
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 10813

BuildMon: Building Extraction and Change
Monitoring in Time Series Remote Sensing Images
Yuxuan Wang , Graduate Student Member, IEEE, Shuailin Chen, Ruixiang Zhang , Student Member, IEEE,

Fang Xu , Shuo Liang, Yujing Wang, and Wen Yang , Senior Member, IEEE

Abstract—Building extraction and change monitoring in remote
sensing (RS) imagery play pivotal roles in various applications, in-
cluding urban planning, disaster management, and infrastructure
monitoring. While significant progress has been made in single and
bitemporal RS images, effectively harnessing the rich temporal
information of time series RS images remains a challenge. Time
series RS images offer an extended temporal span for monitoring
dynamic changes in building instances. However, they often ex-
hibit noticeable appearance discrepancies and feature variations,
presenting substantial obstacles to effective multitemporal infor-
mation aggregation. To address these challenges, we introduce a
Building Extraction and Change Monitoring Network (BuildMon),
which jointly explores the segmentation masks, location tracking,
and construction status of building instances. Our approach in-
corporates a spatial-temporal transformer to model relationships
between images at different time spans. The windowed attention
module within it can capture spatial-temporal context for a larger
scope of feature aggregation. For enhancing the performance on
both tasks, we adopted ground truth masks and semantic change
information together as supervisory signals for BuildMon. This is
complemented by the specially designed change-guided loss func-
tion, which specifically highlights regions of change and assigns
targeted weights to building areas within the imagery. To vali-
date the effectiveness of our method, we conduct comprehensive
experiments on the SpaceNet 7 dataset. The results showcase the
state-of-the-art performance of our approach, achieving mIoU and
SpaceNet Change and Object Tracking metrics of 67.90 and 39.73,
respectively.

Index Terms—Building extraction, change-guided loss, change
monitoring, spatial-temporal (ST) transformer, time series images.

I. INTRODUCTION

BUILDINGS, as significant human-made structures, are
crucial targets in Earth observation. The locations, shapes,
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construction states, and demolition times of buildings hold im-
mense value, supporting various applications such as population
estimation [1], urban planning [2], and disaster risk assess-
ment [3]. Remote sensing (RS) images provide essential visual
characteristics of buildings, including color and texture, crucial
for interpretation tasks like building detection, segmentation,
and change detection. However, single or bitemporal images
lack sufficient temporal dimension information for identifying
building changes over time. Fortunately, the number of satel-
lites forming constellations with consistent revisit cycles has
increased over decades, offering multitemporal observation ca-
pabilities [4]. This advancement has led to studies beyond single
and paired images, exploring dynamic data such as time series
images [5] and videos [6]. They are often characterized by longer
spans and higher temporal resolutions, facilitating automated
extraction of changing trends and temporal points of change
occurrence. Given the construction and demolition of buildings
typically span several days or months, utilizing time series
images with longer temporal resolutions is more appropriate for
revealing the static and dynamic characteristics of buildings [7].
To delineate the positions, shapes, and construction status of
buildings, solely extracting buildings from each image or detect-
ing changes from bitemporal image pairs is not enough. Change
detection [8], [9], [10] aims at deciding whether new buildings
are constructed or existing buildings are demolished, without
considering the distribution of the buildings. It only predicts the
change information but does not output all building instances.
To overcome the dilemma, this article focuses on simultaneously
handling building extraction and building change monitoring in
Time Series Remote Sensing Images (TSRSI).

TSRSI, akin to time-varying visual information, can be
viewed as a video with very low frame rates, enabling tech-
niques of video segmentation [11], [12], [13], [14], [15] to be
directly applied for dynamic building extraction. Nevertheless,
compared to TSRSI, video frames are usually captured in a
much shorter period, so there is little appearance discrepancy
and semantic changes across the temporal images. Conversely,
TSRSI exhibit varying appearances due to factors like seasons,
weather, and shadows, despite acquiring in the same physical
areas. In addition, targets in adjacent video frames exhibit rel-
ative motion, often described and modeled through techniques
like optical flow [16]. As the buildings are stable artificial land
objects with no movement, there is no relative motion between
buildings in adjacent images.
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For analysis of TSRSI, traditional methods are often based on
the perspective of statistics and adopt handcrafted operators. Due
to the semantic complexity in RS images, traditional methods
are inadequate for handling both tasks of building extraction
and change monitoring in TSRSI. With the advancement of
deep learning technology and its success in visual tasks, RS
intelligent interpretation has also benefited from it. However,
most existing deep learning-based methods on TSRSI [17], [18],
[19], [20], [21] are designed for classification of land cover and
agricultural crops. They often assume that spatial features alone
are insufficient for classification tasks, thus they utilize multi-
temporal features as a complement. Nevertheless, these methods
often assume that the semantic categories of observed ground
objects do not change across the time dimension, neglecting
the dynamic building distribution throughout the time series.
To explore how to associate the time series images for building
extraction and change monitoring, in this article we propose to
predict results for each temporal image, taking into consideration
temporal variations within the time series.

Motivated by the above analysis, we propose a novel Build-
ing Extraction and ChAnge Monitoring network (BuildMon),
addressing building extraction and change monitoring tasks si-
multaneously in TSRSI. BuildMon integrates a spatial-temporal
(ST) Transformer to enhance temporal context and aggregate
attention in spatial and temporal dimensions. To mitigate ap-
pearance variation, we design a change-guided loss function
and implement a simple yet effective modification, enhancing
the network’s change detection ability. In summary, our contri-
butions are as follows.

1) We propose a novel framework BuildMon to handle both
tasks of building extraction and change monitoring in
TSRSI. Our method jointly explores the positions, shapes,
location tracking, and change monitoring of building in-
stances.

2) We introduce a transformer-based ST context module and
integrate it into the segmentation network. This compo-
nent utilizes ST attention to establish relationships be-
tween different frames, enhancing the feature represen-
tation for TSRSI.

3) We devise a change-guided loss for the learning process,
serving as auxiliary supervision. This loss function pro-
motes temporal consistency in the feature space, benefit-
ing both building extraction and change monitoring tasks.

4) We conduct extensive experiments on the SpaceNet 7
Dataset, demonstrating the superiority of our BuildMon
over other approaches, achieving state-of-the-art perfor-
mance.

The rest of this article is organized as follows. In Section II
we introduce the related work of our research. In Section III
we describe the proposed BuildMon in detail. The experimental
results are reported in Section IV. Finally, some discussions are
presented in Section V. Finally, Section VI concludes this article.

II. RELATED WORK

Our research aims at extracting buildings and monitoring
their changes in TSRSI. The proposed method handles both

tasks simultaneously and explores the inter-image relationship
by modeling temporal attention. The following subsections will
introduce the literature on the two tasks, i.e., building extraction
and change detection in RS and traditional analysis methods of
TSRSI.

A. Building Extraction

The task of building extraction revolves around predicting
the shape and location of buildings in RS images. Mainstream
methods address tasks in three key aspects, catering to varying
levels of requirements.

Semantic segmentation methods: These methods generate a
pixel-level classification map for each input image and divide
it into building and nonbuilding areas [22], [23], [24], [25],
[26], [27]. MAP-Net [25] learns spatial localization-preserved
multiscale features through a novel multiple attending path
strategy, alleviating the restriction on feature extraction from
the receptive field.

Instance segmentation methods: In addition to predicting se-
mantic maps, instance segmentation methods assign individual
masks for each building [28], [29], [30], [31], [32]. Considering
the offsets between buildings’ footprints and roofs in off-nadir
aerial imagery, LOFT [30] adopts a multihead framework and
introduces an orientation-based feature augmentation for build-
ing footprint instance segmentation.

Polygon generation methods: These methods aim to extract
polygon contours of buildings, providing more precise geometry
properties for subsequent applications [33], [34], [35], [36].
PolyBuilding [36] introduces a polygon Transformer to gener-
ate the bounding boxes and polygons simultaneously for the
building instances. Its corner classification head reduces the
redundancy of the vertex and enhances the building polygon
regularity.

The adaptation of Transformer-based architectures, such as
the Vision Transformer (ViT) [37] makes significant success in
visual perceptual tasks due to its strong representation learning
ability to capture long-range dependencies in images. For the
segmentation task, ViT can be adopted as a backbone for feature
extraction. Moreover, the self-attention idea can also be specifi-
cally applied to the mask prediction process. Mask2Former [38]
introduces masked attention for constraining cross-attention
within predicted mask regions and proposes a unified framework
for panoptic segmentation, instance segmentation, and semantic
segmentation.

Building semantic segmentation identifies building regions,
distinguishing them from trees or roads in the background.
Instance segmentation predicts an index for each building with a
unique identifier (ID), facilitating the quantification of buildings’
distribution and density. Polygon extraction offers an exact de-
lineation of building locations and geometric shapes, crucial for
accurate map construction. However, existing methods for these
tasks predominantly focus on static building extraction, with a
limited exploration into the changing trends of buildings based
on revisiting time-series imagery. In this article, we address
this gap by extracting multitemporal features in a global atten-
tion manner and integrating them into a building segmentation
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framework. Our objective is to simultaneously extract buildings
and monitor their dynamic changes over time.

B. Building Change Detection

By comparing two images captured at different times, build-
ing change detection can extract the changed regions in the
scene. According to the extracted features for change detection,
the existing methods can be mainly categorized into two streams.
Some methods adopt handcrafted features [39], [40], [41], [42]
and some others leverage the deep neural network (DNN) to rep-
resent and delineate the scenarios implicitly. With the advance-
ment of deep learning technology, learning-based methods [43],
[44], [45], [46], [47], [48], [49], [50] are demonstrated to achieve
a state-of-the-art (SOTA) performance on building change de-
tection. DTCDSCN module [43] adopts a multitask learning
(MTL) framework, simultaneously accomplishing both change
detection and semantic segmentation. This strategy can facilitate
learning more discriminative object-level features. For the dense
buildings in RS images, the boundaries are intricate for the DNN
due to detail information loss in some down-sampling layers.
To emphasize the edge regions of the buildings, EGRCNN [44]
incorporated both discriminative information and edge structure
prior in one framework, resulting in better preservation of the
original structure in the predicted changed regions. To enhance
the discriminative features close to building boundaries, Zhang
et al. [46] presented a novel method based on contrastive learning
to exploit the temporal-spatial correlation in the neighborhood
of the edge.

In contrast to semantic segmentation, the task of change de-
tection for buildings focuses solely on predicting the regions that
have changed. The output of building change detection reflects
where a building has been constructed or demolished, omitting
information about the distribution of buildings. To address this
limitation, some methods [43], [45], [51], [52] adopt an MTL
framework to simultaneously perform semantic segmentation
and change detection for buildings. However, most of them are
primarily designed to handle bi-temporal image pairs, limiting
their capability to monitor the changing trends of buildings
and identify the specific time point of change. In addition,
when using semantic segmentation as the associated task for
change detection, obtaining the changing patterns of individual
buildings becomes challenging. To overcome these challenges,
our proposed method generates change patterns for building
instances from a group of TSRSI. To optimize computational
efficiency, we adopt a postprocessing step following building
semantic segmentation, eschewing the conventional two-stage
instance segmentation. Consequently, our method, BuildMon, is
capable of predicting the locations, shapes, and changing states
for building identities simultaneously.

C. Time Series Remote Sensing Image Analysis

Time series RS image analysis includes various tasks like
classification, regression, clustering, and change detection. Tra-
ditional analysis methods often adopt handcrafted operators and
extract information from the statistics of TSRSI [53], [54], [55],
[56]. Ruiz et al. [57] proposed an algorithm based on cumulative

sum and statistical analysis, which uses dense Sentinel-1 image
time series to achieve continuous and near-real-time monitoring
of forests. Csillik et al. [58] compared the effects of various
object-based dynamic time warping [59] crop classification
methods, which overcomes the shortage of normalized differ-
ence vegetation index [60] and is more flexible. By leveraging
the intratemporal features of TSRSI, the Temporal Clustering
Matching algorithm [56] considers the building change detection
in a semiautomatic fashion. It requires manual building mask
annotation of the changed building in the first temporal, and
then using the statistical difference to determine whether and
when the building has been constructed or demolished.

Application of DNN models in RS images is becoming in-
creasingly mature and gradually replacing traditional rule-based
methods in the last decades [61]. Based on the temporal self-
attention mechanism, Russwurm et al. [62] proposed to directly
extract and classify vegetation from raw TSRSI, without data
preprocessing or manually designed features. This verifies that
the self-attention mechanism can effectively select temporal and
spectral bands beneficial to the task, and suppress noise and
redundant information. Garnot et al. [19] designed a lightweight
temporal self-attention network, which replaces the projection of
the input data with a learnable parameter as the attention query.
For the panoptic segmentation, Garnot et al. [20] mixed con-
volution and self-attention mechanism, where the convolution
module extracted features for each image separately, and then
the self-attention module sums up the features from different
temporal phases. In addition, Tarasiou et al. [21] argued that tem-
poral information is more important than spatial information in
agricultural remote sensing, so they introduce a temporal-spatial
vision Transformer, where the temporal attention and the spatial
attention are applied to the input sequentially.

Nevertheless, existing methods tend to overlook changes
in the temporal dimension, often aggregating multitemporal
information solely for common semantic predictions. These
approaches operate under the assumption that the distribu-
tion of ground objects and the category of a particular region
(e.g., crops and forests) remain invariant over time. In contrast,
our BuildMon tackles both the building extraction and change
detection in TSRSI while preserving the temporal dimension in
the output predictions. Moreover, the holistic consideration of
the appearance discrepancy in unchanged regions renders the
model more adaptable for a wide range of TSRSI applications.

III. METHODOLOGY

In this section, we first introduce the overall framework and
the pipeline of our BuildMon, and then describe the module
designs and the learning schedule in detail.

A. Overall Architecture

As illustrated in Fig. 1, we choose to first accomplish a
semantic segmentation and then instantiate the buildings using a
post-process method. An encoder-decoder structure is employed
for the segmentation stage. The pipeline of this framework starts
with the feature extraction of TSRSI by a backbone based on
convolutional neural network (CNN). Then the proposed ST
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Fig. 1. (a) Displays the overall architecture of the proposed BuildMon. It first adopts an encoder-decoder framework for building semantic segmentation. Then
the post-processing strategy generates the building instances from the segmentation results and assigns address IDs. Finally, the change trends of the buildings
can be acquired from the TSRSI. (b) Illustrate the structure of the ST transformer, containing two residual connections. STWA module is embedded in the first
connection. (c) Shows the steps in STWA. The input features are windowed in spatial dimension and calculated for self-attention after being flattened as vectors.

Transformer is employed as the neck to fuse the ST information
and enhance the feature consistency of the same building across
different temporal images. After that, the decode head predicts
the building masks for each image separately. Note that the
cross-temporal connections only exist within the ST Trans-
former. Finally, we apply the ST collapse [63] postprocessing
algorithm to obtain the building instances and assign the address
IDs for them at each temporal image. To effectively supervise the
training of BuildMon and suppress the interimage appearance
discrepancy, two customized loss functions are designed for the
segmentation predictions.

B. Spatial-Temporal Transformer

In TSRSI, the unchanged regions in different temporal im-
ages usually have the same semantics, thus the context in the
time dimension can be leveraged for a multitemporal feature
aggregation. Moreover, the neighboring regions are also closely
associated and their relationship should be under consideration.
Inspired by video semantic segmentation methods [20], our
method employs a ST Transformer as the neck to fully exploit
the ST context in the time series images.

Given a group of co-registered TSRSI Ii (i = 1, 2, . . ., T ),
where T is the length of the series, a CNN-based backbone
extracts the feature maps F ∈ R

T×C×H×W in different levels.
Note that in our method, the input can be a selected sub-series
from the original TSRSI with an arbitrary length, so T is the
input image series in the following paragraph. For the multi-
level features, we align their scales with a bilinear upsampling
operator and concatenate them in channel dimension, thus their
heights and widths can be consistent.

Different from the moving targets in the videos, buildings
in the case of co-registered TSRSI maintain the same location

across different temporal images. Furthermore, since the seman-
tic information dramatically varies in a long-distance scope,
modeling the global spatial cross-attention is unnecessary for
building extraction in a large scenario. On the contrary, due to
the seasonality cycle and the randomness of imaging conditions,
features at the same spatial positions in any two temporal im-
ages may exhibit a strong correlation. This correlation will not
become much lower as the time interval increases. Thus we
propose a window-spatial and temporal self-attention module
in the ST Transformer. After a normalization layer, the feature
maps are spatially windowed, i.e., chunked in the height and
width dimension. Each 3D window contains a feature tensor
with the shape of [T,C, h, w], where h and w denote the shape
of the spatial window. In the perspective of self-attention, there
are N(= T × h× w) tokens and each of them is a vector with
a length of C. Then, the ST attention can be calculated as (1).

Attention(Q,K,V ) = softmax

(
QKT

√
dmodel

)
V (1)

where Q,K,V ∈ R
dmodel×N represent the query, key, and value

sequences, respectively. KT is the transpose of K. dmodel de-
notes the dimension of the key, and N represents the length
of the token sequence. The scaling factor of attention weights,√
dmodel, is introduced to counteract the potential issues arising

from large dimensions of query and key.
In self-attention, query, key, and value are obtained by lin-

early projecting the input features, as shown in the following
equations:

Q = WQX (2)

K = WKX (3)

V = W V X (4)
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where WQ,WK , and W V ∈ R
dmodel×dmodel are the projection

matrices for query, key, and value, respectively, and X ∈
R

dmodel×N represents the input sequence.
To handle complex attention patterns, we adopt the multihead

attention strategy in the Transformer [64]. This mechanism
allows for the projection of query, key, and value into different
subspaces. The attention is then calculated separately in these
subspaces, and the attention results from different heads are
concatenated. This process can be expressed as follows:

MultiHead(Q,K,V ) = Concat(h1, . . . , hn)W
O, (5)

hi = Attention(QWQ
i ,KWK

i ,V W V
i ). (6)

In (5) and (6),WQ
i ,W

K
i , and W V

i ∈ R
dmodel×dk represent the

projection matrices for query, key, and value in the ith head,
respectively. The parameter dk denotes the dimension of each
head while n is the number of heads. Finally,WO ∈ R

hdk×dmodel

represents the projection matrix after the concatenation of atten-
tion results from different heads.

The outputs of the attention module are passed through a
normalization layer and a Multilayer Perceptron as the feed-
forward network. Residual connections are applied in the ST
Transformer for faster optimization, resulting in facilitating the
training of the deeper network. The window-spatial and temporal
attention can fully aggregate the long-term temporal context
in TSRSI and consider the short-term spatial context simul-
taneously, enhancing building segmentation for each temporal
image.

C. Instance Normalization

Due to the seasonal change and the variation of illumination
conditions, there is often a significant appearance discrepancy
between different temporal images in TSRSI, which interferes
with the calculation of temporal self-attention. To address this
issue, we propose a simple but effective modification in the
Transformer. By employing data normalization methods, such as
Batch Normalization (BN) [65], Layer Normalization (LN) [66],
and Instance Normalization (IN) [67], the model’s dependence
on the data distribution can be alleviated. Among these methods,
IN is particularly effective in normalizing statistics that carry
image style information, which is widely used in image style
transfer [67], [68], [69]. In our work, we replace BN in the
backbone and LN in the ST Transformer with IN to enhance the
model’s integration of temporal information.

The calculation process for the normalization can be summa-
rized using (7)

Y =
X − μ√
σ2 + ε

� γ + β (7)

where X and Y represent the input and output features of
the normalization layer, respectively. γ and β are the learnable
scaling and offset parameters. The small constant ε is added
to the denominator to prevent division by zero, and � denotes
element-wise multiplication. μ and σ are the mean and variance
of the input features. IN calculates μ and σ separately for each

sample and each channel. In this case, the mean and standard
deviation statistics have dimensions of N × C × 1× 1.

Furthermore, replacing the IN layer may potentially disrupt
the original network design. To preserve the harmonious design
and retain most of the pre-trained weights, we only replace the
first normalization layer in the backbone and the ST Trans-
former, while keeping the other normalization layers unchanged.

D. Optimization Schedule

Due to the category imbalance between changed and un-
changed regions in the dataset, the model often treats the en-
tire temporal sequence as a singular category. Consequently,
the temporal attention mechanism experienced a degradation.
Moreover, the unchanged regions in TSRSI may possess various
appearances, leading to discrepant prediction probabilities for
the same regions. To tackle these two issues, we devise a change-
guided loss function to further enhance the ST Transformer.
This design aims to accurately identify when a change occurs
and keep the invariance of the unchanged regions among the
temporal images.

The overall loss function comprises two components: a
weighted building segmentation loss and the change-guided
detection loss, as illustrated by (8).

L = Lseg + λLcd (8)

where λ represents the weight assigned to the change-guided
loss Lcd, which is defined as follows:

Lcd =

{ ∥∥P 1
i − P 2

i

∥∥
1

if Y 1
i = Y 2

i

−ωcd

∥∥P 1
i − P 2

i

∥∥
1

if Y 1
i �= Y 2

i .
(9)

P 1
i and P 2

i represent the predicted probabilities of the ith pixel
in two selected temporal images. ωcd is the weight for changed
area. This loss function can strengthen the robustness of the
network’s predictions for unchanged regions and enhance its
attention on changing regions. Different from the bitemporal
change detection loss, we calculate the change-guided loss for
every two temporals in the TSRS. Y 1

i and Y 2
i represent the

corresponding ground truth and the symbol || · ||1 denotes the
L1 norm.

The building segmentation lossLseg is a standard binary cross
entropy loss, to highlight the significance of changed buildings,
the segmentation loss also incorporates a weighted scheme for
changed regions

Lseg = −
HW∑
i=1

ωi

C∑
c=1

Y i logP i (10)

where Y i and P i denote the label and predicted result for the
position i, respectively. Furthermore, ωi denotes the weight
assigned to the pixel at position i.

E. Postprocessing

The winning solution of the SpaceNet 7 competition [63]
introduced a postprocessing technique, named spatiotemporal
collapse, to convert converts building semantic segmentation
results into building instance polygons by effectively leveraging
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observed change patterns in TSRSI. Building upon this, our ap-
proach incorporates the temporal information within the training
stage into the generation of building instances.

The algorithm operates under two key assumptions: First,
considering buildings as stable man-made structures, it assumes
that they generally remain unchanged over short periods. Sec-
ond, it assumes that different building instances in the images are
separated by at least one pixel. The first assumption aligns with
common real-world scenarios, simplifying the postprocessing
task and ultimately enhancing result accuracy. The second as-
sumption facilitates the transformation of the building instance
segmentation problem into a semantic segmentation problem.
With these assumptions in mind, the algorithm unfolds in two
distinct steps: temporal collapse and spatial collapse.

Temporal Collapse: Consider a TSRSI withN temporals, the
network outputs a predicted probability map P t for tth temporal
image. According to the first assumption, we can compress
the temporal dimension and predict the position and shape of
each building only once, then the building segmentation map
S is obtained. Formally, we can express this temporal collapse
process as (11).

S =

∑
t P t · I(P t ≥ α)

max(
∑

t I(P t ≥ α), ε)
(11)

where I(·) is the indicator function, which evaluates to 1 when
the condition is true and equals to 0 otherwise. ε is introduced to
prevent division by zero errors, and α represents the probability
threshold.

This step combines the prediction results across the temporal
dimension, compensating for potential inaccuracies in individ-
ual images and resulting in more accurate building boundaries.
Once the building segmentation probability map for the entire
time series image is obtained through (11), an improved wa-
tershed algorithm [70] is utilized to convert them into building
instances.

Spatial Collapse: Once the building address IDs are obtained,
the next step involves determining the time point when the build-
ings appear. To achieve this, we first calculate the pixel-average
probability for each building instance, which can be expressed
as

T t
l =

1

|{(i) ∈ Gl}|
∑
i∈Gl

P t
i (12)

where Gl represents the lth building instance, | · | denotes the
cardinality of a set, and T t

l denotes the probability of the lth
building instance in the tth temporal.

Then a moving average difference method [71] is employed
for correction, which involves the following steps: First, the
forward and backward moving average sequences are computed
as (13).

←
T t
l =

1

t

t∑
k=1

T k
l , �T t

l =
1

Nt − t+ 1

Nt∑
k=t

T k
l . (13)

If maxt(�T
t+1
l − T t

l
←
) < γd, there is no change in the building

state within the time series. In this case, we assign 0 to indicate
the absence of the building and 1 to indicate its presence.

This dual-step process ensures a robust conversion from se-
mantic segmentation to building instance masks, capitalizing
on the stability of buildings and the spatial separation between
distinct instances. Through this postprocessing method, we can
obtain the address IDs of all buildings, as well as the changing
state of building instances in multitemporal images.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

In this article, we choose to conduct experiments on the
SpaceNet 7 dataset [7] to evaluate the effectiveness of Build-
Mon. The proposed approach addresses two primary subtasks:
1) building extraction; and 2) change monitoring in TSRIS.
While there exist several large-scale public datasets dedicated
to building extraction, such as WHU building [72], Inria [73],
and SpaceNet series [7], [74], [75], and some solid datasets
for building change detection, such as LEVIR-CD [76] and
BANDON [77], datasets specifically designed for both building
extraction and change monitoring are scarce. Consequently, the
SpaceNet 7 dataset [7] is chosen since it comprehensively fulfills
the requirements of our task.

The SpaceNet 7 dataset comprises 101 TSRSI collected
by Planet Labs’ Dove constellation between 2017 and 2020,
which are preprocessed with an orthorectification. A time series
consists of 18–26 temporal images, with a monthly imaging
frequency. The size of each image is 1024× 1024 pixels and the
resolution is about 4 m, covering an approximate real geographic
area of 18 km2. The dataset contains more than 11 million build-
ing instances in total, and the imaging period is in line with the
typical time scale of urban development. It captures geographic
regions with diverse characteristics and exhibits urbanization
changes over two years.

Each building instance in the SpaceNet 7 dataset is annotated
with a polygon describing its shape and location, as shown in
Fig. 2, along with a unique ID. The same building retains the
same identifier across different temporal images, enabling cross-
temporal tracking and change analysis of buildings within the
dataset.

B. Evaluation Metrics

To provide a comprehensive assessment of the proposed
method in building extraction and change monitoring, we em-
ploy both pixel-level evaluation metrics, commonly used in
semantic segmentation, and instance-level tracking metrics [7].
The precision, the recall, and the Intersection over Union (IoU)
are utilized for pixel-level evaluation. In addition to overall
accuracy, we also consider adopting the Boundary IoU (BIoU)
metric [78] to evaluate boundary accuracy. It is defined as the
following equation:

BIoU =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )| (14)

where G denotes the ground truth, P denotes the prediction, and
Gd and Pd represent the boundary regions. To define the bound-
aries, we follow the recommended practice in [78] to expand the
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Fig. 2. Sample of SpaceNet 7 dataset [7]. A group of TSRSI is captured in an
identical region at different times. The annotations of each image contain the
positions and shapes of all the building instances. (a) Time series remote sensing
images. (b) Building mask ground truth. (c) Overlayed image and instance
annotation.

regions outward by d pixels from the original boundary. In this
case, d is set to 5% of the image diagonal length.

For building instance tracking and change monitoring, the
SpaceNet Change and Object Tracking (SCOT) metric [7] is
introduced as a comprehensive evaluation metric. It consists
of two components: 1) the tracking term; and 2) the change
detection term. The tracking term assesses the model’s ability
to accurately track the same building across different temporal
images. It takes into account the number of matching items and
nonmatching items, and this metric can be formulated as follows:

Ftrack =
TPs

TPs +
1
2 (FPs + FNs)

(15)

where TPs represents the number of matching pairs, FNs is the
number of unmatched instances in annotation, and FPs is the
number of unmatched instances in prediction. The change detec-
tion term focuses on evaluating the model’s ability to correctly
identify newly appearing buildings. The change detection term
only considers newly appearing instances which never present
in the previous temporal images, calculated by an F1-score as
(16).

Fchange =
TPnew

TPnew + 1
2 (FPnew + FNnew)

(16)

where the subscript new denotes newly appearing instances.
The SCOT score is computed as a weighted harmonic average

(β score) of the tracking term score and the change detection
term score, as shown in (17)

Fscot =
(1 + β2) · Fchange · Ftrack

β2 · Fchange + Ftrack
. (17)

C. Implementation Details

Our experiments are all implemented based on the PyTorch
framework on four NVIDIA TITAN V GPUs. The training set
comprises 50 time series, while the testing set consists of ten
time series. To get a tradeoff between the performance and the
computational efficiency, we employ HRNetV2p-W18 [79] with
ImageNet pretrained weights as the backbone. For the training
process, the following parameter settings are adopted: 40 000
iterations training, the batch size is set to 4, clip length for a batch
is 4, AdamW optimizer [80] is employed, the learning rate is
0.005, and decay is set to 0 according to the polynomial learning
rate policy. The other optimizer parameters are set to their default
values. Since the Transformer and CNN have different optimal
learning rates, we set the learning rate of the Transformer to 0.1
times the global learning rate. Uniform cropping is performed
to obtain image patches with the size of 512× 512.

D. Compared With the State-of-the-Art

Given that few studies focus on simultaneously handling
building extraction and change monitoring in TSRSI, we com-
pare the proposed BuildMon with existing approaches in the
following three categories.

1) Segmentation methods: We employ three methods for
comparison, i.e., U-net [22], DeepLabv3 [23], and Seg-
Former [24]. The segmentation predictions of them are
postprocessed to calculate the SCOT-related metrics.

2) Multitask-learning methods: MTL-U-Net [51] and
TBFFNet [52]. They have two task heads that enable
joint learning for building extraction and change detection.
Given they cannot provide the instance mask for each
building, the prediction results also need to be postpro-
cessed.

3) Video semantic segmentation methods: CFFM [13] and
MRCFA [14] are adopted since they can process the
multitemporal image series which is similar to the video
frames. To ensure fair comparisons, we employ the same
postprocessing algorithm in conjunction with the com-
pared methods.

Table I presents the quantitative comparison results with other
state-of-the-art methods. Metrics in three aspects are employed
for the evaluation: efficiency, pixel-level accuracy, and instance-
level accuracy. We include the model scale, i.e., number of
weight parameters (M), computational complexity FLOPs (G),
and inference time (ms). Besides the traditional IoU-related
metrics, we considered the SCOT-related metrics like SCOT,
tracking score, and change score. The proposed BuildMon
method demonstrates significant superiority over other methods
in terms of pixel-level and instance-level accuracy. When it
works without SWTA neck, BuildMon displays precision at
73.8 and recall at 37.2, coupled with an IoU at 33.21, a mIoU
at 64.40, and a SCOT at 57.48 in the table, underscoring its
efficacy in detecting structural changes. When embedded with
the transformer-based module as the network neck, our method
achieves a remarkable recall at 49.1 and pushes the IoU to an
impressive 40.14, the mIoU to 67.90, the SCOT to 39.73, and
the tracking score to 59.68. These metrics display BuildMon’s
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TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON SPACENET 7 DATASET

Fig. 3. Qualitative comparison of building extraction results. The first column is the input image, and the last column is the building mask annotation. The results
suggest that BuildMon can identify more buildings, and the predicted building masks are more accurate.

superior performance in terms of segmentation and change
monitoring.

Fig. 3 presents a qualitative evaluation of building extraction
performance across various methods, highlighting the effective-
ness of our proposed BuildMon approach. The building masks
produced by BuildMon demonstrate superior completeness and
smoother edges compared to other methods. Alternative meth-
ods exhibit deficiencies, with noticeable omissions of build-
ing pixels, instances being fused, and rougher edges. Notably,
BuildMon’s results show significant improvements in address-
ing these issues. Some other methods struggle to differentiate
buildings from the background, resulting in fragmented seg-
mentation results and numerous omissions. In contrast, Build-
Mon effectively distinguishes buildings, yielding more accurate
segmentation. When handling the small buildings in the im-
age, other methods produce results with distorted edges or fail

to distinguish adjacent buildings accurately. On the contrary,
BuildMon’s outputs display smoother building contours and
precise differentiation between adjacent buildings.

Given that traditional change detection is not aiming at
predicting building masks, we have provided a supplemental
comparison using the mIoU and F1-score metrics for changed
regions, as Table II and Fig. 4. This serves as an auxiliary
comparison, allowing us to present a comprehensive view of
how our approach performs on the specific change detection
task compared to other SOTA methods.

E. Ablation Study

1) Structure of ST Transformer: Architectural configuration
of the Transformer plays a pivotal role in influencing model per-
formance. In order to assess the impact of specific factors on our
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Fig. 4. Qualitative comparison of change detection results. BuildMon performs better in monitoring changed buildings. The first and second columns are the
images of the two input temporal, and the third column is the ground truth annotation of the changed buildings. The experiment shows that the proposed method
also has better performance on the change detection task.

TABLE II
CHANGE COMPARISON WITH SOTA METHODS ON THE SPACENET 7 DATASET

TABLE III
ABLATION STUDY FOR HYPERPARAMETERS IN THE STRUCTURE OF

TRANSFORMER NECK

model’s performance, we undertake ablation experiments, fo-
cusing on the number of layers and heads within the Transformer.
It is important to note that we initiate these experiments from
the baseline model, incorporating solely the ST Transformer
neck and utilizing the vanilla unweighted cross-entropy loss.
For consistency, the spatial window size is set to 7, following
the parameter setting in [81]. The results of these experiments
are detailed in Table III.

Remarkably, the experimental results reveal that the variation
in the number of layers and heads within the Transformer exerts
minimal impact on the overall performance. This observation
can be attributed to the relatively short length of each sequence,
which is limited to 4. As a result, the temporal attention patterns

TABLE IV
ABLATION STUDY FOR DIFFERENT SPATIAL WINDOW SIZES IN THE STWA

MODULE

within the TSRSI may not necessitate intricate coverage by a
single Transformer head. Consequently, the experimental results
indicate that a ST Transformer with one layer and one head
is sufficient for extracting and fusing the temporal attention.
In light of these insights, we opt for a simplified Transformer
structure for subsequent experiments. This strategic simplifica-
tion facilitates computational efficiency without compromising
the model’s ability to capture and leverage ST attention.

The size of the spatial window plays a crucial role in de-
termining the field of spatial attention. To identify the optimal
spatial window size for building monitoring in TSRSI, we con-
duct an ablation experiment comparing different settings while
keeping the temporal length fixed at 4. The results are presented
in Table IV, which reveal that the network achieves the best
performance on both tasks when the window size is set to 3× 3.
This suggests that overly large or small spatial sizes have a
detrimental impact on the performance of building extraction
and change monitoring.

2) Comparison With 3-D Convolution Layer: Traditional 3-
D convolution layer can also be adopted for feature extraction
in TSRSI. To explore the difference between spatial-temporal
window attention (STWA) and the 3-D convolution layer, a



10822 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE V
COMPARISON THE STWA MODULE WITH 3-D CONVOLUTION LAYER WITHIN

THE NECK OF THE NETWORK

TABLE VI
ABLATION STUDY FOR DIFFERENT BACKBONE IN THE STWA MODULE

comparative analysis is conducted with a focus on the neck
module in our network architecture. Table V demonstrates
the performance achieved using various implementations on a
SpaceNet 7 dataset [7]. In the absence of an auxiliary network
module (denoted as “w/o neck”), the results exhibit a mIoU of
64.40% and an F1-Score of 49.48%. The introduction of the
3-D convolution layer results in an enhancement, marked by an
improved IoU of 38.1%, a higher mIoU of 66.90%, and F1-Score
reaching 55.2%. Most notably, the STWA method manifests the
most substantial performance enhancements, obtaining the IoU
of 40.14%, the highest mIoU of 67.90%, and an F1-Score of
57.2%, which signifies the effectiveness of this approach.

3-D convolution only expands the dimension based on 2-D
convolution and it still only extracts the features in a local re-
ceptive field, thus it cannot work well in modeling long-distance
relationships in the TSRSI. Moreover, if the temporal receptive
field is expanded to the whole input image group, 3-D convolu-
tion layers often struggle due to their fixed kernel size, thus the
number of the inputs (or the channels) is unchangeable. At the
same time, the 3-D convolution layer will bring a huge increase
in the parameter number, which aggravates the computation
burden. On the contrary, the ability of STWA to dynamically
adapt to different data scales allows higher flexibility, which
is lacking in conventional 3-D convolution methods. These
advantages of STWA can be demonstrated with quantitative
evidence in Table V.

3) Alternative Backbone: To investigate the impact of dif-
ferent backbones on the performance of building extraction and
change detection, we selected three distinct feature extractors
(i.e., ResNet [82], ResNeXt [83], and HRNet [79]) for com-
parison. The results, as depicted in Table VI, reveal that the
HRNet [79] architecture demonstrates superior results across
the board. Specifically, HRNet achieves a Recall of 49.1%,
which is notably higher than the 39.4% and 41.4% attained
by ResNet [82] and ResNeXt [83], respectively. Furthermore,
HRNet outperforms the other architectures in terms of mIoU
and SCOT, with scores of 67.9% and 39.73%, respectively.
These metrics are critical for evaluating the accuracy of building
extraction and change monitoring, which suggests that HRNet

TABLE VII
ABLATION FOR NORMALIZATION LAYER

TABLE VIII
QUANTITATIVE COMPARISON OF DIFFERENT NORMALIZATION LAYER

can retain more feature details and provide a more superior
representation of the buildings for our tasks.

4) Instance Normalization Layer: The intricate appearance
variations among temporal images in TSRSI establish an obsta-
cle for modeling temporal attention. In response, we propose to
replace the normalization layer in the Transformer with an IN
layer. To evaluate the effectiveness of this strategy, we conduct
an ablation study to determine the optimal position for replacing
the IN layer within the network structure. Table VII presents the
results of the ablation experiment, showing the performance of
the network with the IN layer at different positions. The results
suggest that when the IN layer is replaced in both the backbone
network and the ST Transformer, the network achieves the best
accuracy. The building IoU metric increases by 2.46 points and
the BIoU metric is enhanced by 1.59 points.

To analyze the impact of the normalization methods on image
appearance, we conducted an ablation experiment of normal-
ization methods and selected Euclidean Distance in RGB Space
(ED-RGB) [84], Structural Similarity Index (SSIM), and Peak
Signal-to-Noise Ratio (PSNR) as evaluation indexes. We apply
these normalization methods to the whole set of TSRSI and
analyze the similarity between the neighbor images. The metrics
involved cover the similarity of color space and brightness.
Experimental results reported in Table VIII show that IN dis-
tinctly outperforms the other methods, achieving the lowest
ED-RGB score at 0.155, the highest SSIM and PSNR at 0.669
and 14.342. Fig. 5 presents a visual comparison of different
normalization methods, showcasing the diverse effects on the
image series. BN introduces information from other samples
within the batch, which disrupts the normalization process of the
current sample, resulting in insufficient appearance uniformity
across different temporal images. LN shares the same mean and
variance across all channels, leading to a shifted color tone.
Considering the image appearances, IN is the most suitable nor-
malization method for our specific task. It effectively eliminates
image appearance and enhances the model’s capacity to integrate
temporal information.
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TABLE IX
ABLATION FOR CHANGE-GUIDED LOSS

Fig. 5. Visual comparison of different normalization methods. (a) Displays the
impact of the commonly used BN. There is an illumination variety among the
images. (b) Shows a part of the image group processed by LN, where a shifted
color tone exists. (c) The results of IN, keeping a consistency in appearance.

5) Loss Functions: To effectively leverage valuable temporal
change information in TSRSI, we design a change-guided loss
to guide the ST Transformer to focus on change patterns. The
results of ablation experiments for loss functions are detailed in
Table IX, demonstrating that the proposed change-guided losses
significantly enhance the model’s performance. The Paired rep-
resents weighting the regions changed in two selected tempo-
ral images while Global corresponds to weighted the regions
changed in the whole image series. For clarity, we record the
scores of building tracking and change detection, as detailed
in Table IX. The experimental results indicate a notably higher
score for the tracking term compared to the change detection
term in the original model. This emphasizes the effectiveness
of the proposed change-guided losses in enhancing the model
by directing more attention to the changed regions in TSRSI.
Furthermore, the combination of the two losses achieves a
substantial improvement, yielding a 67.90 mIoU and a 39.73
SCOT.

In addition, we experiment with weights exclusively applied
to building regions to isolate the impact of the change-guided
loss. The results are reported in the last row of Table IX. While
assigning a higher weight for losses on building regions signif-
icantly enhances pixel-level accuracy, i.e., IoU and Boundary

TABLE X
ABLATION STUDY FOR WEIGHT FACTOR λ IN LOSS FUNCTION

IoU, all three SCOT metrics experience a notable decline. This
decline is attributed to the increase in loss weight for the building
class, encouraging the model to prioritize building predictions.
Consequently, there is a significant increase in the recall of
buildings at the expense of more false positives, ultimately
diminishing precision and SCOT.

The weight λ in (8) balances the attention on building extrac-
tion and change detection tasks, respectively. To explore how
our model performance is affected by this variation, we have
conducted an ablation study and its results are shown in Table X.
It is observed that a value of 1 achieves the premier accuracy of
these metrics, with the IoU peaking at 40.14, the mIoU at 67.90,
the SCOT at 39.73, together with the highest tracking score of
59.68 and the change score of 21.34. This specific value of the
weight factor seems to not only enhance model performance in
terms of robustness and accuracy, but also optimize the tracking
and detection of temporal changes of building instances.

V. DISCUSSION

Focusing on the buildings’ properties in multitemporal RS
image series, we simultaneously handle both tasks of building
extraction and change monitoring, thus the network can predict
the shapes, locations, tracked address IDs, and changes for each
building instance in a pipeline. Regarding the definition of our
task, change monitoring includes two subtasks, e.g., building
instance tracking and construction status discovery, instead of
solely predicting the change regions between two temporal-
neighbor images like traditional change detection. Based on
the experimental findings from the SpaceNet 7 Dataset [7],
our proposed method, BuildMon, achieves state-of-the-art per-
formance, effectively addressing both building extraction and
change monitoring tasks simultaneously. Ablation studies reveal
the effectiveness of all proposed designs and modifications in
enhancing the network’s performance.
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Our BuildMon is not a simple combination of semantic seg-
mentation, instance segmentation, and change detection. The
windowed ST attention module aggregates temporal context to
associate the building instance across different temporal images.
Notably, our design differs from traditional 3D Transformers
by employing small-scale windows on the spatial dimension,
focusing solely on the local context for building extraction. This
design fits the property of the TSRSI well since the semantic cor-
relation in the whole temporal dimension is inherently stronger
than that across the long-distance spatial scopes. Besides, in
our framework, the change monitoring results are generated
from the building extraction results and then the ground truth
change patterns are employed as a building segmentation weight,
merged in the supervised signals, resulting in a joint learning for
both tasks.

BuildMon follows a sequential pipeline from segmentation
to change detection, rather than adopting a multitask learn-
ing framework with two downstream branches. This approach
allows the supervision information from the change monitor-
ing task to guide the preparatory task of building extraction,
facilitating feature representation learning to serve both tasks
simultaneously. Despite the tasks’ similarities, conflicts arise
within them, as evidenced by ablation results for loss functions
(see Table IX). Assigning weights solely to building regions
results in a notable decrease in SCOT, indicating that the network
tends to classify more regions as buildings, adversely affecting
instance-level tracking and change monitoring. In addition, con-
figurations without change-guided loss exhibit higher tracking
scores but lower change scores. This discrepancy stems from
two factors: First, in the tracking task, buildings missed in earlier
detections may be identified in subsequent temporal instances,
allowing for recovery. Conversely, in change detection, missed
changes at specific time points are challenging to rectify. Second,
models without change-guided loss have limited capacities to
represent change patterns, leading to lower change detection
scores.

Our method provides a new perspective for building extraction
and change patterns analysis in multitemporal image series,
while it is not without limitations at the same time. In our
approach, the targets do not undergo displacement and do not
experience drastic “appear-disappear” changes. Therefore, our
method struggles to extend to rapidly moving targets such as
ships or vehicles, or vegetation and forests with frequent periodic
changes. However, the concept we proposed for temporal-spatial
context-aware modeling in TSRSI can be applied to other long-
sequence target analysis problems. Note that it is necessary
to construct specific pattern extraction networks based on the
characteristics of the target changes. The two-step strategy of
our method for building extraction and change monitoring may
limit the simplicity and flexibility of the network. Moreover,
considering computational complexity, we opt to first extract
buildings through semantic segmentation, followed by acquiring
building instances via postprocessing methods. However, this
redundant pipeline may hinder end-to-end optimization and
exacerbate training difficulty. Therefore, our future work will
explore novel building delineation approaches and efficient in-
stance segmentation networks with simpler structures to handle
both tasks concurrently.

VI. CONCLUSION

In this article, we have presented BuildMon, a novel frame-
work aimed at addressing the challenges of building extraction
and change monitoring within TSRSI. BuildMon incorporates
a ST Transformer, enabling the capture of ST attention across
sequential image data, thereby facilitating the modeling of rela-
tionships among neighboring regions and cross-image patches.
To mitigate appearance discrepancies within time series images,
we introduce the utilization of IN within the Transformer archi-
tecture. Furthermore, we present two customized loss functions
tailored for change detection, effectively addressing class imbal-
ance and emphasizing regions undergoing significant changes.
Extensive experiments conducted on the SpaceNet 7 dataset
demonstrate the effectiveness of the BuildMon framework.
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