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Abstract— Electroencephalogram (EEG) is widely used
in basic and clinical neuroscience to explore neural states
in various populations, and classifying these EEG record-
ings is a fundamental challenge. While machine learning
shows promising results in classifying long multivariate
time series, optimal prediction models and feature extrac-
tion methods for EEG classification remain elusive. Our
study addressed the problem of EEG classification under
the framework of brain age prediction, applying a deep
learning model on EEG time series. We hypothesized
that decomposing EEG signals into oscillatory modes
would yield more accurate age predictions than using
raw or canonically frequency-filtered EEG. Specifically,
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we employed multivariate intrinsic mode functions (MIMFs),
an empirical mode decomposition (EMD) variant based on
multivariate iterative filtering (MIF), with a convolutional
neural network (CNN) model. Testing a large dataset of
routine clinical EEG scans (n = 6540) from patients aged
1 to 103 years, we found that an ad-hoc CNN model without
fine-tuning could reasonably predict brain age from EEGs.
Crucially, MIMF decomposition significantly improved per-
formance compared to canonical brain rhythms (from delta
to lower gamma oscillations). Our approach achieved a
mean absolute error (MAE) of 13.76 ± 0.33 and a correla-
tion coefficient of 0.64 ± 0.01 in brain age prediction over
the entire lifespan. Our findings indicate that CNN models
applied to EEGs, preserving their original temporal struc-
ture, remains a promising framework for EEG classification,
wherein the adaptive signal decompositions such as the
MIF can enhance CNN models’ performance in this task.

Index Terms— Convolutional neural network, EEG, multi-
variate iterative filtering, brain-age, MIMF.

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is used for quanti-
fying the brain’s states by measuring time-varying electric

potential differences across the scalp. EEGs can differentiate
various neural states such as eyes-closed and eyes-open,
resting or alert conditions [1], awake and sleep [2], emo-
tional arousal [3], and others. EEG is affordable and widely
available methodology applied in clinical, cognitive, and basic
neuroscience. In the classification tasks based on machine
learning approaches, EEG has been successfully used for emo-
tion recognition [1], motor imagery identification tasks [4],
seizure detection [5], brain injury monitoring [6], Alzheimer’s
disease classification [7], depression detection [8], sex classi-
fication [9], and classification of abnormal EEGs [10].

Brain age, or neurophysiological age, quantifies individual
neural mechanisms as deviations from the population average.
Serving as a potent predictive marker, brain age can highlight
susceptibility to various mental health conditions. A significant
discrepancy between an individual’s chronological age and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0709-0128
https://orcid.org/0000-0001-6920-4763
https://orcid.org/0000-0003-3236-5234
https://orcid.org/0000-0002-6061-4309
https://orcid.org/0000-0003-0489-1552


PALIWAL et al.: CLASSIFYING ROUTINE CLINICAL ELECTROENCEPHALOGRAMS 2039

their predicted neurophysiological age may signal an elevated
risk for cognitive decline and conditions such as Alzheimer’s
or Parkinson’s disease, schizophrenia, and the severity of
clinical symptoms. This metric can provide a specific window
into the potential onset and progression of neurodegenerative
and psychiatric disorders [11].

Several imaging modalities across various neurological
disorders and diseases have been used in predicting brain
age prediction [12]. These modalities include structural
magnetic resonance imaging (MRI) [13], [14], functional
MRI [15], fluorodeoxyglucose positron emission tomography
imaging [16], diffusion tensor imaging [15], magnetoen-
cephalography (MEG) [17], and EEG [2], [18], [19]. Typically,
these studies adopted an novel approach wherein a set of
features has been extracted and subsequently used as an input
for machine learning models in prediction tasks [20].

Studies based on EEG in tandem with machine learning
models may employ two approaches. These studies treat
EEG data either as a temporal sequence, capitalizing on the
time-dependent nature of brain signals, or as a vector of
extracted features, harnessing key characteristics for further
analysis and prediction. Time series are high dimensional data
that are more suited for deep learning approaches compared
to the classical (non-neural) machine learning methods. For
instance, the work in [21] aims to predict the brain age of
the participants using EEGs as a direct input to a bi-long
short term memory (Bi-LSTM) and gated recurrent unit (GRU)
models. The age of participants is categorized into six age
groups, and classification accuracy is obtained as the metric
for analyzing the performance of the models. Their model
achieves an accuracy of 93.69% for predicting brain age.

The nature of EEG features extracted (evaluated) from EEG
recordings remains diverse [2], [19], [22]. These EEG features
can be defined within the frequency domain, exemplified
by spectral power, within the time-frequency domain [23],
as showcased through spectrograms, or within the temporal
domain, indicated by a range of linear and non-linear features.

The study [19] extracted five distinct sets of features from
EEG data with the aim of predicting brain age. These fea-
ture sets include amplitude, range, spectral, connectivity, and
fractal dimension domain features. Finally, those features were
given as input to stack ensemble of support vector regression,
extreme gradient boosting (XGBoost), and Gaussian polyno-
mial regression to obtain a mean absolute error (MAE) of
6.87 years. In another study [2], the authors extracted features
based on their previous work [24] for predicting brain age.
Their model obtains an MAE of 7.6 years for typically aging
participants. A new BLSTM-LSTM model is proposed in [22]
to predict the age and sex of participants using discrete wavelet
transforms extracted from EEGs. Their analysis showed that
compared to other EEG rhythms, the beta band predicts
individual’s age and sex more accurately. This study obtained
an accuracy of 93.7% in predicting the participants’ age.

Advanced EEG preprocessing is typically applied before
feature extraction, as the artifacts present in raw data may bias
the estimation of EEG metrics. Empirical mode decomposition
(EMD) [25] has been used as a preprocessing stage for further

Fig. 1. Block diagram of the proposed approach for brain age prediction
from EEG.

feature extraction from EEG signals in several studies [26],
[27]. In our study, we hypothesized that approaches such as
multivariate iterative filtering (MIF) can provide an improve-
ment in the performance of prediction models, which treat
EEG as temporal sequences.

More specifically, we applied a novel approach for pre-
dicting brain age, which combines multivariate intrinsic mode
functions (MIMFs) as a variant of the EMD algorithms known
as MIF, with a convolutional neural network (CNN) designed
ad-hoc for the task of brain age prediction. Previous studies
have applied several versions of EMD for extracting features
in the temporal domain [28], [29]. Our findings have further
supported the view that the innovative MIF technique, built
upon EMD, could enhance the prediction accuracy, when
compared to traditional methods based on wide-spectrum EEG
or filters corresponding to canonical frequency bands of brain
rhythms. Our approach is schematically illustrated as a block
diagram in Fig. 1.

The primary aim of our study is to enhance the knowl-
edge representation of routine clinical EEGs for classification
purposes, ensuring the preservation of their temporal character-
istics. Methodologically, we evaluate and contrast two distinct
strategies for the signal decomposition of EEG time series,
particularly in the context of estimating brain age: (i) the
conventional method of band-pass filtering, which reconstructs
canonical brain rhythms commonly used in cognitive and
clinical neuroscience, and (ii) a novel technique of MIF. This
latter method decomposes a signal into oscillatory modes and
is frequently employed in the field of engineering sciences.
Our findings indicate that although band-pass filtering yields
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satisfactory results, in particular based on alpha and beta
rhythms, in accordance with previous studies, the compo-
nents derived from MIF demonstrate superior performance.
This suggests that adopting a similar MIF approach could
significantly enhance the accuracy of clinical label predictions
and the determination of parameters in real-world clinical
scenarios.

Our research makes several significant contributions to the
field of neurological study and clinical practice:

1) We introduced a custom-designed CNN architecture
explicitly tailored for predicting brain age from EEG
time series data. This novel approach allows for the
direct input of time series data into the predictive model.

2) In an effort to maintain the practical applicability of
our findings, we applied very basic preprocessing of
EEG data. This decision ensures that the EEGs remain
as close to their original clinical state as possible,
facilitating easier adoption by healthcare professionals.

3) We employed a dual strategy for decomposing EEG
recordings into MIMF components and canonical fre-
quency oscillations (encompassing delta, theta, alpha,
beta, and lower gamma frequencies).

4) A comparative analysis was conducted to evaluate the
efficacy of our CNN architecture using two distinct
methods of signal decomposition, providing insights into
the most effective approaches for EEG analysis.

5) Given that our study is grounded in the analysis of
routine clinical EEGs, recorded from both in-patients
and out-patients and prioritizes preserving the original
temporal structure of the data, our findings are imme-
diately applicable in real-world contexts. This positions
our work as a valuable asset for developing decision-
support systems to enhance clinical EEG evaluations.

The rest of the paper is structured as follows: Section II
describes the EEG dataset used in this study. Section III
discusses the methods we developed, tested, and validated.
Results are presented in section IV. Section V discusses
our approach’s performance, followed by a conclusion in
section VI.

II. DATASET

The EEG dataset employed in this study was recorded over
a seven-year period, from 2012 to 2018, at a public hospital of
British Columbia, in the process of diagnostic evaluation. The
original dataset included a total of 7048 participants, with a
wide age range spanning from 1 to 103 years. The dataset was
highly heterogeneous. It included virtually all the EEGs from
the given public hospital without any selection bias, including
EEGs from both in-patients and out-patients.

The hardware and firmware used for EEG recordings were
similar across all EEG stations. Natus Xltek EEG32U EEG
amplifier and gold-cup electrodes were equipped at each setup.
The setup followed the standard 10/20 system positioning, and
twenty electrodes, namely, FP1, FPZ, FP2, F3, F4, F7, F8,
FZ, T3, T4, T5, T6, C3, C4, CZ, P3, P4, PZ, O1, and O2
were used for recording EEG. The Figure 3 illustrates the EEG
electrode placement. In addition, electrooculography (EOG)

Fig. 2. Age distribution of participants present in the dataset.

Fig. 3. Schematic of the positioning of electrodes used in the EEG
dataset.

and electrocardiography (ECG) were recorded using two pairs
of electrodes. In general, the locations of the reference and
ground electrodes were unknown. The EEG recordings ranged
from 10 minutes to several hours (average duration of about
35 minutes) in length. The sampling frequency for the EEGs
was either 500 Hz or 512 Hz.

The Research Ethics Board at Simon Fraser University and
Fraser Health Authority approved the ethics protocol on 1st
April 2022 (protocol number: H18-02728).

III. METHODOLOGY

A. Data Preprocessing
We applied a minimalistic preprocessing pipeline for EEG.

First, we converted the EEG recordings from its native Natus’s
proprietary format into the European data format (EDF) using
Natus’s Neuroworks software. Subsequently, the data were
anonymized with the PyEDFlib library [30] in Python. We then
applied a zero-phase, overlap-add finite impulse response
(FIR) band-pass filter with a Hamming window across a
frequency range of 0.5 Hz to 55 Hz, as implemented by
the MNE-Python library. This frequency range was chosen to
capture EEG activity across delta, theta, alpha, beta, and lower-
gamma bands, while excluding interference above the 60 Hz
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power line frequency. The EEG data were resampled to a
frequency of 128 Hz to standardize the dataset.

In the subsequent stage, we screened each EEG recording
to identify flat intervals (signified by digital zeros with a
minimum peak-to-peak value threshold of 1e-6) and segments
corresponding to photic stimulation and hyperventilation pro-
cedures. We aimed to extract a randomly selected 32-second
segment of resting-state EEG from each processed sample.
This step failed in some cases and those cases were discarded.
We believe that the 32-second segment is relatively long to
properly include the lowest frequencies such as delta and theta.
At the same time, we did not want to increase the complexity
of our models which take time series as input. Hence, this
arbitrary choice of 32-second was a compromise between the
need to include neurophysiologically relevant rhythms and
the need not to increase the computational complexity. The
final step involved normalizing the time series for each EEG
recording, adjusting each channel-specific signal to achieve
a standardized mean amplitude of zero and a variance of one
across time points. The EEG preprocessing pipeline is detailed
schematically in Figure 4, which provides a visual overview
of the steps undertaken to prepare the final dataset of n =

6540 samples for analysis.

B. Multivariate Iterative Filtering
EEG signals exhibit characteristics similar to non-stationary

signals, which can introduce biases into EEG metrics.
To address this, EMD was designed to break down non-
stationary signals into narrow-band components. An alterna-
tive to EMD, known as iterative filtering, was introduced
in [31]. This method applies a moving average filter that iter-
atively processes the signal, decomposing it into narrow-band
oscillatory modes termed intrinsic mode functions (IMFs).

The natural extension of this approach for multi-channel
signals has been proposed in [4] and [32]. This extension
has proved to be very useful as biological signals such as
EEG recordings are generally collected using multiple elec-
trode systems for improving spatial resolution. Additionally,
when channel-by-channel analysis is carried out, univariate
decomposition techniques like iterative filtering fail to produce
distinct IMFs across different channels because of the random
nature of EEG data and its low signal-to-noise ratio. MIF
effectively tackles this issue. For each channel present in the
signal, MIF applies a unique moving average filter to produce
an equal number of MIMF bands with similar frequency
content on each channel. The maximum value of the signal
extrema from all channels determines the length of the moving
average filter. The length of the moving average filter is
calculated as,

L =

⌊
κ N
e

⌋
,

where κ is a constant, N is the total number of samples, and
e is the highest extrema value among all channels present in
the signal. The cutoff frequency of the filter at each stage is
inversely proportional to the length (L) of the moving average
filter [32]. The MIF approach is presented below in the form
of the algorithm (Algorithm 1).

Fig. 4. Preprocessing pipeline for EEG signals.

C. Convolutional Neural Networks

CNN [33] is a specialized deep learning architecture
designed to process structured data such as images or time-
series. It comprises numerous convolution blocks that extract
pertinent information from the input data.

Generally, a typical convolution block comprises three fun-
damental layers: the convolution layer, the pooling layer, and
the dense layer. A dropout layer may also be incorporated for
regularization purposes. The role of each layer is explained
below.

1) Convolution Layer: The convolution layer performs
convolution operation over the input by treating the input
data as a matrix. The filter moves across the entire
input and calculates different features depending on the
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Algorithm 1 Multivariate Iterative Filtering
1: Require: x (multivariate signal)
2: Output: MIMF
3: MIMF = {}, ch = channels numbers
4: while ne ≥ 2 do
5: // where ne is the number of extrema in x
6: i = 1
7: xi = x
8: while stopping criterion as specified in [4] and [25] is

not satisfied do
9: find number of extrema for all channels, E ∈ Rch×1;

10: Using maximum (E), compute the filter length L i ;
11: design moving average filter wi (n) of length L i ;
12: xi+1(n) = xi (n) −

∑L i
k=−L i

xi (n + k)wi (k)

13: i = i + 1
14: end while
15: MIMF = MIMF ∪ {xi }

16: x = x − xi
17: end while
18: MIMF = MIMF ∪ {x}

weights of the filter kernel. The filter kernel size depends
on the application in which it is used (for instance, larger
kernel size is useful for the case of spatio-temporal data
to capture long-range spatial and temporal dependen-
cies). Mathematically, convolution operation (∗) can be
defined [33] as,

(x ∗ w)[t] =

a=∞∑
a=−∞

x[a]w[a + t]

where x is the input, w is the filter, and t represents
time.

2) Pooling Layer: The pooling layer acts as a dimensional-
ity reduction layer. It reduces the number of parameters
in the input by performing selection operation such as
average pooling, which takes the average of outputs of
the previous layer.

3) Dense Layer: The dense layer (also known as fully
connected layer) acts as a predictor that uses the features
generated by previous layers and predicts the required
output.

4) Dropout Layer: The dropout layer acts as a regular-
ization layer to prevent the architecture from falling
into overfitting. The regularization is done by randomly
dropping some neurons while keeping the other neurons
unmodified in the hidden layer, hence nullifying the
contribution of the dropped neurons toward the next
layer.

D. Proposed Approach
In our study, we evaluated three distinct scenarios or

versions of EEG recordings to ascertain their effectiveness
as input for CNN model designed to predict patients’ brain
age. More specifically, we contrasted three types of filters

applied to EEG data: a broad-spectrum band-pass filter ranging
from 1 to 55 Hz (which most closely approximates the
original EEG), five canonical bands spanning from delta to
lower gamma frequencies, and six bands delineated by the
MIMFs.

We propose a CNN architecture, designed ad-hoc for the
task of predicting brain age from EEGs. The CNN functions by
accepting multivariate time-series data, represented by EEGs
in our context, and predicting a scalar value that corresponds
to the patients’ brain age. Our CNN model is constructed with
five convolution blocks that encompass convolution, pooling,
and dropout layers. We consider average pooling over max
pooling because average pooling smoothly extracts features
from the data, whereas max pooling ignores a large chunk of
data which is not desirable in our case. Also, the padding is
kept to be the same across all blocks. We chose our activation
function as rectified linear unit (ReLU) to prevent the problem
of vanishing gradients. The ReLU function is mathematically
represented as,

ReLU = max(0, x)

where max is the maximum operator.
Additionally, the dropout rate was kept to be 25% in all the

convolution blocks. Table I summarizes our proposed CNN
architecture. We extracted MIMF bands using the MIF tech-
nique and used them as feature inputs to our CNN model to
predict the brain age. We generated six MIMF bands, namely
MIMF1, MIMF2, MIMF3, MIMF4, MIMF5, and MIMF6,
where MIMF1 corresponds to the higher frequency regime,
and MIMF6 corresponds to the lower frequency regime.
These six MIMF bands essentially capture the entire range
of frequencies (0.5 Hz - 55 Hz) present in the preprocessed
EEG signals.

The data preprocessing was done in Python. The MIMF
bands were generated using MATLAB 2022b version. The
CNN architecture and training scheme were implemented
using Tensorflow and Keras. We ran each scenario 50 times
to incorporate any variability in the performance. Model
training was done for 20 epochs for each scenario, and each
epoch took about ∼ 21 minutes to complete. We randomly
split the dataset in the ratio of 70%:30% for train and test
splits.

IV. RESULTS

To ensure robustness and reliability, our final results repre-
sent the average performance metrics, calculated from the test
splits of the dataset over 50 separate runs.

A. Data Visualization
The preprocessed EEG data are illustrated in Fig. 5. In this

example, we showed five channels, namely C3, C4, CZ, F3,
and F4, for plotting the preprocessed EEG. The extracted
MIMF bands obtained from the five channels of the prepro-
cessed EEG (Fig. 5) are shown in Fig. 6. The power spectral
density plots obtained from the extracted MIMF bands for the
above mentioned five channels are shown in Fig. 7.
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TABLE I
PROPOSED CNN ARCHITECTURE

Fig. 5. Preprocessed EEG signal.

B. Band-Pass Filtered EEG
Our CNN model predicted the brain age of the test partici-

pants in the broad-spectrum (0.5 - 55 Hz) original EEG data
with the MAE of 15.99 ± 0.37 years. The Pearson correlation
coefficient between the actual age and the predicted age for
the original EEG was 0.49 ± 0.03, and the explained variance
was 0.23 ± 0.03. The scatter plot of the actual age versus
the predicted age is shown in Fig. 8a. Each point represents a
participant from the test split of the dataset fitted with a linear
regression line. For the ideal case, the line should have been
with a slope of 45 degrees with an MAE of 0 and a correlation
coefficient of 1. The regression line for the original EEG is far
from having a 45-degree slope because of a typical statistical
phenomenon called “regression to the mean”.

C. Canonical Frequency Bands
Compared to the broad-spectrum EEG, the CNN model

demonstrated enhanced performance when applied to

Fig. 6. MIMF bands extracted from the preprocessed EEG signal shown
in Fig. 5 using MIF technique.

canonical EEG rhythms extracted from the original EEG
signals, with certain rhythms standing out. Specifically,
alpha (8-13 Hz) and beta (13-30 Hz) rhythms yielded
results comparable to those of the original EEG, boasting
an MAE of 15.64 ± 0.29 years and 15.99 ± 0.42 years,
respectively. Furthermore, correlation coefficients of 0.51 ±

0.02 and 0.49 ± 0.02 were noted for alpha and beta rhythms,
respectively. Other rhythms, namely delta, theta, and lower
gamma, fell short in performance relative to alpha and beta
rhythms. The alpha rhythm’s scatter plot is depicted in
Fig. 8b. A comparative representation of the performance
metrics across all EEG rhythms is consolidated in Table II.
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TABLE II
PERFORMANCE COMPARISON OF OUR CNN MODEL ON ORIGINAL EEG, EEG RHYTHMS, AND MIMF BANDS

Fig. 7. Power spectral density plots obtained from the extracted MIMF
bands shown in Fig. 6.

D. MIMF Bands

The CNN model’s performance varied across different
MIMF bands specifically, MIMF1 through MIMF6, extracted
from the broad-spectrum EEG. Superior performance was
observed with MIMF2, MIMF3, and MIMF4 bands when
compared to the broad-spectrum EEG, while MIMF1, MIMF5,
and MIMF6 bands demonstrate performance levels akin to
those of the original EEG.

Among the MIMF2, MIMF3, and MIMF4 bands, the
MIMF3 band outperformed others, registering an MAE of
13.76 ± 0.33 years, a Pearson correlation coefficient of 0.64 ±

0.01, and an explained variance of 0.41 ± 0.02. The MAEs for
MIMF2 and MIMF4 stand at 14.19 ± 0.21 years and 14.91 ±

0.33 years, respectively, and their corresponding correlations
are 0.62 ± 0.01 and 0.58 ± 0.01.

Figure 8c shows a scatter plot illustrating the correlation
between actual age and predicted age for the MIMF3 band.

A summary of performance metrics for all MIMF bands is
presented in Table II.

V. DISCUSSION

Our study explored the hypothesis that breaking down
EEG signals into narrow-band components could enhance
the efficacy of deep learning models, particularly those that
maintain the temporal structure of EEG recordings. To this
end, we developed an ad-hoc CNN model applied to predict
brain age from routine clinical EEG. Our findings revealed that
a new method, which involves decomposing EEG recordings
into MIMF components, significantly outperformed traditional
approaches that rely on filtering EEG signals into canonical
frequency bands such as delta, theta, alpha, beta, and lower
gamma oscillations, as well as the use of broad-spectrum EEG
signals. While not the initial focus of our investigation, we also
successfully designed, implemented, and validated a CNN
model capable of estimating patients’ biological age based on
multivariate EEG recordings, critically without compromising
the temporal integrity of the EEG data.

Specifically, we used the MIF technique to extract MIMF
bands from minimally preprocessed EEGs. We tested a range
of inputs including the original broad-spectrum band-pass
filtered EEG and the six MIMF bands. For a comprehensive
comparison, we also tested our CNN model on EEG rhythms
extracted from the original EEG, including delta, theta, alpha,
beta, and lower gamma rhythms. We ensured robust testing
of our approach by utilizing an extensive dataset of clinical
EEGs, recorded from a large, diverse participant pool (n =
6540) spanning a wide age range (1 to 103 years).

Our approach focused on maintaining clinical relevance by
preserving EEGs in the time domain, facilitating simplified
brain analysis. To enhance performance within this constraint,
we employed MIF-based feature extraction. This method
surpasses alternatives like spectrogram computation, which
require complex processing and could complicate clinical
decision-making. We deployed our CNN model as a regressor
to predict brain age, ensuring both accuracy and clinician
friendly results.

Our work’s key message is about a choice of knowledge
representation (features) based on real-world routine clinical
EEG data. We wanted to preserve the dynamics and original
structure of EEG signal. MIMF bands obtained from MIF
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Fig. 8. Scatter plots for actual age versus the predicted age for the: (a) Original EEG, (b) Alpha rhythm, and (c) MIMF3 band.

technique proved to be a promising knowledge representation
method for our case. Within this context, our requirement was
to have a model tailored to time series analysis. Consequently,
we proposed a CNN model specifically designed for the task
of brain age prediction.

The performance of our CNN architecture on the original
EEG is better compared to another study performed on the
same dataset [18]. For the case of EEG rhythms extracted
from the EEG recordings, the performance of alpha and beta
rhythms was comparable to that of the original EEG, whereas
the performance of other rhythms, namely delta, gamma, and
theta, was inferior to that of the alpha and beta rhythms. This
suggests that alpha (8-13 Hz) and beta (13-30 Hz) rhythms
incorporate sensitive markers for estimating brain age.

For the case of six MIMF bands, MIMF1, MIMF2, MIMF3,
MIMF4, MIMF5, and MIMF6, their performance with the
CNN architecture was either comparable or superior as com-
pared to the performance of the original EEG and the study
performed in [18]. The best performance was obtained with
the MIMF3 band with the MAE of 13.76 ± 0.33 years
and the Pearson correlation coefficient of 0.64 ± 0.01. The
performance of the MIMF2 and MIMF4 bands was also great,
with correlation coefficients of 0.62±0.01 and 0.58±0.01 for
MIMF2 and MIMF4, respectively. The other three MIMF
bands, i.e., MIMF1, MIMF5, and MIMF6, had a performance
similar to that of the original EEG. This suggests that the
MIMF2, MIMF3, and MIMF4 bands hold hidden important
information about the nature of a participant’s brain sig-
nals. These MIMF bands, along with the CNN architecture,
can be proven important for estimating the brain age of a
participant based on the participant’s EEG, which is a sig-
nificant biomarker for analyzing the health of an individual’s
brain.

The results show that the MIMFs (MIMF2, MIMF3, and
MIMF4) performed better than predefined EEG rhythms like
alpha and theta. MIF-based adaptive extraction of frequency
bands are more suitable than using predefined bands. MIF-
based adaptive decomposition accounts for the variability of
EEG signals in different participants, even at different times.
Figure 9 shows the comparison of p-values. We essentially
compare the performance of CNN model across 12 different

inputs. For that, we ran a series of Mann-Whitney U test [34]
pairwise for all the combinations among the 12 different
inputs. If the p-value is very low, it represents that the
difference in the performance of the two inputs considered in a
pair is significant. As evident from the figure, the p-values for
MIMF2 and MIMF3 are the lowest, showing the statistically
significant difference in the performance as compared to the
other inputs, supported by the metrics in Table II.

In Table III, we compared the performance of our approach
with a few other studies on predicting brain age from
EEGs. The study [19] computes five different sets of features
extracted from EEGs, including amplitude, range, spectral,
connectivity, and fractal dimension domain features. They
obtained an MAE of 6.9 years. However, the number of
participants they used is relatively small (n = 468). The
study [2] used a feature extraction technique based on their
previous work [24]. They obtained an MAE of 7.6 years for
healthy participants. However, the dataset used in this study
consisted of only sleep data, which needs to be recorded for
the entire sleep duration. In contrast, our dataset is highly
diverse in nature, with a variety of participants and with the
recording being collected at different times. In addition, this
study uses multiple epochs from a single EEG, whereas we
extract only a single epoch corresponding to each participant’s
EEG. The authors in [18] utilize the byte-pair encoding-based
feature extraction method for extracting features from EEGs by
treating them as unstructured data. They used the same dataset
as used in this study. However, their MAE was relatively high
(15.7 years) as compared to the MAE of 13.76 years obtained
in the present study.

A. Limitations of This Study
The modest performance of our method, as discussed

in Table III, can be attributed to the diverse nature of
our EEG dataset, which was collected from real clinical
settings. Variability arose from EEGs being recorded by
different technicians across various stations, with incon-
sistent placement of the reference electrode. Our analysis
encompassed all EEG scans recorded for diagnostic pur-
poses in a single hospital, including both in-patients and
out-patients, leading to a highly varied sample population in
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Fig. 9. Comparison of p-values for different inputs used for CNN. We compared the performance of the model across 12 different inputs to our CNN.
We ran a series of t-tests, for comparing the performance pairwise across 12 inputs. We summarize all those pairwise performance comparisons in
the form of this heatmap. Lower p-value represents higher significant difference in the performances of the two inputs considered in the comparison.
As evident from the figure, MIMF2 and MIMF3 have the lowest p-values supporting the results presented in Table II.

TABLE III
COMPARISON OF ACCURACY OF BRAIN AGE PREDICTION FRAMEWORK WITH OTHER WORKS

terms of diagnoses, comorbidity levels, and medication use,
which is known to influence EEG dynamics [35]. Further-
more, the EEG scans were not categorized into normal or

abnormal groups upfront, complicating the identification of
EEG status due to reliance on non-structured neurological
reports.
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B. Advantages of Our Approach
The most important highlight of our work is that our

work was done in the context of routine clinical EEG from
both in-patients and out patients of a hospital, representing
real world clinical decision making scenario. Using MIF for
extracting features, we still preserved time domain dynam-
ics of the EEGs, hence making brain analysis simpler and
maintaining clinical relevance. Additionally, despite all the
confounding factors such as different EEG technicians, EEG
stations, EEG reference, and medications, the performance
based on MIMF bands generated using MIF technique shows
significant improvement as compared to the classical canonical
frequency band-based features [35]. The MIMF bands have
demonstrated superior performance on different tasks associ-
ated with multivariate EEG scans [4], [32]. Here, we utilized
the MIMFs obtained from our EEG dataset to be used as a
direct input to our CNN model to predict the brain age of
the participant. The performance metrics presented in Table II
demonstrate that MIMF2, MIMF3, and MIMF4 bands show
superior performance relative to the original EEG and EEG
rhythms. Though not the main focus of our work, we devised
an ad-hoc CNN architecture for predicting age from a person’s
EEG scans. Since our input is a time series with spatial
dependencies between electrodes positioned over the scalp,
the use of CNN can be useful as it can capture both spatial
(effect of positioning of electrodes over the head) and temporal
(time variations in the EEG signals) dependencies present
in the data. This further opens up the possibility of using
CNNs and MIMF bands for different regression tasks using
physiological signals such as ECG, electromyogram (EMG),
and EOG. There have been few popular deep learning archi-
tectures developed specifically for the EEG paradigm such as
the EEGnet [36]. However, we recognize that EEGNet, while
valuable, may not be the most appropriate choice for our study.
EEGNet was primarily developed for event-related potentials
(ERPs) with a relatively modest sample size. In contrast, our
study involves a significantly larger sample size and focuses
on routine clinical EEGs, which are essentially resting-state
recordings. Our approach prioritizes knowledge representa-
tion through MIF over canonical frequencies and places less
emphasis on the specific models used for feature comparison.

Our study acknowledges the high heterogeneity of clinical
data collected in real-world settings. While this variability
might initially appear as a drawback, it also serves as an asset
in mitigating machine learning model drift. The conservative
nature of clinical EEG recording and evaluation processes,
if constrained to laboratory-setting norms, would limit the
broader applicability of our findings. Yet, embracing this data
diversity is crucial for minimizing algorithmic bias, thereby
fostering the development of ethical artificial intelligence
techniques to enhance healthcare efficiency.

The methodology proposed in this study addresses EEG data
and holds potential for analyzing other biological signals, such
as EOG and ECG. This broader applicability could culminate
in a comprehensive medical decision-making system, offering
significant benefits to clinicians and patients alike by facilitat-
ing rapid and accurate disease diagnosis.

VI. CONCLUSION

In this study, we compared two different knowledge
representation techniques, learning features from minimally
preprocessed routine clinical EEG data, while preserving the
temporal structure of the data. These features were then
coupled with a CNN model to predict patients’ age across
the entire life span. Our methodology specifically involved
decomposing EEG signals into a set of amplitude-frequency
modulated functions termed as MIMFs. These functions served
as inputs for our custom-built CNN. Performance of the
CNN model was evaluated against more traditional EEG
approaches, such as broad-spectrum band-pass filtered EEG
and EEG rhythms falling within canonical frequency bands.
Our work demonstrated that MIMF features can enhance
neurophysiological evaluation with respect to real-world clin-
ical data as compared to the traditional canonical filtering
techniques. Our proposed framework demonstrated improved
efficacy for brain age prediction, with potential applications for
assessing age-related neurological disorders such as Parkin-
son’s and Alzheimer’s disease. The results also illuminate a
future direction for combining CNN architecture and MIMF
band-based features to analyze a range of physiological
signals.
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