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ABSTRACT Accurate segmentation of brain tumors from MRI (Magnetic Resonance Imaging) sequences
is essential across diverse clinical scenarios, facilitating precise delineation of anatomical structures and
disease-affected areas. This study presents an innovative deep-learning method for segmenting glioma
brain tumors, utilizing a hybrid architecture that combines ResNet U-Net with Transformer blocks. The
proposed model adeptly encompasses both the local and global contextual details present in MRI scans. The
architecture includes an encoder based on ResNet for extracting hierarchical features, followed by residual
blocks to enhance feature representation while maintaining spatial information. Additionally, a central
transformer block, incorporating multi-head attention mechanisms, enables the modeling of long-range
dependencies and contextual comprehension, progressively refining feature interactions. To handle structural
scale variations within MRI images, skip connections are utilized during the decoding phase. Transposed
convolutional layers in the decoder upsample feature maps, retaining details and incorporating contextual
information from earlier layers. A rigorous assessment of the model’s functionality was carried out with
the BraTS2019 dataset, employing a comprehensive set of evaluation metrics including accuracy, IOU
score, specificity, sensitivity, dice score, and precision. The evaluation focused on individual tumor classes,
namely the whole, core, and enhancing tumor regions. During validation, the suggested model demonstrated
remarkable dice scores of 0.91, 0.89, and 0.84 for the whole tumor, core tumor, and enhancing tumor,
respectively, yielding an impressive overall accuracy rate of 98%.

INDEX TERMS Glioma, segmentation, MRI, ResNet-transformer, deep learning.

I. INTRODUCTION
In recent years, advances in medical imaging leveraging
deep learning (DL) have substantially enhanced various
sectors [1], [2], [3] including the healthcare sector, with a
focus on refining the accuracy and effectiveness of automated
disease detection, segmentation, and classification [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

This progress is driven by the pressing need to improve
diagnostic procedures and treatment strategies for patients
afflicted with various ailments. Within this domain, two pri-
mary categories of approaches have emerged as focal points
of innovation: those that employ generative approaches and
those that rely on discriminative approaches [6]. Generative
models, such as diverse neural networks, strive to grasp the
underlying data distribution of diseases, thereby generating
highly lifelike disease analyses [7]. These methods hold
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tremendous promise for capturing intricate disease nuances
and may even assist in crafting realistic 3D reconstructions
for surgical planning. Conversely, discriminative models
harness sophisticated machine learning (ML) techniques to
directly pinpoint and outline disease regions within medical
images. By adeptly distinguishing between diseased and
healthy areas, discriminative models excel in precise analysis
tasks, thereby facilitating accurate disease diagnosis and
monitoring. As the field advances, the synergy between
generative and discriminative models, bolstered by the
integration of cutting-edge technologies like deep learning
and artificial intelligence, promises to revolutionize disease
analysis into a more precise, efficient, and accessible process.
Ultimately, this advancement has the potential to elevate the
prognosis and quality of life for patients grappling with these
challenging medical conditions.

Glioma is a tumor that originates within the central nervous
system’s glial cells, which are essential for nurturing and
protecting nerve cells. Gliomas typically comprise different
regions, including the whole tumor (WT), the core tumor
(CT) containing necrotic cells, and the enhancing tumor
region (ET) with heightened signal intensity. These distinct
regions are identified through advanced imaging techniques
and contribute significantly to the diagnosis process and the
planning of treatment. Gliomas present significant diversity
in terms of aggressiveness, localization, and prognosis [8].
Central to glioma classification is the grading system estab-
lished by theWorld Health Organization (WHO) [9]. Gliomas
are classified into 4 groups spanning from I to IV, where
grade I represents the least severe form and grade IV denotes
the most aggressive. Low-grade gliomas, encompassing
grades I and II, manifest slower growth rates and are
associated with a more favorable prognosis. In contrast,
high-grade gliomas, comprising grades III and IV, exhibit
rapid growth and an increased likelihood of malignancy [10].
High-grade gliomas, particularly grade IV, are commonly
referred to as glioblastomas (GBM). Glioblastomas represent
the most severe and malignant subtype among gliomas.
They exhibit swift expansion, invasive tendencies, and
resilience against conventional therapies [11]. Unfortunately,
glioblastomas are associated with a poor prognosis, withmost
patients surviving only around 12 to 18 months following
diagnosis [12], even with aggressive treatment approaches
such as surgery, radiation therapy, and chemotherapy. The
challenges in treating high-grade gliomas stem from their
ability to invade surrounding brain tissue and their resistance
to complete surgical removal or targeted therapies.

Glioma segmentation constitutes a crucial task in medical
imaging, aimed at the automated identification and delin-
eation of various tumor areas, such as the core tumor (the
central tumor region) containing necrotic cells, the enhancing
tumor area harboring active cells from the tumor, and the
whole tumor region [13]. This segmentation process relies
on the analysis of diverse multi-modal MRI modalities
obtained through advanced medical imaging methodologies,
which often incorporate deep learning-based techniques.

Commonly employed MR imaging sequences for glioma
analysis encompass contrast-enhanced T1-weighted (T1ce),
T1-weighted, T2-weighted, and Fluid Attenuation Inversion
Recovery (FLAIR) modalities [14]. These modalities provide
supplementary data for examining various subregions within
gliomas. FLAIR and T2 modalities are particularly effec-
tive in highlighting the tumor and surrounding edematous
tissue [15]. Conversely, T1 and T1ce sequences are adept
at emphasizing the enhancing tumor region harboring active
tumor cells, excluding the surrounding edema. Additionally,
within the tumor core observed in T1c images, there may
exist an area with enhanced signal intensity, denoted as
the enhancing tumor core. Each of these regions provides
vital information about the tumors’ size, shape, and specific
characteristics. This information is invaluable in brain tumor
diagnosis and monitoring, as it assists medical professionals
in understanding the nature and severity of the tumor. More-
over, it is vital for planning treatment and helping clinicians
decide on the most appropriate interventions, whether they
involve surgery, radiation therapy, or chemotherapy.

Accurately segmenting gliomas and their internal tumor
structures in MRI modalities is paramount, not only for sub-
sequent follow-up assessments but also for devising distinct
treatment planning strategies tailored to different regions
of the tumor, thereby further emphasizing the critical need
for precise segmentation [16]. However, the conventional
approaches involving segmentation by hand are undeniably
time-consuming and prone to both inter- and intra-rater
discrepancies that can be challenging to quantify. Conse-
quently, physicians often resort to approximate measures
when evaluating glioma boundaries and characteristics [17].
Despite the challenging diversity in the form, arrangement,
and positioning of abnormal pathological features, as well
as the complicating effect of tumor masses on neighboring
normal tissues, there is an urgent demand for more precise,
and efficient fully automatic segmentation methods. These
methods must address issues such as tumor complexity,
location uncertainty, class imbalance, and imaging data
variability [6].Moreover, inherent issues inMRI images, such
as intensity inhomogeneity and variations in intensity ranges
across sequences and acquisition scanners [14], contribute
to the complexity of the segmentation process. Although
significant progress has been made in segmenting these
tumors [18], [19], [20], [21], [22], [23], persistent challenges
necessitate multi-stage treatment for patients. This study
introduces a new deep-learning approach that integrates
ResNet U-Net with Transformer blocks to address these
challenges. Our model enhances contextual understanding
by gathering both local and global details in MRI images,
thereby improving segmentation accuracy, the proposed
system model is depicted in Fig.1. The paper is organized
as follows: The introduction section presents the importance
and challenges of brain tumor segmentation; the related work
reviews existing methodologies; the proposed methodology
includes a dataset description, preprocessing procedure,
network architecture, training process, and experimental
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results; Finally, the conclusion and future research directions
are discussed.

II. RELATED WORK
A. TUMOR SEGMENTATION
Recent breakthroughs in healthcare have ignited the devel-
opment of innovative methodologies and tools, leading
to significant advancements in the domain of healthcare
image analysis. In this section, we will explore the current
approaches that have propelled the field forward.

Huang et al. [20] introduced NLSE-VNet, a new approach
designed to segregate gliomas in MRI images and forecast
the survival duration of glioma patients. NLSE-VNet exhib-
ited noteworthy performance, achieving an average Dice
coefficient of 79% for brain tumor segmentation tasks and
demonstrating a low average RMSE of 311.5 for survival
prognosis across the BraTS 2019 and 2020 databases.
González et al. [24] introduced a group of asymmetric U-Net-
style algorithms aimed at segmenting and enhancing tumor
regions. Additionally, they employed the DenseNet method
for the prognosis of survival. The assessment conducted
on the BraTS 2020 test set resulted in dice scores of
0.80, 0.87, and 0.80 for the enhancing tumor region, whole
tumor region, and tumor core region, respectively, with an
overall dice coefficient of 0.82. Tamilarasi [25] introduced a
convolutional neural network (CNN) classification technique
aimed at distinguishing between gliomas and normal brain
MRI images. Initially, the brain MRI image undergoes
adaptive histogram equalization to accentuate abnormal
pixels relative to their surroundings. Subsequently, the
enhanced brain image is subjected to multidirectional scaling
using the Gabor transform, facilitating feature extraction.
These extracted features are then utilized for training
and classification via the CNN deep learning algorithm.
Finally, tumor regions are delineated through morphological
operations. This proposed segmentation technique employing
CNN classification achieved notable performance metrics,
including 96.9% sensitivity, 99.3% specificity, and 99.2%
accuracy. Kumar et al. [26] employed residual models
and structured them into a UNet architecture for tissue
segmentation. They devised a new residual algorithm to serve
as the foundation for constructing the UNet architecture
from scratch, facilitating the segmentation of multispectral
images. The resulting model achieved a Jaccard index (IoU)
of 0.82 and a dice coefficient of 0.90. These advancements
underscore the continuous evolution of medical image
analysis, with each contribution pushing the boundaries of
knowledge and paving the way for improved methodologies
and tools in healthcare.

B. MOTIVATION
The precise segmentation of brain tumors from MRI images
is a significant task in neuroimaging and clinical diagnostics,
with profound implications for patient care in the domain
of neuro-oncology. Conventional methods relying on manual
delineation are fraught with time constraints and subjective

interpretations, leading to inconsistencies and variability
between observers. This variability undermines the reliability
of diagnostic assessments and treatment planning, highlight-
ing the urgent need formore robust and efficient segmentation
techniques. Our work is motivated by the pressing need to
address these challenges and progress to the forefront of
glioma tumor segmentation. Leveraging recent advancements
in deep learning, automated segmentation techniques offer
the promise of improved accuracy and efficiency compared
to manual methods. However, existing approaches often
struggle to capture the complex morphological and textural
characteristics [18] of brain tumors, particularly gliomas,
which are highly heterogeneous and infiltrative.

C. CONTRIBUTION
In this endeavor, our study contributes to the following key
aspects:

1) NOVEL HYBRID ARCHITECTURE
We propose an innovative method for segmenting glioma
tumors by integrating ResNet U-Net with Transformer
blocks. This innovative architecture combines the strengths of
ResNet blocks for feature extraction with the attention mech-
anism of transformers, enabling more precise delineation of
tumor boundaries.

2) ENHANCED PERFORMANCE
Through extensive evaluation of the BraTS2019 HGG
dataset, our proposed methodology demonstrates exceptional
performance, surpassing current cutting-edge approaches to
accuracy and effectiveness. This improved performance is
crucial for reliable diagnostic assessments and treatment
planning in neuro-oncology.

III. PROPOSED METHODOLOGY
A. DATASET DESCRIPTION
The BraTS dataset from 2019 stands as a crucial asset in
propelling the field of medical imaging forward, particularly
in the field of brain tumor segmentation and treatment.
It is a diverse compilation of brain MRI scans sourced
from various clinical centers, encompassing multiple MRI
techniques such as T1-weighted, fluid-attenuated inversion
recovery, T2-weighted, and post-contrast T1-weighted scans.
These scans were acquired using diverse clinical rules and a
variety of scanners from various institutions (n = 19), and
all of them are available in nifti file format. An important
feature of this dataset is the meticulous manual segmentation
carried out by 1 to 4 raters, all precisely adhering to the
same annotation process [14]. These annotations, which have
received validation from experienced neuro-radiologists,
encompass crucial regions of the tumor with enhanced
contrast (referred to as ET with label 4), the surrounding
edema (designated as ED with label 2), central area of
necrosis and non-enhancing tumor (commonly denoted as
NCR/NET with label 1) and the background with label 0.
Furthermore,the data has undergone rigorous pre-processing,
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including aligning with a standardized structural design,
adjusting to a consistent resolution of 1mm3, and removing
the skull for consistent analysis [21]. This dataset also
includes crucial information on overall survival (OS), which
is quantified in days and stored in a CSV file format. This
CSV document contains entries related to pseudo-identifiers
of imaging data, patient ages, and details regarding resection
status. This dataset focuses primarily on individuals who
have undergone gross total resection (GTR) as their resection
status, highlighting them for evaluation purposes.

B. PREPROCESSING
Our preprocessing pipeline encompassed the following key
steps:

1) N4ITK BIAS FIELD CORRECTION
Our initial procedure commenced with the partitioning
of 259 BraTS 2019 high-grade glioma images into an 80-
20 split, allocating 80% for training and 20 for validation
purposes. Subsequently, we applied the N4ITK (N4 Bias
Field Correction) technique to the MRI images. N4ITK is
a well-established and widely used method for addressing
non-uniformities in image intensity, particularly in MRI
data [27]. These non-uniformities can arise from various
factors during MRI acquisition, such as magnetic field
variations or imperfections in the machine. Correcting these
intensity irregularities is crucial as it ensures that the MRI
images maintain consistency and accuracy in their intensity
levels [28]. Furthermore, bias correction is essential for
preventing misleading or inaccurate interpretations of the
images, making them reliable and valuable tools for diagnosis
and treatment planning within the field of healthcare.

2) Z-SCORE NORMALIZATION
Following N4ITK bias field correction, we performed
Z-score normalization on the MRI modalities (T1, T1ce,
Flair, T2). Z-score normalization involves centering data
around a mean of 0 and adjusting its scale to have a standard
deviation of 1 [27]. This step enhances comparability and
stability for subsequent analysis. However, we exempted
the mask files from this normalization process. These
masks contain multiple labels, with label 0 representing the
background, labels 1 and 2 indicating the core tumor and
edema, respectively, and label 3 signifying the enhancing
tumor. To maintain consistency and alignment with the task
at hand, we replaced mask label 4 with label 3.The z-score
normalization equation is given by:

zijk =
Vijk − µ

σ

where, zijk is the standardized intensity value (z-score) of the
voxel at position (i, j, k), Vijk is the original intensity value
of the voxel at position (i, j, k), µ is the mean intensity value
of the entire volume and σ is the standard deviation of the
intensity values of the entire volume.

3) PATCH EXTRACTION FOR LOCALIZED REGION
GENERATION
The BraTS 2019 dataset presents three-dimensional MRI
images with dimensions of 240 × 240 × 155, offering
valuable information [14] but also poses challenges in mem-
ory and computation. To address these concerns effectively,
after normalization, we stack the three dimensional volumes
and crop them to focus on relevant anatomical structures.
Subsequently, we randomly select two depth indices within
each cropped multi-channel volume to ensure diversity and
extract two patches per volume. For each selected depth
index, random starting coordinates for height and width
were generated, defining the boundaries of the extracted
patches. The resulting patches, representing smaller localized
volumes, were saved for further analysis. Each extracted
patch has a size of 128 × 128 × 128 × 4, where
the last dimension (4) represents the number of channels
or modalities. This ensures that all modalities (e.g., T1,
T1ce, Flair, and T2) are preserved in the extracted patches,
enabling comprehensive analysis and feature extraction.
This systematic approach streamlines preprocessing efforts,
facilitating efficient utilization of computational resources
while retaining critical information within the brain tumor
MRI volumes.

C. NETWORK ARCHITECTURE AND TRAINING
This section outlines the architecture of our suggested
three-dimensional brain tumor segmentation model, build-
ing upon the foundational U-Net architecture [29] while
incorporating enhancements to improve its performance.
Departing from the 2D U-Net framework, we transition to
a 3D U-Net design. Moreover, instead of solely employing
basic convolution layers, we incorporate ResNet blocks
and transformer blocks into the architecture. The model
architecture comprises the following components:

1) ENCODER WITH RESIDUAL BLOCKS
We input the central two patches from each preprocessed
multimodal MRI, each sized 128 × 128 × 128 × 4,
into the encoder section of our network. These images
are considered multimodal as they consist of stacked T1,
T2, T1CE, and FLAIR sequences, which are commonly
utilized in medical imaging for different contrasts and tissue
types. The dimensions of 128 × 128 × 128 represent
the spatial size of the central input patch, while the ‘4’
signifies the number of channels representing each sequence.
Each channel corresponds to a different imaging sequence,
allowing our model to capture diverse information for
accurate segmentation. The encoder section of our network
employs a sequence of ResNet blocks to capture hierarchical
features from the input image data. Each ResNet block
comprises convolutional layers followed by batch normaliza-
tion and activation functions, allowing the model to capture
increasingly abstract features. These ResNet blocks serve
the purpose of extracting hierarchical characteristics from
the MRI scans while also reducing the spatial dimensions
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FIGURE 1. System model.

through the utilization of max-pooling layers (represented
by a blue arrow), as shown in Fig. 2. We opt for ResNet
blocks over direct CNN layers because they effectively
address a significant challenge encountered when training
deep image segmentation networks—the vanishing gradient
problem [30]. The encoder blocks comprise a pair of
convolutional layers featuring a progressive increment in
the number of filters (64, 128, 256, 512), accompanied
by residual connections to facilitate gradient flow during
training. Through the integration of residual connections, the
model ensures smooth gradient flow across its many layers,
facilitating the learning of intricate features from complex
volumetric image data. These residual connections enable
the network to capture residual information, representing the
discrepancy between input and output, which is essential
for preserving fine details and enhancing segmentation
accuracy.The operations within the ResNet block can be
described as follows:
1) Convolution and Activation (Conv1):

Conv1(X ) = Act (BN (Conv3D(X ,F,K , S,P))) (1)

The input tensor X undergoes a 3D convolution operation
(Conv3D) with parameters F filters, K kernel size, S
strides, and P padding. The result is passed through batch
normalization (BN) and then an activation function (Act),
typically ReLU.
2) Convolution and Batch Normalization (Conv2):

Conv2(Conv1(X )) = BN (Conv3D (Conv1(X ),F,K ,P))

(2)

The output of the first convolutional layer (Conv1) is passed
through another Conv3D operation with the same filter size,
kernel size, and padding but without stride. The result is
normalized using batch normalization (BN).

3) Residual Connection (Residual):

Residual(X )

=


Conv3D(X ,F, (1, 1, 1), S,P)
if S ̸= (1, 1, 1) or X .shape[−1] ̸= F

X
otherwise

(3)

If the strides (S) in Conv1 are not (1, 1, 1), or the number
of output channels of Conv1 (X .shape[−1]) is not equal to
F , then a 1 × 1 × 1 convolution (Conv3D) is applied to
adjust the dimensions. Otherwise, the input tensor X remains
unchanged.
4) Final Output (Output):

Output(X ) = Act (Add (Residual(X ),Conv2 (Conv1(X ))))

(4)

The output of the Residual block and the output of Conv2
are added together. The sum is passed through an activation
function (Act) to produce the final output.

2) MIDDLE SECTION: INTEGRATION OF RESIDUAL BLOCKS
AND TRANSFORMER BLOCKS
In the middle section of the model, we integrate two
consecutive residual blocks, each containing 1024 filters.
These blocks consist of a pair of convolutional layers, suc-
ceeding batch normalization, and rectified linear unit (ReLU)
activation, facilitating feature extraction and non-linear
transformations. Additionally, residual connections within
each block aid in mitigating the vanishing gradient problem
and enhancing optimization during training. Following the
residual blocks, we incorporate four transformer blocks,
each applying multi-head self-attention mechanisms [31] to
encompass distant relationships within the feature maps. This

VOLUME 12, 2024 72109



N. Rasool et al.: TransResUNet: Revolutionizing Glioma Brain Tumor Segmentation

allows the model to selectively focus on different regions
(whole, core, and enhancing tumor) within the input data.
By computing attention scores between positions within the
feature maps, relevant spatial relationships and dependencies
are prioritized. To ensure smooth information flow across
different model layers and to mitigate potential informa-
tion loss during processing, we integrate skip connections
within the transformer blocks. These connections allow us
to preserve valuable information from earlier processing
stages, thereby enriching our model’s ability to encompass
both local and global contextual information. Specifically,
skip connections are established, linking the input feature
maps with the output of the multi-head self-attention
mechanism, followed by layer normalization. In addition
to the self-attention mechanism, feed-forward layers play
a crucial role in introducing non-linear transformations to
feature representations. These layers consist of convolutional
operations, incorporating ReLU activation functions to
capture intricate patterns and relationships within the data,
as illustrated in Fig. 2. Also, to ensure stability during
training and enhance generalization to unseen data, layer
normalization is utilized within the transformer blocks to
ensure consistent distributions of inputs across each layer,
thereby reducing the likelihood of vanishing or exploding
gradients. Layer normalization is applied after both the multi-
head self-attention and the feed-forward layers. Furthermore,
a supplementary convolutional layer, featuring 64 filters
and employing a 3 × 3 × 3 kernel size, is utilized to
modulate the channel count within the feature maps. Batch
normalization and activation of ReLU are applied to ensure
stable activations and introduce non-linearity to the feature
transformations, ultimately facilitating the generation of
accurate segmentation masks.

The operations within the transformer block can be
described as follows: Let x be the input data to the transformer
block
1) MultiHead Attention Mechanism:

attn_output = MultiHeadAttention(x, x) (5)

This operation applies the multi-head attention mechanism
to the input tensor x, producing the output tensor attn_output.
It computes attention scores between positions in the
feature maps to prioritize relevant spatial relationships and
dependencies.
2) Layer Normalization:

out1 = LayerNormalization(x + attn_output) (6)

Layer normalization is applied to the sum of the input
tensor x and the output of themulti-head attentionmechanism
(attn_output), resulting in the output tensor out1. This
operation normalizes the activations across each layer of the
transformer block.
3) FeedForward Layers:

ffn = Conv3D(ReLU(Conv3D(ff_dim, 1, out1))) (7)

The feed-forward layers consist of two convolutional
layers with ReLU activation functions applied to the output
tensor out1. The first convolutional layer reduces the
dimensionality to ff_dim, followed by another convolutional
layer that restores the original number of channels.
4) Additional Convolution Layer:

output = LayerNormalization(out1)

+ Conv3D(x.shape[−1], 1, ffn) (8)

Finally, the output tensor is obtained by adding the output
of the feed-forward layers to the original input tensor x,
followed by layer normalization. An additional convolutional
layer is then applied to adjust the number of channels back to
the original value.

3) DECODER
In the decoder phase of our model, we aim to reconstruct
high-resolution segmentation masks by increasing the res-
olution of the feature maps to match the dimensions of
the original input, while integrating information from the
corresponding encoder layers via skip connections. We begin
the decoder with the first upsampling layer, which doubles
the spatial dimensions of the feature maps using a transposed
convolution operation. Simultaneously, we extract feature
maps from the matching encoder layer and merge them
with the upsampled feature maps. This concatenation enables
us to recover spatial details lost during the downsampling
process. Following the concatenation, the combined feature
maps are passed through two residual blocks. These residual
blocks are comprised of two convolutional layers, succeeded
by batch normalization and ReLU activation functions,
facilitating the learning of residual mappings. Subsequently,
the upsampling layers follow a similar pattern, progressively
increasing the spatial resolution of the feature maps and
concatenating them with the corresponding encoder layers.
These operations establish skip connections, allowing us to
directly access low-level features captured in the encoder
layers. This mechanism helps in preserving fine-grained
details crucial for accurate segmentation. Each upsampling
layer is accompanied by two residual blocks, maintaining
the integrity of the feature representations while refining
the segmentation mask. The final convolution layer serves
as the culmination of the segmentation process, pivotal
for generating segmentation masks that delineate various
regions of interest within MRI images, including the
whole tumor, core tumor, and enhancing tumor. Through
convolutional operations, this layer transforms refined feature
representations from earlier layers into segmentation masks,
utilizing learnable filters to extract spatial patterns indicative
of different classes or regions within the input volume.
By incorporating the softmax activation function, the output
values are normalized across multiple classes, ensuring that
the predicted probabilities sum up to one for each voxel
in the segmentation mask. This normalization facilitates the
interpretation of model predictions as confidence scores for
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FIGURE 2. Proposed ResNet-UNet with transformer blocks for brain tumor segmentation.

FIGURE 3. Training performance of proposed model.

each class, enhancing the reliability and interpretability of the
segmentation results.

Furthermore, we strategically employ dropout layers to
counteract the risk of overfitting and bolster the model’s

capacity for generalization. dropout, a widely used regular-
ization technique, randomly deactivates a portion of neurons
during training, thereby discouraging the network from
relying too heavily on specific pathways or features that may
be present in the training data but not necessarily generalize
to unseen samples. Throughout the architecture, we strategi-
cally position dropout layers to introduce stochasticity and
promote robust learning. In the encoder section, a dropout
layer with a dropout rate of 0.3 follows the first residual
block, while in the transformer blocks and subsequent layers
of the decoder, dropout layers with rates of 0.3 and 0.2 are
implemented. These dropout layers encourage the model to
learn more invariant and representative features, ultimately
enhancing its performance on segmentation tasks. Addition-
ally, prior to the final output layer, a dropout layer with a
rate of 0.1 is applied, further refining the model’s predictions
and guarding against overfitting, particularly crucial in tasks
where precise delineation of boundaries is paramount. The
flexibility of adjusting dropout rates based on dataset charac-
teristics and model performance underscores the adaptability
of our approach to diverse segmentation challenges. Through
the strategic integration of dropout layers, we demonstrate
improved robustness and generalization capabilities in our
ResNet U-Net model with transformer blocks, paving
the way for more effective and reliable segmentation
results.
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FIGURE 4. Proposed model’s predicted segmentations on test images (Color-coded: Core-Blue, Enhancing-Yellow, Edema-Green, BACKGROUND-PURPLE).

TABLE 1. Hyperparameters and their corresponding values used in the
experimental setup.

4) TRAINING
In the model training process, we begin by configuring
the network using the widely favored Adam optimizer,
a prominent choice in deep learning. We employ various
evaluation metrics, encompassing dice coefficient [19],
sensitivity, precision, specificity, accuracy, and the IOU
(Intersection over Union) score, to comprehensively assess
the model’s performance in segmenting brain tumors.The
hyperparameters of the proposed model are detailed in
Table 1, while the overall performance metrics are presented
in Table 2.To efficiently manage our dataset during training,
we rely on a data generator. This generator dynamically loads
preprocessed data as needed, a crucial practice, especially
when working with large and complex datasets. Addressing
the challenge of class imbalance within MRI segmentation
data, we extend our approach beyond utilizing a custom dice
coefficient loss function alone. Proactively, we employ the
‘compute class weight’ function from scikit-learn to calculate
class weights. These weights are thoughtfully determined
to establish a balanced weighting scheme for the different
classes in the dataset. This deliberate weighting ensures con-
sistent attention to minority classes or specific image regions,
ultimately augmenting the model’s capacity to precisely
delineate these critical areas during the training process,the
training performance is shown in Fig.3. Furthermore, using

the proposed model, we generate predicted segmentation’s
for the test images, as shown in Fig. 4.

D. EVALUATION METRICS
The mathematical equation of various evaluation metrics are
shown below:
a) Dice Coefficient: The Dice coefficient measures sim-

ilarity between ground truth and predicted masks in image
segmentation and is expressed as:

Dice =
2 · |A ∩ B|

|A| + |B|
(9)

where:

A = represents ground truth mask
B = represents predicted mask
|A ∩ B| = intersection of ground truth and predicted masks
|A| = number of elements in the ground truth mask
|B| = number of elements in the predicted mask

b) Dice Coefficient Loss: The dice coefficient loss function
is defined as:

Dice_Loss = 1 − Dice (10)

c) Sensitivity: Sensitivity measures the accuracy of an
algorithm in diagnosing abnormal regions by quantifying
the proportion of correctly diagnosed abnormal tissue and is
calculated as:

Sensitivity =

∑
(TP)∑

(TP + FN)
(11)

where,TP & = true positives, FN = false negatives
d) Specificity:Specificity evaluates algorithm accuracy in

identifying normal regions by assessing the proportion of
correctly diagnosed normal tissue.

Specificity =

∑
(TN)∑

(TN + FP)
(12)
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where,TN & = true negatives, FP = false positives
e) Precision:Precision evaluates algorithm accuracy in

identifying relevant regions by measuring the proportion of
correctly diagnosed abnormal tissue among all identified
abnormalities.

Precision =

∑
(TP)∑

(TP + FP)
(13)

where,TP & = true positives, FP = false positives
f) Accuracy:Accuracy assesses overall correctness of an

algorithm’s predictions and is calculated as:

Accuracy =
Number of correct predictions
Total Number of Predictions

(14)

g) IOU-Score:The IoU (Intersection over Union) score
measures the overlap between predicted and ground truth
regions. is given by:

IOU =
Intersection

Union
(15)

IV. EXPERIMENTAL RESULTS
The segmentation network proposed is utilized on the MRI
dataset for high-grade glioma (HGG) brain tumors from the
BraTS 2019 database to precisely delineate tumor boundaries
within the scans. After segmentation using our proposed
algorithm, the resulting outputs undergo rigorous assessment
against ground truth annotations using a diverse range
of evaluation metrics. As depicted in Fig.4, we present
screenshots showcasing a selection of input test images fed
into the model, juxtaposed with the corresponding predicted
segmentation outcomes. Notably, the predicted segmentation
results are vividly displayed in color, offering a clear visual
representation of the identified tumor areas. In contrast, the
ground truth images are presented in grayscale, providing a
reference point for comparison and validation. Our findings
demonstrate the efficacy of the proposed network in accu-
rately identifying all tumor regions within the brain scans,
effectively pinpointing their precise locations. Specifically,
the core tumor is depicted in blue, edema in yellow, and
enhancing tumor regions in green. Moreover, the surrounding
navy blue area serves to delineate the background, enhancing
the overall clarity of the segmentation outcomes.The visual
representation of proposed method’s DSC with others is
depicted in Fig.5

A. STATE-OF-THE-ART-TECHNIQUES
Table 3 provides a comparison between the proposed network
and other methods, considering a range of pertinent criteria.

Chang et al. [14] introduced DPAFNet, a 3D segmenta-
tion model combining dual-path and multi-scale attention
fusion modules. Dual-path convolution broadens network
scale, while residual connections prevent degradation. The
attention-fusion module aggregated global and local infor-
mation and enhanced semantic understanding. A module
employing 3D iterative dilated convolutions has been uti-
lized to broaden the receptive field, enhancing contextual
awareness.

Cao et al. [19] proposed MBANet, a three-dimensional
convolutional neural network with a novel multi-branch
attention mechanism. The network employs an optimized
shuffle unit to construct the basic unit (BU) module, employ-
ing group convolution and channel shuffling for enhanced
feature extraction. MBANet incorporates a unique multi-
branch three-dimensional Shuffle Attention (SA) module for
attention processing, facilitating both channel and spatial
attention. Additionally, a 3D SA module is integrated into
skip connections to improve resolution recovery.

Berkley et al. [21] suggested a three-dimensional U-Net
model for segmentation of brain tumors employing their
clinical dataset. The dataset contained MRIs with varied
tumor types and resolutions. Ground-truth segmentations
were provided by expert radiation oncologists.

Lu et al. [22] proposed GMetaNet, a three-dimensional
multi-scale Ghost convolutional neural network with a
MetaFormer decoding path. The proposed approach com-
bined CNN’s local modeling with the Transformer’s long-
range representation for semantic information extraction.
GMetaNet introduces three novel Ghost modules: GSP, GSA,
and DRG, optimizing multi-scale features and capturing
long-range dependencies. A global decoder incorporating
MetaFormer effectively merges local and global features.
Deep supervision enhances convergence by ensembling
outputs.

Peng et al. [23] suggested a novel glioma tumor segmenta-
tion method using AD-Net on multimodal MRI data. They
utilized two learnable parameters for combining convolu-
tional feature maps at different scales, dynamically adjusted
through gradient backpropagation. The Jensen–Shannon
divergence constrained feature map distributions, enhancing
regularization across downsampling. Deep supervision train-
ing expedited model convergence.

Liu et al. [26] introduced a segmentation method leverag-
ing learnable group convolution, reducing network param-
eters while enhancing communication between convolution
groups. Incorporating skip connections between convolution
modules improved segmentation precision. Deep supervision
was employed to merge output images, reducing overfit-
ting and enhancing recognition capabilities. Evaluation of
the BraTS 2018 dataset revealed superior segmentation
performance compared to leading methods in the challenge.

Raza et al. [32] introduced dResU-Net, a hybrid framework
combining deep residual and U-Net models, for automating
three-dimensional brain tumor segmentation (BTS). The
model addressed the vanishing gradient issue, leveraging
residual networks as encoders and U-Net as decoders to
employ low- and high-level features simultaneously. Shortcut
connections maintain lower-level features, whereas skip
connections accelerate training.

Zhang et al. [33] introduced a novel framework for
brain tumor segmentation from multimodal MRI data. The
proposed approach utilized deep feature learning across
modalities to address data scale limitations. The frame-
work included Cross-Modality Feature Transition (CMFT)
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TABLE 2. Performance metrics employed in our experimentation.

TABLE 3. Comparative analysis of brain tumor segmentation methods.

FIGURE 5. Comparative assessment of dice similarity coefficient (DSC) for brain tumor segmentation techniques.

and Cross-Modality Feature Fusion (CMFF) processes.
CMFT transfers knowledge betweenmodalities, while CMFF
integrates knowledge for comprehensive representations.

V. CONCLUSION AND FUTURE SCOPE
Precise identification of glioma brain tumors in MRI images
is essential for accurate diagnosis, treatment strategy, and
evaluation of therapy effectiveness. Manual segmentation is
laborious and subject to variability, highlighting the necessity
for more accurate automated approaches, particularly con-
sidering the diverse geometries of tumors, spatial variations,
and intricacies of MRI imaging. Advancements in deep
learning have the potential to transform glioma segmentation,
enhance accuracy, and eventually improve patient prognosis
and quality of life. This paper presents a deep learning

architecture tailored for accurate segmentation of glioma
brain tumors. We propose a novel framework that includes
many preprocessing processes and an advanced model
architecture. Our preprocessing method involves bias field
correction, z-score normalization, stacking, cropping, and
random patch extraction from multi-channel MRI volumes.
Firstly, bias field correction is employed to mitigate intensity
changes induced by magnetic field inhomogeneities, thereby
ensuring consistency across images. Additionally, Z-score
normalization is implemented to standardize pixel intensities
to a common scale, facilitating improved convergence during
model training. Moreover, the process of stacking involves
merging multiple MRI modalities (e.g., T1-weighted and
T2-weighted) to provide complementary data for tumor
delineation. Furthermore, cropping is utilized to isolate
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specific regions of interest within MRI volumes, reducing
computational overhead and enhancing model performance.
Finally, random patch extraction, after cropping, aids in cre-
ating varied training samples, improving the model’s capacity
to generalize to unfamiliar data. Our suggested methodology
combines ResNet blocks and transformer blocks to efficiently
address the challenges of glioma segmentation. ResNet
blocks facilitate deep feature extraction by addressing the
vanishing gradient issue, enabling the model to capture
essential hierarchical characteristics for tumor delineation.
Transformer blocks, based on the transformer design used in
natural language processing, help in capturing long-distance
relationships inside MRI volumes, improving the model’s
capacity to include spatial and contextual data. The model
attains a notable accuracy of 98% by employing the NVIDIA
Tesla V100 32GB GPU. It effectively delineates gliomas and
their subregions, offering vital information for diagnosis and
treatment planning.

While the proposed model offers several advantages,
including enhanced segmentation accuracy through the
integration of local and global contextual information,
it also presents limitations such as its applicability in real-
world scenarios, exploration of a limited dataset, potential
computational complexity, and lack of longitudinal data
analysis. To overcome these limitations, future efforts could
entail conducting clinical trials or case studies to integrate the
model into diagnostic workflows. Collaborating with medical
experts would facilitate evaluating its impact on treatment
planning and patient prognosis. Additionally, qualitative
assessments could offer insights into clinicians’ perspectives
and the challenges of implementing the model in routine
clinical practice. Furthermore, utilizing additional BraTS
datasets and exploring diverse glioma MRI datasets beyond
the BraTS series could enhance the model’s generalizability
and robustness. Diversifying the dataset is expected to
enhance the model’s performance in real-world scenarios.
Moreover, optimizing network architectures and employing
techniques like data augmentation and transfer learning
could mitigate the computational demands stemming from
integrating ResNet and Transformer blocks. Further research
might involve collecting longitudinal data, annotating tumor
changes, and analyzing glioma progression and treatment
response, thereby improving clinical outcomes by enhancing
our understanding of tumor dynamics.
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