 7:2:1. The

structure of the MD-CA-CNN model was determined by
pre-experimentation. The proposed MD-CA-CNN model is
trained, evaluated, and optimized offline using the training
and validation set samples and their corresponding labels.
The loss function is computed, and the model weights are
updated according to the backpropagation principle. The test
set samples are used to test the accuracy of the MD-CA-CNN
model after training.

In the fault diagnosis stage, the trained MD-CA-CNN
model is deployed, and the robot field data is collected as
input to the model using the same time window length as the
data preprocessing stage to obtain the output results. Then,
the diagnostic results are used to provide decision support for
maintenance.

FIGURE 2. The method of sliding window.

B. CONTINUOUS WAVELET TRANSFORM
In the field of signal analysis, the commonly used STFT can
locate the time. However, it has the same time and frequency
resolution for different frequencies because the window size
is fixed. Moreover, the length of the window function is
also challenging to determine. Therefore, STFT is more suit-
able for smooth signals with small frequency fluctuations
than non-smooth signals with large frequency fluctuations.
CWT is an adaptive time-frequency analysis method due to
the introduction of wavelet function as the basis function.
It can automatically adjust the window size according to the
height of the frequency and can more obviously detect the
mutation point and oscillation part of the signal. Therefore,
It is more conducive to the analysis of faulty signals. The
CWT formula of the signal x(t) is shown below:

Xω(a, b) =
1
|a|

∫
∞

−∞

x(t) • ψ̄

(
t − b
a

)
dt (2)

where ψ
( t−b

a

)
is the mother wavelet and ψ̄

( t−b
a

)
is the

complex conjugate of ψ
( t−b

a

)
; a is the scale factor, b is the

translation factor, and both a and b are arbitrary real numbers;
Xω (a, b) is the wavelet coefficient.

C. CONVOLUTIONAL NEURAL NETWORK
In recent years, 2D-CNN has occupied an essential position
in computer vision and image recognition fields. However,
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2D-CNN is only a viable option for some applications on 1D
signals. To solve this problem, 1D-CNN has been proposed.
It has achieved state-of-the-art performance levels in several
applications, such as biomedical data categorization and early
diagnosis, as well as in power electronics and motor fault
detection [33]. The principle of 1D-CNN and 2D-CNN is
the same. The main difference is that the convolution kernel
moves in different dimensions. The convolution kernels of
1D-CNN will only be convolved along the time-step order.
In contrast, the convolution kernels of 2D-CNN will be con-
volved along the image’s horizontal and vertical axes. The
MD-CA-CNN proposed in this paper is based on 1D-CNN
and 2D-CNN together.

The structure of CNN mainly consists of alternating con-
volutional layers, nonlinear layers, pooling layers, and fully
connected output layers.

Convolutional layers are the most important part of CNN.
Each convolutional layer contains multiple convolutional
kernels. Unlike the traditional fully connected layer, the con-
volutional layer performs convolutional operations through
convolutional kernels. So, the input to each node is only a
part of the neurons of the previous neural network layer.
Therefore, the convolution operation can extract the input
data’s feature information and significantly reduce the model
computing burden and the noise interference on the features.
The formula for the convolution operation is shown below:

yli =

∑M

r=1
x l−1
r ⊗ k li,r + bli, i = 1, 2, · · · ,N (3)

where N represents the number of convolution kernels in the
lth convolutional layer; M represents the number of convo-
lution kernels in the l-1th convolutional layer; x l−1

r denotes
the r th feature map in the l-1th convolutional layer; k li is the
r th channel in the ith convolution kernel in the lth convolu-
tional layer; bli denotes the bias of the ith convolution kernel in
the lth convolutional layer; and yli is the output corresponding
to the ith convolution kernel in the lth convolutional layer.
⊗ denotes the convolution operation.
The nonlinear layer is an integral part of the neural net-

work. Generally, after the convolutional layer, the activation
function is utilized tomake a nonlinear mapping of the convo-
lutional layer output. There are many activation functions, but
in recent years, the ReLU function has been popular because
of its computational simplicity, ability to prevent gradient
vanishing, and other advantages. The formula for the ReLU
function is shown below:

yl = max
(
0, x l

)
(4)

where x l denotes the input of the lth ReLU nonlinear layer
and yl denotes the output of the lth ReLU nonlinear layer.
The pooling layer is generally sandwiched between con-

secutive convolutional layers and compresses the data while
preserving the data feature information. It can reduce the
number of parameters, effectively control the overfitting,
and improve the network operation speed. Pooling methods
include maximum pooling and average pooling, while the

maximum pooling method is actually used more often. The
formula for the maximum pooling method is shown below:

ylk,i = max
(
x lk,i,1, · · · , x

l
k,i,j, · · · , x

l
k,i,j2

)
, k = 1, 2, · · · ,N

(5)

whereN represents the number of output feature maps, which
is the same as the number of output feature maps; represents
the jth element of the ith image block of the kth input feature
map, each image block contains j2 elements and represents
the ith element on the kth output feature map of the lth layer.
The final part of the CNN consists of a fully connected

layer and an output layer for classification. First, the features
obtained from the previous convolutional and pooling layers
are flattened and fully connected and then passed through the
fully connected layer to the output layer to output the results.
The output layer usually uses the softmax function due to
its high efficiency in classification tasks. The operations per-
formed in the fully connected output layer are shown below:

yl = f
(
wl • x l−1

+ bl
)

(6)

sl = softmax
(
yl

)
(7)

where x l−1 is the output of layer l − 1, and wl is the weight
coefficient of the fully connected layer l; bl is the bias of the
fully connected layer l. yl is the output of the fully connected
layer l. sl denotes the final classification result obtained after
the softmax activation function.

D. ATTENTION MECHANISM
Attention mechanism is an approach in deep learning based
on the human visual system and cognitivemechanisms.When
humans are confronted with a large amount of informa-
tion, they will efficiently allocate their limited attentional
resources to selectively focus on the information most valu-
able to them from a large amount of information [34]. The
attention mechanism’s core goal is to selectively focus on the
information that is more critical to the current task goal from a
multitude of inputs and assign higher weights to it to enhance
its contribution to the outcome. The attention mechanism
can improve the expressiveness of deep learning models and
increase the model’s sensitivity to key features [35].

Channel Attention Mechanism, a type of attention mech-
anism, can associate different channels of the input data to
calculate each channel’s degree of importance and assign
weights to different channel features. It improves the expres-
sive power of the network in the feature representation, which
improves the model’s performance. Therefore, it is often used
inside convolutional neural networks [35]. The computational
procedure of the channel attention mechanism constructed in
this paper is as follows:

The input sample is denoted as S = {S1, S2, · · · , Si, · · · ,
Sh} and h is the number of input sample channels.
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FIGURE 3. The structure of MD-CA-CNN.

1) Global average pooling is performed on the feature data
for each channel:

mi = Avgpool (Si) =
1
l

l∑
j=1

S ji (8)

where Si denotes the feature sequence of the ith channel, and
l denotes the length of the feature sequence. S ji denotes the
jth data of the feature sequence of the ith channel. mi is the
result of the global average pooling of the ith channel.
2) Find the score of the ith channel feature:

F = σ (W •M + b) (9)

where σ is a scoring function, such as a sigmoid function or
a ReLU function. M = {m1, m2, · · · , mi, · · · , mh}, F = {f1,
f2, · · · , fi, · · · , fh}, fi is the score of the ith channel feature.
3) Normalization of scores:

αi = softmax(fi) =
exp(fi)∑

i f
(10)

where αi is the weight assigned to the ith channel data Si by
the channel attention mechanism.

4) Obtains the final output M of the attention mechanism:

M = S ⊗ A = {s1α1, s2α2, · · ·, shαh} (11)

where A = {α1, α2, · · · , αi, · · · , αh}, ⊗ is the multiplication
of the corresponding elements of two sets.

E. PROPOSED MD-CA-CNN STRUCTURE
In this section, the specific steps of the proposed method are
described. Fig. 3 shows the system structure of the proposed
MD-CA-CNN. The proposed method uses the initial timing
signals and time-frequency images of vibration, current, and

torque of six joints as the input to the system. The feature
extraction model is constructed for each of the six joints.
Finally, the extracted features of the six joints are connected
in series to determine the final diagnosis result. The pro-
posed structure consists of two main parts. In the feature
extraction part, the weights of the feature data of differ-
ent channels are firstly determined by the channel attention
mechanism and by combining the time domain informa-
tion with the time-frequency domain information. Then,
we extract the time-domain and time-frequency domain fea-
tures using 1DCNN and 2DCNN, respectively. In the feature
fusion part, the time domain and time-frequency domain fea-
tures are first fused, and then the weights of the time domain
features and time-frequency domain features are determined
using the channel attention mechanism. Afterward, the data
of the two channels are fused in series, and the fused features
of the joint are obtained through a fully connected layer.
After that, the fusion features obtained for each joint are
again fused in series to obtain the final fusion features of the
robot. Finally, the Softmax layer is utilized to obtain the fault
diagnosis results.

Since the fusion feature extraction models of the six joints
are constructed in the same way, we use one of the joints
as an example to describe the specific steps of the proposed
method.

1) FEATURE EXTRACTION
Before feature extraction of input data using CNN, the
weights of different channel data are first determined
by Channel attention block_1. The structure of Channel
attention block_1 is shown in Fig. 4. Because the input
data contains both time-domain and time-frequency domain
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FIGURE 4. The structure of channel attention block_1.

representations of the same data, the effects of time-domain
data and time-frequency domain data on the channel weights
are considered simultaneously.

Global average pooling is first performed in Channel atten-
tion block_1 for each channel of the two types of input data
X1 and X2, respectively. The formulas are as follows:

X1
AP,i = Avgpool(X1

i ) =
1
L

L∑
j=1

X1
i,j (12)

X2
AP,i = Avgpool(X2

i ) =
1

H × W

H×W∑
j=1

X2
i,j (13)

where Xl
i,j and X2

i,j are the jth data of the ith channel of Xl

and X2, respectively; Xl
AP,i and X2

AP,i are the ith data of Xl
AP

and X2
AP, respectively.

Then find the average of the corresponding elements of
Xl
AP and X2

AP to obtain XAvg. The equation is as follows:

XAvg,i =
1
2
(X1

AP,i + X2
AP,i) (14)

After that find the score for each channel feature. The
formula is as follows:

F = σ (W • XAvg + b) (15)

In this paper the scoring function σ uses the Sigmoid
function; F = {f1, f2, · · · , fC}.

Next the score obtained for the ith channel is normalized
using softmax function with the following formula:

αi = softmax(fi) =
exp(fi)∑

i f
(16)

where αi is the weight assigned to the ith channel.
Finally, each obtained channel weight is multiplied by the

corresponding channel data of the initial timing signal and the
time-frequency domain signal, respectively. The final output
of Channel attention block_1 is obtained. The formula is as
follows:

O1
= X1

⊗ A = {X1
1α1,X

1
2α2, · · ·,X1

CαC} (17)

O2
= X2

⊗ A = {X2
1α1,X

2
2α2, · · ·,X2

CαC} (18)

where A = {α1, α2, · · · , αi, · · · , αh}. O1 and O2 are the time
domain data and time-frequency domain data after Channel
attention block_1 assigns channel weights, respectively.

After Channel attention block_1, CNN is utilized to extract
deep learning features. The 1D-CNN and 2D-CNN used
in this paper extract the deep features of the time and
time-frequency domain signals, respectively. Both 1D-CNN
and 2D-CNN used in this paper consist of two convolutional
modules and a flattened layer. Each convolutional module,
in turn, consists of a convolutional layer, a nonlinear layer,
a convolutional layer, a nonlinear layer, and a pooling layer.
Finally, the Flatten layer performs a spreading operation on
the extracted feature data. The parameters of the 1D-CNN and
2D-CNN convolutional modules used in this paper are deter-
mined experimentally, and the details are shown in Table 1.

TABLE 1. CNN parameters.

2) FEATURE FUSION
Firstly, the channels of the two 1D sequence data from
the feature extraction part are spliced to obtain two-channel
sequence data. Then, the weights of the data of two chan-
nels (i.e., the weights of the time-domain features and the
time-frequency-domain features) are determined by Channel
attention block_2. The structure of Channel attention block_2
is shown in Fig. 5.

FIGURE 5. The structure of channel attention block_2.
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A global average pooling operation is first performed on
the dual channel data X in Channel attention block_2. The
formula is as follows:

XAP,i = Avgpool(Xi) =
1
L

L∑
j=1

Xi,j, i = 1, 2 (19)

where Xi,j is the jth data of the ith channel of data X; XAP,i is
the ith data of XAP.
After that find the score of each channel. The formula is as

follows:

F = σ (W • XAP + b) (20)

Here the scoring function σ still uses the Sigmoid function;
F = {f1, f2}.
The score obtained for the ith channel is normalized. The

formula is as follows:

αi = softmax(fi) =
exp(fi)∑

i f
, i = 1, 2 (21)

where αi is the weight assigned to the ith channel.
Finally, each of the obtained channel weights is multiplied

with the corresponding channel data of the initial signal X
respectively to obtain the final output of Channel attention
block_2. The formula is given below:

O = X ⊗ A = {X1α1,X2α2} (22)

where A = {α1, α2}. O is the feature data after Channel
attention block_2 gives channel weights.

After Channel attention block_2, the two channels data of
feature data O are fused in series through the Flatten layer to
form a one-dimensional sequence data. After that, the fused
feature T of the joint is obtained through a fully connected
layer. The formula is as follows:

T = W • O + b (23)

After that, the obtained fused features for each joint are
again concatenated in tandem to obtain the final fused fea-
tures of the robot. Finally, the Softmax layer is utilized to
obtain the fault diagnosis results. The Softmax classifier is
the most common classifier in deep learning, and its out-
put reflects the probability distribution of features over the
label space, which can handle multicategorization problems
well [36]. Compared with some other classifiers, the Softmax
function is computationally more stable and can be easily
parallelized on GPUs, especially when the number of cat-
egories is not very large, with relatively low computational
complexity. In contrast, some other classifiers (e.g., support
vector machines) may require more complex computations,
resulting in longer computation times.

III. EXPERIMENT
A. EXPERIMENTAL PLATFORM CONSTRUCTION
We construct a testbed to verify the performance of the pro-
posed fault diagnosis method for industrial robots. As shown
in Fig. 6, the testbed consists of a 6-axis multi-joint

FIGURE 6. Robot experiment platform.

robot, a laptop computer (MECHREVO), a data collector
(IN-SDG), and six vibration sensors. We set the task of the
robot to carry a 5kg weight.

B. EXPERIMENTAL DATA ACQUISITION AND PROCESSING
Robot reducers are an essential power transmission device
in the drive system of 6-axis multi-joint industrial robots.
It can help the robot realize precise motion and command
transmission and ensure that each part works closely together
to complete complex work. In this experiment, four kinds of
single faults and two kinds of compound faults of the reducers
are simulated through human fault injection. As shown in
Fig. 7, which are pitting of the sun gear of the second joint
reducer (F1), cracking of the planetary gear of the second
joint reducer (F2), cracking of the sun gear of the third joint
reducer (F3), pitting of the planetary gear of the third joint

FIGURE 7. Failure modes.
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FIGURE 8. Vibration data of third joint.

reducer (F4), pitting of the sun gear and cracking of the
planetary gear of the second joint reducer (F5), cracking of
the sun gear of the second joint reducer and pitting of the
planetary gear of the third joint reducer (F6). In addition,
the normal reducer mode (N) is added, realizing a total
of seven different types of data to be simulated, as shown
in Figure 7.

The vibration signals of each joint were acquired through
vibration sensors, and the current and torque signals were
acquired through the robot controller. The sampling fre-
quency is set to 1024 Hz, and 750 data segments are obtained
in each mode. Each segment contains 5120 data points.
The window length is set to 512, and the step size is set
to 200. Twenty-four samples are obtained for each segment
of data by (1). So, a total of 18,000 samples are obtained in
each mode. Each sample includes signals from three chan-
nels: vibration, current, and torque. Then, the time-frequency
image of the sample data is obtained using CWT. The size of
the time-frequency image is 512 × 512, as shown in Fig. 8,
which shows the vibration data with a time-frequency image
for each mode of the third joint. Finally, all is divided into
three parts: 70 % is the training dataset, 20 % is the validation
dataset, and 10 % is the test dataset, as shown in Table 2.

TABLE 2. Description of the data set.

C. DESIGN OF COMPARATIVE EXPERIMENTS
In order to analyze the performance of the MD-CA-
CNN model based on multi-source data, experiments were
designed to compare it with other commonly used machine
learning and deep learning models. The model used in this
experiment was written based on Python 3.8 utilizing Pytorch
framework and Scikit-learn machine learning library. More-
over, the model was trained on a laptop with an NVIDIA
RTX 3060 GPU.

Firstly, the models proposed in this paper are compared
with the models that only utilize 1D-CNN or 2D-CNN for
feature extraction (MD-CA-1D-CNN, MD-CA-2D-CNN).
The MD-CA-1D-CNNmodel only utilizes the original vibra-
tion signals, the original current signals, and the original
torque signals as inputs. The MD-CA-2D-CNN model only
utilizes the time-frequency images of the original vibration
signals, the current signals, and the torque signals as inputs.
Second, the model proposed in this paper is compared with
a model that does not contain channel attention but utilizes
multiple sources of data as inputs (MD-CNN) and CNNs
that utilize a single source of data as inputs, including a
convolutional neural network that uses only raw vibration
signals (V-CNN), a convolutional neural network that uses
only raw current signals (C-CNN), and a convolutional neu-
ral network that uses only raw torque signals (T-CNN).
Finally, the model proposed in this paper is compared with
other commonly used deep learning models and machine
learning models. Deep learning models used as comparisons
include Long Short-Term Memory Network (LSTM), Gated
Recurrent Unit (GRU). Machine learning models used as
comparisons include Random Forest (RF) [37], K-Nearest
Neighbor Algorithm (KNN), and Support Vector Machines
(SVM) [38]. LSTM and GRU are commonly used models for
time-series tasks, and are generally only suitable for using
time-series data as inputs to the model. Since traditional
machine learning algorithms are unsuitable for directly taking
the raw time series data as input, some statistical features
of the raw time series data are used as algorithmic inputs
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after standardization. The selected statistical features include
maximum value, mean value, root mean square value, peak-
to-peak value, crag, skewness, margin indicator, and impulse
indicator. All these features can well characterize the hidden
faults of mechanical equipment.

IV. RESULTS AND DISCUSSION
In order to reduce the effect of random factors, we conducted
five trials for each algorithm model. Each experiment ran-
domly shuffles the data order in the dataset. And in order to
further reduce randomness and improve the model’s general-
ization ability, a ten-fold cross-validation method was used in
each experiment, and the average value obtained was taken
as the result of each experiment. Figure 9 shows the test
accuracies for each trial for each algorithm. Figure 10 shows
the violin plots of the test results of different algorithms.
Table 3 shows in more detail the detailed accuracies for each
experiment, the average test results for each algorithm, and
the corresponding standard deviations.

FIGURE 9. Diagnostic results for each algorithm in five trials.

The results show that the diagnostic accuracy of the
proposed MD-CA-CNN method is 95.8%, with a stan-
dard deviation value of 0.39%. The diagnostic accuracy of
the MD-CA-2D-CNN method is 91.8%, and the standard
deviation value is 0.80%. The diagnostic accuracy of the
MD-CA-1D-CNN method is 90.9%, and the standard devi-
ation value is 0.83%. Through comparison, it can be found
that the MD-CA-CNN method can simultaneously utilize
1D-CNN and 2D-CNN to extract time-domain features and
time-frequency-domain features from the time series data,
obtaining more comprehensive feature information, which
improves the performance of model fault diagnosis. The diag-
nostic accuracy of the MD-CNN method is 90.7%, with a
standard deviation value of 0.99%. By comparison, it can be
found that the channel attention mechanism improves the per-
formance of themodel fault diagnosis by adaptively assigning
weights to different source data as well as to time-domain and
time-frequency-domain features. The diagnostic accuracy of

FIGURE 10. Violin plots of the diagnostic results for each algorithm.

TABLE 3. Detailed accuracy of experiments.

T-CNN is 82.3%, with a standard deviation value of 1.86%.
The diagnostic accuracy of V-CNN is 85.1%, with a standard
deviation value of 1.54%. The diagnostic accuracy of C-CNN
is 83.8%, with a standard deviation value of 1.83%. By com-
parison, it can be found that MD-CA-CNN and MD-CNN
utilizing multi-source data fusion have higher diagnostic
accuracy and more stable performance than T-CNN, V-CNN,
and C-CNN utilizing only a single data source. The diag-
nostic accuracy of the LSTM algorithm is 89.5%, and the
standard deviation value is 1.03%.The diagnostic accuracy of
the GRU algorithm is 88.9%, and the standard deviation value
is 1.06%. By comparison, it can be found that the MD-CA-
CNNmethod proposed in this paper has a higher performance
of fault diagnosis than deep learning models such as LSTM
and GRU. Among the machine learning algorithms, the diag-
nostic accuracy of KNN is 69.9%, with a standard deviation
value of 1.88%. The diagnostic accuracy of RF is 76.4%,
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FIGURE 11. Confusion matrix for the 3rd trial of different algorithms.

with a standard deviation value of 1.35%. The diagnostic
accuracy of SVM is 73.5%, with a standard deviation value
of 1.96%. By comparing with the previous deep learning
algorithms, it can be found that the diagnostic accuracy and
stability performance of deep learning algorithms are much
higher than that of machine learning algorithms. It reflects
the advantages of deep learning algorithms in dealing with
long-time series problems.

In addition, Fig. 11 shows the confusion matrix for the
third trial of the different algorithms, where the classifi-
cation and actual results are presented. All three machine
learning algorithms (KNN, RF, SVM) have low diagnostic
accuracy for all types of faults, especially for composite
faults F5 and F6, which may be because machine learning
is unsuitable for handling long time series. The three deep
learning algorithms (T-CNN, V-CNN, C-CNN) utilizing a
single data source significantly improve diagnostic accuracy
for all types of faults over all three machine learning algo-
rithms. However, the results are still less satisfactory, which
may be due to the lack of robustness of the single data source.
TheMD-CNN, LSTM, and GRU have better diagnostic accu-
racy for a single fault type. However, they are also prone to
misclassification for composite fault modes F5 and F6, which

may be due to confusion about the importance ofmulti-source
data.MD-CA-CNN algorithm has higher diagnostic accuracy
for various fault modes and normal modes, possibly because
the multi-source data provides more comprehensive informa-
tion and improves robustness. Aswell as the channel attention
mechanism adaptively assigns weights to the multi-source
data and to the time-domain and time-frequency-domain fea-
tures, which improves the performance of the model’s fault
diagnosis, especially the diagnostic accuracy for F5 and F6.

V. CONCLUSION
In this paper, we proposed a multi-joint industrial robot
fault diagnosis model based on multi-source data fusion and
channel-attention convolutional neural network, namelyMD-
CA-CNN. The model takes the vibration data, torque data
and current data of the robot as inputs. The proposed method
differs from existing multi-source data fusion techniques in
the field of fault diagnosis in the following ways: firstly,
the fusion of vibration, current and torque data of robot
joints is realized by using CNN channel superposition. Sec-
ondly, multiple dimensions of information such as original
time-domain signals and time-frequency-domain signals are
taken into account, and both 1D-CNN and 2D-CNN are
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utilized to extract the deep features in both time-domain and
time-frequency-domain signals dimensions to obtain more
comprehensive fault feature information. Finally, a chan-
nel attention mechanism is developed to adaptively assign
weights to different source data as well as to time-domain and
time-frequency-domain features, thus improving the contri-
bution of important channels to fault diagnosis.

We built a testbed to test the performance of the proposed
method by diagnosing a variety of six-axis robot RV reducer
failures. The performance of the proposed method is tested
by comparing it with a model that utilizes only 1D-CNN
or 2D-CNN for feature extraction (MD-CA-1D-CNN, MD-
CA-2D-CNN), a deep learning algorithm that utilizes only
the fusion of multiple data sources (MD-CNN), three deep
learning algorithms that utilize only a single data source
(T-CNN, V-CNN, and C-CNN), two commonly used deep
learning algorithms (LSTM,GRU), and three commonly used
machine learning algorithms (KNN, RF, SVM) are com-
pared and analyzed, and the MD-CA-CNN algorithm has the
highest accuracy and stability (95.8% ± 0.39%). Also, the
following conclusions can be obtained:

1) Multi-source data can provide more comprehensive
feature information. The combination of redundant or com-
plementary information from multiple sources in space or
time can reduce the disadvantage of a single signal sus-
ceptible to noise. In addition, simultaneously extracting the
depth features of the original time-domain signal and the
time-frequency domain signal can obtain more comprehen-
sive fault feature information and improve the robustness of
the algorithm;

2) The channel attention mechanism developed in this
paper can model the importance of each feature channel and
enhance or suppress different channels, which is beneficial to
improve the performance of the model;

3) In the field of fault diagnosis, deep learning algorithms
are more advantageous than machine learning algorithms in
dealing with high-complexity, long-time series problems.

The model proposed in this paper takes a long time to
train due to its large structure and many parameters, but the
model after trainingmeets the time requirements for real-time
diagnosis in the field when performing fault diagnosis tasks.
In future research, we will focus on reducing the complexity
of the proposed method.
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