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ABSTRACT This study introduces FlowRes, an adapted ResNet-50 architecture, to predict flow fields
around underwater vehicles, aiming to improve the efficiency of Computational Fluid Dynamics (CFD)
through deep learning. The background highlights the necessity for rapid and accurate flow field predictions
to enhance the hydrodynamic shape design of an Autonomous Remote-Controlled Vehicle (ARV) for
inspection of offshore energy underwater infrastructure. Employing a decoder-only CNN-based model,
the methodology involves modifying ResNet-50 for image-to-image generation, focusing on flow field
visualization of underwater vehicles using a compact dataset. Results from training the model with
240 paired entries of flow fields and design parameters show significant computational speed improvements,
with generated images deviating less than 1% from traditional CFD-generated images. The conclusions
underline the potential of integrating advanced deep learning techniques with CFD, demonstrating FlowRes’s
capability in significantly accelerating the design process of underwater vehicles by offering a faster, more
resource-efficient alternative to traditional methods.

INDEX TERMS Computational fluid dynamics, deep learning, flow field prediction, underwater vehicles
design.

I. INTRODUCTION
Computational Fluid Dynamics (CFD) is a pivotal tool
in simulating fluid behavior by solving the Navier-Stokes
equations [1], yielding valuable data like scalars and imagery
for research. Typically, simulating flow fields around objects
involves modeling, mesh generation, computation, and visu-
alization. However, this process can be time-consuming and
expensive, influenced by factors such as computational cell
count, solution methods, and additional variables.

Deep learning improves upon traditional CFD by offering
significant computational speed and efficiency, enabling
faster predictions, including real-time analysis in some
instances, exceling in handling complex, high-dimensional
problems with a level of computational inexpensiveness that
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CFD cannot match. This makes deep learning a valuable tool
for scenarios requiring rapid results or the analysis ofmultiple
conditions, thereby enhancing the overall efficiency of fluid
dynamics research and application.

Deep learning research in flow field prediction bifur-
cates into two domains: one focusing on variable flow
conditions [2], [3], [4], [5] and the other on shape
design variables [6], [7], [8], [9]. Notably, there has been
substantial research on the former. Guo et al. [10] were
the first to introduce convolutional neural network (CNN)
[11], [12] for flow field prediction, focusing specifically
on generating real-time velocity fields for non-uniform
steady laminar flows. Following this foundational work,
subsequent researchers have built upon and expanded these
techniques. Bhatnagar et al.’s research [13] employed a CNN-
based network to examine the effects of attack angles and
Reynolds numbers on airfoil flow fields. This work utilized
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a shared encoder for computational efficiency and trained
separate decoders. Kashir et al. [14] introduced an innovative
architecture transforming CFD vertices into point clouds,
demonstrating accuracy and computational agility with an
airfoil test case.

In contrast, research on shape parameter-based flow field
prediction remains scarce, mainly due to the complexities
introduced by meshing alterations and solver preferences.
Duru et al.’s CNNFOIL [9] estimates airfoil pressure fields
across various shapes, achieving notable accuracy and
potential for generalization. Wu et al. developed ffsGAN [6]
and daGAN [8], GAN-structured models, with daGAN
integrating a CNN to address gaps in supercritical airfoil
research with CFD wind-tunnel experiments. Jiang et al.’s
TransCFD [7] utilized a transformer architecture [15] for
predicting airfoil velocity and pressure flow fields. These
studies collectively underscore the potential and capabilities
of artificial intelligence, particularly deep learning, in the
preliminary phases of airfoil design. They are significant
in exploring design parameters, offering valuable insights
in a time-efficient manner. The real-time level feedback
on flow fields provided by these AI-driven methods
is not only meaningful but also reduces the time and
resource investment typically required in traditional design
processes.

While encoder-decoder architectures [16] offer versatile
output generation, they can be cumbersome for precise
predictions. Hence, a decoder-only model [17] may be more
suitable for our study. Notably, the application of AI has been
largely confined to aerodynamics and 2D airfoils. Our work
with FlowRes, a decoder-only CNN-based model, seeks to
expand the application of CNNs for early-stage underwater
vehicle design, focusing on flow field prediction.

The research focuses on a developing Autonomous
Remote-Controlled Vehicle (ARV) [18] for the offshore
energy sector, addressing the critical need for efficient and
cost-effective cable inspection and maintenance. Offshore oil
platforms and wind power platforms are reliant on various
seabed cables for essential functions, including power supply,
control of underwater pipeline valves, chemical injection,
production monitoring, and multifunctional operations. The
safety and functionality of these platforms are highly
dependent on the integrity of these cables.

For offshore oil platforms, these cables are vital for
connecting platforms, controlling wellhead devices, and
integrating various operations [19]. Similarly, in offshore
wind energy [20], cables are crucial for connecting wind
turbines to the grid. Regular inspection and maintenance of
these cables are essential, especially in the context of wind
farms, where high-voltage alternating current (HVAC) sea
cables can transmit over distances of up to 70 kilometers.

Traditional methods of cable inspection are often expen-
sive and inefficient. To address this, the ARV involved is
designed to autonomously locate, track, and inspect sea
cables over long periods. It will be capable of identifying
issues like cable displacement, exposure, and damage, and

can also be manually operated for inspection and basic tasks.
The ARV will be adaptable, and able to be equipped with
different end-effectors for tasks such as cutting, moving
cables, and removing debris like entangled fishing nets.
This innovation is aligned with the evolving maintenance
needs and industry trends in offshore energy infrastructure,
offering a more cost-effective and efficient solution for cable
maintenance.

A primary objective in cable inspecting and maintaining
ARV design research is finding the most efficient parameter
combinations within the design space. Traditional CFD
tools linearly escalate the time investment with case scale,
especially when simulating variations of a single prototype
with similar flow patterns. Our research introduces FlowRes,
a novel approach employing a ResNet-50-based decoder [21]
to supplant the conventional meshing, computation, and visu-
alization stages. FlowRes aims to delineate the relationship
between design parameters and flow fields using a compact
dataset, potentially reducing computational demands for
simulating various cases significantly.

The paper is structured as follows. Section I, introduction,
lays the foundation for the study by highlighting the devel-
opment tendency of integration of deep learning techniques
with CFD to address the challenges faced by traditional
methods. Section II, FlowRes Architecture, details the
adapting ResNet-50 for fluid dynamics, focusing on model
modifications for image-to-image predictions. Section III,
Experiment Setup, outlines the modeling process, including
the prototype selection andCFD configuration for underwater
vehicles. Section IV, Results and Discussion, compares
FlowRes model predictions with traditional CFD results and
discusses design optimization for drag reduction. Finally,
Section V, concludes the paper, summarizing key findings
and proposing future work directions.

II. FLOWRES ARCHITECTURE
A. RESNET-50 INTRODUCTION
ResNet-50, standing for Residual Network with 50 layers
(shown in Figure 1), is a groundbreaking architecture in
the realm of deep learning, particularly within computer
vision. ResNet-50 was conceived out of a necessity to
overcome the limitations imposed by the vanishing gradient
problem in very deep neural networks. This problem, which
results in the gradient becoming increasingly smaller as it is
propagated back through the network, makes it difficult for
deep networks to learn effectively.

FIGURE 1. ResNet-50 diagram.
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The primary mission ResNet-50 was designed to accom-
plish was to significantly improve the performance on visual
recognition tasks, such as image classification, by enabling
the training ofmuch deeper neural networkswithout suffering
from the vanishing gradient issue. Its innovation lies in its
ability to train such deep networks while maintaining or even
improving accuracy, a challenge that was previously thought
to be insurmountable for conventional network architectures.

The core innovation of ResNet-50 is the introduction of
the residual block (shown in Figure 2). This architectural
feature allows the network to skip one or more layers
through shortcut connections that perform identity mapping,
with no additional parameters or computational complexity.
These shortcuts enable the direct propagation of the gradient
back through the network, mitigating the vanishing gradient
problem and allowing for the effective training of deeper
networks. This approach contrasts with traditional architec-
tures, where each layer needs to learn the desired underlying
mapping directly.

FIGURE 2. Residual block diagram.

ResNet-50’s groundbreaking approach to deep learning,
characterized by residual learning and shortcut connections,
has transcended its original computer vision domain to
influence a wide array of fields. These include natural
language processing [22], [23], audio recognition [24],
medical image analysis [25], and even the prediction of
flow fields [3], [4], [6], [9], [14], [23]. By enabling the
effective training of very deep neural networks, ResNet-
50 has significantly enhanced performance across diverse
sequence-to-sequence tasks. Its architecture has spurred
further research and innovation, leading to the development
of more sophisticated and efficient neural network models.
Consequently, ResNet-50 stands as a key milestone in deep
learning, driving advancements not only in computer vision
but also across various domains where deep learning finds
application.

B. NEURAL NETWORK ARCHITECTURE
FlowRes, modified from the standard ResNet-50, is designed
to predict CFD flow field images of 128 × 128 pixels
in RGB channels. Due to its adaptation for distinct tasks,
several adjustments were necessary. Firstly, the probability
prediction output of ResNet-50 is substituted with sequence
output, manifesting as a complete picture. Additionally, the
absence of gradual up-sampling of feature maps during
processing in ResNet-50 necessitated its incorporation into

FlowRes. Significant alterations in FlowRes compared to
ResNet-50 include:

Removal of the conv1 block, including the 7 × 7 convolu-
tion layer, max pooling layers, and the final average pooling
layer with softmax activation.

Adjustment of the first convolution layers in each block to
a stride of 1.

Addition of a linear embedding layer at the beginning to
encode initial parameters.

Inclusion of a 1 × 1 convolution layer and a sigmoid
activation function at the end for image output.

These modifications transform the standard ResNet-50
from a classification-oriented model to an image-to-image
generative model. In FlowRes, the process decreases and
merges channels while increasing the feature map size, with
channel changes achieved through binary interpolation.

FIGURE 3. FlowRes architecture.

Themain architecture of FlowRes, depicted in the Figure 3,
begins by encoding the combination of 8 design parameters
into a latent space (H0×W0×C, in this case, 8×8×128) using
a linear layer. This latent space represents a C-dimensional set
of H0×W0 size feature maps. The data then passes through
four FlowRes blocks, each containing a binary interpolation
operation that doubles the resolution of the feature maps.
Each FlowRes block includes identical bottlenecks, shown
in Figure 4, that extract and process features, reducing
dimensions by half. The feature map set, after processing,
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enters a 1 × 1 convolution layer with a sigmoid activation
function, culminating in the final 128×128×3 image output.

FIGURE 4. Bottleneck structure.

III. MODEL SETUP
A. MODELING
Our dataset comprises parameter combinations and cor-
responding CFD result pairs, derived from a prototype
underwater vehicle. To improve simulation efficiency, the
vehicle model was simplified by removing appendages,
filling holes, and smoothing gaps, as depicted in Figure 5, 6.
The initial underwater vehicle model and its simplified model
are acquired by SOLIDWORKS.

FIGURE 5. Underwater vehicle prototype.

FIGURE 6. Simplified model.

The outline of the simplifiedmodel’s shape is meticulously
defined by a set of formulae [26], specifying the contours

and dimensions of the design. These formulae delineate
precise lines, which form the basis of the model’s structure.
Subsequently, the models are generated through a methodical
process: the lines defined by these formulae are first created,
followed by the development of a mesh surface that spans
across these established lines. This methodical approach
ensures that the simplified models are not only accurate in
their representation but also consistent with the theoretical
design parameters set forth in our study. For a visual
representation of these simplified models and an overview
of the associated variables, refer to the diagrams provided in
Figure 7 and Figure 8.

FIGURE 7. Simplified model side view.

FIGURE 8. Simplified model top view.
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TABLE 1. Table of variable description.

Stern section transverse profile curve equation:
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The descriptions of each variable are shown in Table 1,

B. SAMPLING
After acquiring the initial simplified model, sampling is
conducted to obtain a parameter library for the further study.
The sampling strategy involves generating sampling points
with values ranging from 0 to 1 on each dimension, which
are then mapped independently to the corresponding variable
ranges in the optimization space.

Optimal Latin Hypercube Sampling (OLHS) is an
advanced variant of the Latin Hypercube Sampling (LHS)
method [27], aimed at enhancing the efficiency and effec-
tiveness of sampling in multidimensional parameter spaces.
While LHS ensures an even exploration across the entire
range of each parameter by dividing its distribution into
equally probable intervals, OLHS goes a step further by
optimizing the selection of sample points within these
intervals. The optimization criteria often involve minimizing
the correlation between parameters or maximizing the min-
imum distance between points, thus ensuring a more evenly
distributed and representative sample. However, A common
bias is the inadvertent introduction of sampling bias, where
certain regions of the input space are overrepresented or
underrepresented due to the sampling strategy employed.
This can lead to skewed model performance and compro-
mised generalizability, particularly if the dataset does not
adequately capture the true distribution of the underlying
data.

The adoption of OLHS as the sampling method in our
paper is justified by its several advantages over traditional
LHS, particularly when implemented using Python 3 to
achieve the maximization of minimal distance. This criterion
significantly improves the representativeness of the sample
by optimizing the spatial distribution, effectively minimizing
clustering and gaps among sample points. Consequently, this
leads to more accurate and stable estimates of statistical
moments and model responses. Moreover, the enhanced
independence of simulations due to reduced correlation
between sampled points is crucial for effective uncertainty
and sensitivity analyses. Additionally, OLHS’s ability to
provide a more uniform coverage of the parameter space
improves the efficiency of computational resources, espe-
cially valuable in complexmodels requiring a large number of
simulations. These advantages make OLHS a superior choice
for exploring multidimensional parameter spaces with high
accuracy and efficiency.

C. SENSITIVITY ANALYSIS
A comprehensive sensitivity analysis was undertaken to
identify an optimal CFD configuration. This analysis
encompassed several parameters: the dimensions of the
computational domain, the quantity of the computational
mesh cells, and the choice of turbulence model. The common
conditions applied across all experimental scenarios are
delineated in Table 2.

TABLE 2. CFD condition table.

In the initial experiment, the computational domain was a
cuboid extending three times the vehicle’s length (3L) to the
rear and 1.5 times the length (1.5L) to the front, with distance
in other directions as variable, detailed in Table 3.

TABLE 3. Computational domain sensitivity analysis result.

Analysis revealed that at a distance of 1.5L, the variation
in pressure force did not exceed 2% from the preceding data
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point, indicating convergence. The computational domain of
this distance is shown in the Figure 9.

FIGURE 9. Computational Domain of 1.5L Distance.

The second experiment established that a mesh quantity
of 5.3 million mesh cells resulted in pressure force variation
within 2% of the previous measure, suggesting a threshold for
computational accuracy, detailed in Table 4. The demonstra-
tion of the 5.3 million mesh cells configuration is shown in
the Figure 10.

TABLE 4. Quantity of the computational mesh cells sensitivity analysis
result.

FIGURE 10. Computational Domain of Case 5.

The final experiment evaluated the performance of dif-
ferent turbulence models—k − ϵ standard, SST k−ω, and
RSM under uniform conditions to ascertain their accuracy in
simulating flowfields. The resulting flowfields are illustrated

in Figure, highlighting the comparative performance of each
turbulence model in capturing the complex vortex dynamics.

FIGURE 11. Turbulence Pressure Contours of Vehicle under Different
Turbulence Models (a) k-epsilon standard model side-view turbulence
pressure contour (b) k-omega SST model side-view turbulence pressure
contour (c) RSM model side-view turbulence pressure contour
(d) k-epsilon standard model top-view turbulence pressure contour
(e) k-omega SST model top-view turbulence pressure contour(f) RSM
model top-view turbulence pressure contour.

FIGURE 12. Velocity Contours of Vehicle under Different Turbulence
Models (a) k-epsilon standard model side-view velocity contour
(b) k-omega SST model side-view velocity contour (c) RSM model
side-view velocity contour (d) k-epsilon standard model top-view velocity
contour (e) k-omega SST model top-view velocity contour (f) RSM model
top-view velocity contour.

The analysis focused on vortex pressure and distribution
at the vehicle’s stern, where three distinct vortices were
observed. The k − ϵ standard model predicted lower vertical
separation and higher horizontal pressure of vortex clusters
compared to RSM, with SST k−ω results intermediate.
Velocity field analysis revealed zero-speed regions at both
ends of the submersible, indicative of flow separation, with
variations consistent across models. The k − ϵ standard
model, in particular, provided an accurate simulation of flow
patterns and pressure in the stern low-pressure zone, aligning
with empirical expectations. Given its suitability for bluff
body characteristics and moderate computational demand,
the k − ϵ standard model was selected for further simulation
in the study.

From the conducted experiments, the optimal CFD setup
conditions identified for subsequent research include a
computational domain extending 3L behind and 1.5L in
other directions of the vehicle, with a mesh quantity of
5.3 million mesh cells, using the k−ϵ standard turbulence
model. These conditions ensure computational efficiency
while maintaining accuracy in simulating flow patterns,
particularly in capturing the flow separation and vortex
formation around the vehicle. This configuration provides a
robust foundation for further investigations.
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IV. RESULTS AND DISCUSSION
A. WORKFLOW
The experimental workflow is illustrated in Figure 13,
segmented into four distinct phases. The library of ARV
parameters is constructed using the OLHS method, as out-
lined in the experimental setup. The parameters utilized,
defining the bow shapes, are comprehensively outlined
in Table 5. The internal space of the underwater vehicle
bow is dictated by the onboard instruments, including
1 pressure shell, 3 thrusters, 2 underwater lights, and
2 underwater cameras. Notably, the width of the underwater
lights (101mm) and the width of the underwater cameras
(85mm) influence parameter B1, while the volume of the
remaining devices sets the lower limit for other parameters.
Subsequently, modeling of the ARV based on this library
is conducted in SOLIDWORKS, utilizing a Visual Basic
for Applications script for automation. Further automation
is achieved through a Python script, which commands
Fluent to perform calculations on the models under the
specified experimental conditions. The visual outcomes of
these calculations are compiled into a library of flow fields,
represented in JPEG format.

FIGURE 13. Experimental workflow.

Subsequently, the parameter library and CFD results
dataset serve as inputs, with the corresponding flow field
targets, to facilitate the training of the FlowRes model.
Throughout the training phase, we distinctly categorized the
images into two types: pressure field images and velocity
field images. The validation dataset is then employed to

TABLE 5. CFD condition table.

evaluate the predictive accuracy of the model. In the final
stage, a neural network is utilized to elucidate the relationship
between the parameter library and the drag force library.
Particle Swarm Optimization (PSO) [28] is subsequently
applied to identify optimal points characterized by minimal
drag force. The validated FlowRes model is then used
to predict the flow fields associated with these optimal
points.

In our experiment, the objective was to train the FlowRes
model to accurately generate flowfield images corresponding
to a variety of tow shapes of underwater vehicles. To achieve
our objective, we carefully compiled a dataset containing
240 paired entries, each linking an image depicting the flow
field to its corresponding design parameters. To ensure robust
validation and guard against overfitting, we implemented a 5-
fold cross-validation technique. This involved systematically
dividing the dataset into five subsets, with each fold
consisting of a distinct validation set comprising 20% of
the data (48 pairs), while the remaining 80% (192 pairs)
were earmarked for the training set. The approach enabled
thorough model evaluation and exploration of varied data
patterns across multiple validation folds, thereby enhancing
the reliability and generalization capability of our deep
learning model.

B. EVALUATION METRICS
Mean Squared Error (MSE) stands as a commonly used
metric in statistical analysis and machine learning, offering
a quantitative measure to assess the average squared dif-
ferences between predicted values and actual observations.
Particularly valuable in evaluating regression models aimed
at predicting continuous numeric values, MSE provides a
reliable indicator of model accuracy. The training process
was guided by MSE metric, a critical measure used both for
guiding the training and for the final evaluation of the model.
The calculations are as below,

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2 (7)

Ŷi,Yi and N denote predicted result and the CFD result and
total number of pixels. This metric provides a quantitative
way to assess the accuracy of the model, where a lower MSE
value indicates a better fit between the model’s predictions
and the actual data.
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1) TRAINING SETTINGS
For the training process, we employed the Adam optimizer
with a constant learning rate of 0.001. We set the batch size
to 16 and trained the model over 300 epochs. The resulting
average MSE values for the generated images, acquired
by using the validation set, were 0.00638 for pressure and
0.00682 for velocity. The implementation, training, and
prediction of all experiments are done based on PyTorch
2.2 and a standard Ubuntu-20.04 OS with an Intel Xeon
Platinum 8380 CPU.

C. DECODER COMPARISON
We utilized ViTGAN and SAGAN, two state-of-the-art
models, to individually construct decoders. FlowRes, along
with these two decoders, underwent parameter adjustments
to standardize their predictive performance. The results are
presented in Table 6. FlowRes exhibited the lowest MSE
in its prediction outputs. We attribute this superiority to
its operational methodology. While Generative Adversarial
Networks (GANs) excel in numerous generative tasks, they
necessitate extensive datasets for robust training. Given our
relatively small dataset, GANs typically do not undergo
thorough training. Furthermore, GANs are more suited
for tasks requiring diverse outputs, whereas our objective
demands precision and singularity. Additionally, in the
context of flow field prediction, transformers often perform
excessive global computations. This occurs because minor
variations in physical parameters occur in regions distant
from the vehicle. Our focus lies in capturing detailed changes
proximal to the vehicle.

TABLE 6. Decoders performance comparison.

D. OPTIMIZATION
In the study, we further enhanced our methodology by
incorporating PSO. This technique was used to strategi-
cally identify design parameters that minimize pressure
drag force for the underwater vehicles. Utilizing the
trained neural network, which focused on the relationship
between shape design parameters and pressure drag force,
PSO helped pinpoint three optimal design points, shown
in Table 7.

Finally, the optimal point was processed through both the
traditional Computational CFD workflow and the FlowRes
workflow to generate visualization results, depicted in
Figure 14. The outcomes of each workflow were then com-
pared. The images of pressure and velocity fields produced
by FlowRes demonstrated less than 1% deviation from those
generated by the traditional CFD method, as determined

TABLE 7. Optimal point.

by MSE. Impressively, the time required for predicting a
case was reduced from 25 minutes to just a few seconds,
significantly enhancing efficiency over the traditional CFD
workflow. The results underscored the utility of our integrated
approach in the early stages of underwater vehicle design,
presenting a time-efficient method for optimizing design
parameters.

FIGURE 14. Optimal points comparison between FlowRes and CFD
results.

V. CONCLUSION
In this study, we introduce FlowRes, which shows novelty
on two sides: first, through its utilization of the ResNet-
50 architecture for flow field prediction, and second, by its
adaptation specifically for ARV early design phases. This
innovative approach integrates deep learning into the initial
stages of ARV design, and showcases a notable improvement
in simulation efficiency. In addition, it is essential to note that
while this study introduces FlowRes, an application of the
ResNet-50 architecture tailored for use in the early design
phases of ARV development, the full extent of its validity and
efficiency in other tasks within the realm of hydrodynamics
remains to be thoroughly investigated. FlowRes represents a
novel approach by integrating deep learning methodologies
into the initial stages of ARV design, showcasing its
potential compared to the traditional simulation techniques.
However, further research and experimentation, such as
testing the performance of FlowRes in the design of other
types of underwater vehicles, are warranted to explore the
broader applicability and effectiveness of FlowRes across
various hydrodynamic tasks associated with flow field
prediction.

Despite the promising findings attributed to FlowRes,
certain limitations persist, warranting further investigation.
Firstly, the efficacy of the data-driven approach is contingent
upon the quality of the dataset, with our validation efforts lim-
ited to assessing the decoder’s precision solely on a simplified
ARV model. However, in the context of more intricate appli-
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cations involving underwater vehicles, there arises a pressing
need for more expansive datasets capable of capturing the
intricacies of detail-rich environments. Secondly, both the
resolution of the flowfield predictions and the training dataset
utilized are low-resolution. To enhance the applicability of
FlowRes in practical engineering scenarios, an upgrade in
resolution is imperative. Nonetheless, this endeavor presents
notable challenges, particularly concerning the architectural
design of FlowRes and its computational capabilities.

By leveraging the capabilities of FlowRes, we have
observed an acceleration in identifying flow fields, achieving
speeds up to four orders of magnitude faster than traditional
CFD methods. This remarkable enhancement in simulation
efficiency can be attributed to a fundamental distinction
between CFD and neural networks. While traditional CFD
methods require iterative calculations for each case, accu-
mulating computation time with each iteration, FlowRes
undergoes an initial training phase on a dataset. Conse-
quently, when presented with a new case for prediction,
FlowRes requires only a single run based on the previous
training, resulting in significantly reduced computation time.
This improvement is not merely incremental; it represents
a significant leap forward in the efficiency of simulations,
offering a more rapid and resource-efficient process for the
early design phases of underwater vehicles.

The application of FlowRes in ARV design is a testament
to the potential of integrating advanced deep learning
techniques, such as ResNet, with established CFD principles.
This synergy not only enhances the predictive accuracy
and speed of simulations but also paves the way for more
innovative approaches in the field. Serving as the inaugural
application of ResNet in the ARV early design, FlowRes
contributes to the progression of realistic engineering needs,
furnishing a sturdy and effective instrument for the initial
design of ARV. With its nimble and immediate flow field
forecasting capability, the duration of the design iteration
can be significantly curtailed. Upon successful training and
implementation of FlowRes, designers reap substantial time
savings in comparison to conventional CFD workflows,
thereby expediting the entire design process.
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